Как в уравнениях называются числа при

Уравнение и его корни: определения, примеры

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Видео:Как называются числа при сложенииСкачать

Как называются числа при сложении

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6 : x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · ( x − 1 ) = 19 , x + 6 · ( x + 6 · ( x − 8 ) ) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · ( 8 + 1 ) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · ( x + 17 ) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + ( y − 6 ) 2 + ( z + 0 , 6 ) 2 = 26 .

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · ( x − 1 ) · ( x − 2 ) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня — 2 , 1 и 5 , то пишем — 2 , 1 , 5 или .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как ( 3 , 4 ) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Видео:Как называются числа при вычитанииСкачать

Как называются числа при вычитании

Мерзляк 5 класс — § 10. Уравнение

Вопросы к параграфу

1. Какое число называют корнем (решением) уравнения? — Корнем (решением) уравнения называют число, которое при подстановке вместо буквы обращает уравнение в верное числовое равенство.

2. Что значит решить уравнение? — Это значит найти все его корни или убедиться, что их вообще нет.

3. Как найти неизвестное слагаемое? — Надо из суммы вычесть известное слагаемое.

4. Как найти неизвестное уменьшаемое? — Надо к разности прибавить вычитаемое.

5. Как найти неизвестное вычитаемое? — Надо из вычитаемого вычесть разность.

Решаем устно

1. Найдите значение выражения 53 + х:

1. если х = 29, то 53 + х = 53 + 29 = 82

2. если х = 61, то 53 + х = 53 + 61 = 114

2. Найдите значение выражения 12y:

1. если: у = 7, то 12y = 12 • 7 = 84

2. если: у = 20, то 12y = 12 • 20 = 240

3. Найдите по формуле пути s = 50t расстояние (в метрах), которое проходит Петя:

1) за 4 мин: s = 50t = 50 • 4 = 200 метров

2) за 10 мин: s = 50t = 50 • 10 = 500 метров

Что означает числовой множитель в этой формуле? Числовой множитель 50 обозначает скорость движения Пети (м/мин).

4. Число а на 10 больше, чем число b. В виде каких из следующих равенств это можно записать:

  1. а + b = 10 — нельзя записать
  2. а — b = 10 — можно записать
  3. b — а = 10 — нельзя записать
  4. а — 10 = b — можно записать
  5. b + 10 = а — можно записать

Ответ: можно записать в виде равенств: а — b = 10; а — 10 = b; b + 10 = а.

5. Найдите все натуральные значения а, при которых выражение 20 : а принимает натуральные значения.

  • если а = 1, то 20 : 1 = 20 — натуральное число
  • если а = 2, то 20 : 2 = 10 — натуральное число
  • если а = 4, то 20 : 4 = 5 — натуральное число
  • если а = 5, то 20 : 5 = 4 — натуральное число
  • если а = 10, то 20 : 10 = 2 — натуральное число
  • если а = 20, то 20 : 20 = 1 — натуральное число

Ответ: при а = 1, 2, 4, 5 , 10 или 20.

6. На одну чашу весов поставили несколько гирь по 2 кг, а на другую — по 3 кг, после чего весы пришли в равновесие. Сколько поставили гирь каждого вида, если всего их поставили 10?

На одну чашу весов надо поставить 6 гирь по 2 кг, а на другую — 4 гири по 3 кг.

Для решения использовано 10 гирь.

Упражнения

267. Какое из чисел 3, 12, 14 является корнем уравнения:

1) х + 16 = 28

  • если х = 3, то 3 + 16 = 19. Так как 19 ≠ 28, то число 3 не является корнем уравнения;
  • если х = 12, то 12 + 16 = 28. Так как 28 = 28, то число 12 является корнем уравнения;
  • если х = 14, то 14 + 16 = 30. Так как 30 ≠ 28, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 12.

2) 4х — 5 = 7

  • если х = 3, то 4 • 3 — 5 = 12 — 5 = 7. Так как 7 = 7, то число 3 является корнем уравнения;
  • если х = 12, то 4 • 12 — 5 = 48 — 5 = 43. Так как 43 ≠ 7, то число 12 не является корнем уравнения;
  • если х = 14, то 4 • 14 — 5 = 56 — 5 = 51. Так как 51 ≠ 7, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 3.

268. Какое из чисел 3, 12, 14 является корнем уравнения:

1) 234 — y = 220

  • если y = 3, то 234 — 3 = 231. Так как 231 ≠ 220, то число 3 не является корнем уравнения;
  • если y = 12, то 234 — 12 = 222. Так как 222 ≠ 220, то число 12 не является корнем уравнения;
  • если y = 14, то 234 — 14 = 220. Так как 220 = 220, то число 14 является корнем уравнения.

Ответ: корнем уравнения является число 14.

2) 72 : b + 13 = 19

  • если b = 3, то 72: 3 + 13 = 24 + 13 = 37. Так как 37 ≠ 19, то число 3 не является корнем уравнения;
  • если b = 12, то 72 : 12 + 13 = 6 + 13 = 19. Так как 19 = 19, то число 12 является корнем уравнения;
  • если b = 12, то 72 : 12 + 13 = 5 Как в уравнениях называются числа при+ 13 = 18 Как в уравнениях называются числа при. Так как 18 Как в уравнениях называются числа при≠ 19, то число 14 не является корнем уравнения.

Ответ: корнем уравнения является число 12.

269. Решите уравнение:

Как в уравнениях называются числа при

Как в уравнениях называются числа при

270. Решите уравнение:

Как в уравнениях называются числа при

271. Решите уравнение:

Как в уравнениях называются числа при

Как в уравнениях называются числа при

Как в уравнениях называются числа при

272. Решите уравнение:

Как в уравнениях называются числа при

273. Решите с помощью уравнения задачу.

1) Оксана задумала число. Если к этому числу прибавить 43 и полученную сумму вычесть из числа 96, то получим число 25. Какое число задумала Оксана?

Пусть задуманное Оксаной число равно x. Тогда можно составить уравнение:

96 — (х + 43) = 25
х + 43 = 96 — 25
х + 43 = 71
х = 71 — 43
х = 28

Ответ: Оксана задумала число 28.

2) У Буратино было 74 сольдо. После того как он купил себе учебники для школы, папа Карло дал ему 25 сольдо. Тогда у Буратино стало 68 сольдо. Сколько сольдо потратил Буратино на учебники?

Пусть Буратино потратил на учебники х сольдо. Тогда можно составить уравнение:

(74 — х) + 25 = 68
74 — х = 68 — 25
74 — х = 43
х = 74 — 43
х = 31

Ответ: Буратино потратил на учебники х сольдо.

274. Решите с помощью уравнения задачу.

Ваня задумал число. Если к этому числу прибавить 27 и из полученной суммы вычесть 14, то получим число 36. Какое число задумал Ваня?

Пусть задуманное Ваней число равно х. Тогда можно составить уравнение:

(х + 27) — 14 = 36
х + 27 = 36 + 14
х + 27 = 50
х = 50 — 27
х = 23

Ответ: Ваня задумал число 23.

275. Какое число надо подставить вместо а, чтобы корнем уравнения:

1) (x + а) — 7 = 42 было число 22

Подставим вместо х число 22 — корень уравнения, затем найдём неизвестное а:

(22 + а) — 7 = 42
22 + а = 42 + 7
22 + а = 49
а = 49 — 22
а = 27

Ответ: вместо а надо подставить число 27.

2) (а — x) + 4 = 15 было число 3

Подставим вместо х число 3 — корень уравнения, затем найдём неизвестное а:

(а — 3) + 4 = 15
а — 3 = 15 — 4
а — 3 = 11
а = 11 + 3
а = 14

Ответ: вместо а надо подставить число 14.

276. Какое число надо подставить вместо а, чтобы корнем уравнения:

1) (х — 7) + а = 23 было число 9

Подставим вместо х число 9 — корень уравнения, затем найдём неизвестное а:

(9 — 7) + а = 23
2 + а = 23
а = 23 — 2
а = 21

Ответ: вместо а надо подставить число 21.

2) (11 + х) + 101 = а было число 5

Подставим вместо х число 5 — корень уравнения, затем найдём неизвестное а:

(11 + 5) + 101 = а
16 + 101 = а
117 = а
а = 117

Ответ: вместо а надо подставить число 117.

Упражнения для повторения

277. Лиза была в школе с 8 ч 15 мин до 15 ч 20 мин. Вечером она пошла на тренировку. Там она провела на 5 ч 40 мин меньше времени, чем в школе. Сколько времени Лиза была на тренировке?

Как в уравнениях называются числа при

1) 15 ч 20 мин — 8 ч 15 мин = 7 ч 5 мин — Лиза провела в школе.

2) 7 ч 5 мин — 5 ч 40 мин = 6 ч 65 мин — 5 ч 40 мин = 1ч 25 мин — Лиа провела на тренировке.

Ответ: 1 ч 25 мин.

278. Начертите отрезок длиной 12 см. Над одним концом отрезка напишите число 0, а над другим — 480. Поделите отрезок на шесть равных частей. Отметьте на полученной шкале числа 40, 100, 280, 360, 420.

Как в уравнениях называются числа при

279. Можно ли, имея 900 р., купить 3 кг бананов по 65 р. за 1 кг, 2 кг мандаринов по 130 р. за 1 кг и 4 кг апельсинов по 95 р. за 1 кг?

Посчитаем общую стоимость предполагаемой покупки:

Как в уравнениях называются числа при

1) 65 • 3 = 195 (рублей) — потребуется на покупку бананов.

2) 130 • 2 = 260 (рублей) — потребуется на покупку мандаринов.

3) 95 • 4 = 380 (рублей) — потребуется на покупку апельсинов.

4) 195 + 260 + 380 = 835 (рублей) — будет стоить весь набор продуктов.

Сравним предполагаемую стоимость покупки с имеющейся суммой денег:

Значит купить все эти продукты на 900 рублей можно.

Задача от мудрой совы

280. В трёх ящичках лежат шары: в первом ящичке — два белых, во втором — два чёрных, в третьем — белый и чёрный. На ящички наклеены этикетки ББ, ЧЧ и БЧ так, что содержимое каждого из них не соответствует этикетке. Как, вынув один шар, узнать, что в каком ящичке лежит?

Этикетки на ящиках не соответствуют их содержимому. Значит в ящике БЧ не может лежать два разноцветных шарика. Там будет либо 2 белых шарика, либо два чёрных шарика. Вытащим один шар из ящика с этикеткой БЧ:

  • если вытащен белый шар, то значит в ящике:
    • БЧ — 2 белых шара;
    • ББ — 2 чёрных шара;
    • ЧЧ — 1 белый и 1 чёрный шар.
  • если вытащен чёрный шар, то значит в ящике:
    • БЧ — 2 чёрных шара;
    • ББ — 1 белый и 1 чёрный шар;
    • ЧЧ — 2 белых шара.

Как в уравнениях называются числа при

Ответ: надо вытащить шар из ящика с надписью БЧ.

Видео:Как называются числа при умноженииСкачать

Как называются числа при умножении

Общие сведения об уравнениях

Уравнения — одна из сложных тем для усвоения, но при этом они являются достаточно мощным инструментом для решения большинства задач.

С помощью уравнений описываются различные процессы, протекающие в природе. Уравнения широко применяются в других науках: в экономике, физике, биологии и химии.

В данном уроке мы попробуем понять суть простейших уравнений, научимся выражать неизвестные и решим несколько уравнений. По мере усвоения новых материалов, уравнения будут усложняться, поэтому понять основы очень важно.

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Что такое уравнение?

Уравнение — это равенство, содержащее в себе переменную, значение которой требуется найти. Это значение должно быть таким, чтобы при его подстановке в исходное уравнение получалось верное числовое равенство.

Например выражение 3 + 2 = 5 является равенством. При вычислении левой части получается верное числовое равенство 5 = 5 .

А вот равенство 3 + x = 5 является уравнением, поскольку содержит в себе переменную x , значение которой можно найти. Значение должно быть таким, чтобы при подстановке этого значения в исходное уравнение, получилось верное числовое равенство.

Другими словами, мы должны найти такое значение, при котором знак равенства оправдал бы свое местоположение — левая часть должна быть равна правой части.

Уравнение 3 + x = 5 является элементарным. Значение переменной x равно числу 2. При любом другом значении равенство соблюдáться не будет

Как в уравнениях называются числа при

Говорят, что число 2 является корнем или решением уравнения 3 + x = 5

Корень или решение уравнения — это значение переменной, при котором уравнение обращается в верное числовое равенство.

Корней может быть несколько или не быть совсем. Решить уравнение означает найти его корни или доказать, что корней нет.

Переменную, входящую в уравнение, иначе называют неизвестным. Вы вправе называть как вам удобнее. Это синонимы.

Примечание. Словосочетание «решить уравнение» говорит самó за себя. Решить уравнение означает «уравнять» равенство — сделать его сбалансированным, чтобы левая часть равнялась правой части.

Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

Неполные квадратные уравнения. Алгебра, 8 класс

Выразить одно через другое

Изучение уравнений по традиции начинается с того, чтобы научиться выражать одно число, входящее в равенство, через ряд других. Давайте не будем нарушать эту традицию и поступим также.

Рассмотрим следующее выражение:

Данное выражение является суммой чисел 8 и 2. Значение данного выражения равно 10

Получили равенство. Теперь можно выразить любое число из этого равенства через другие числа, входящие в это же равенство. К примеру, выразим число 2.

Чтобы выразить число 2, нужно задать вопрос: «что нужно сделать с числами 10 и 8, чтобы получить число 2». Понятно, что для получения числа 2, нужно из числа 10 вычесть число 8.

Так и делаем. Записываем число 2 и через знак равенства говорим, что для получения этого числа 2 мы из числа 10 вычли число 8:

Мы выразили число 2 из равенства 8 + 2 = 10 . Как видно из примера, ничего сложного в этом нет.

При решении уравнений, в частности при выражении одного числа через другие, знак равенства удобно заменять на слово «есть». Делать это нужно мысленно, а не в самом выражении.

Так, выражая число 2 из равенства 8 + 2 = 10 мы получили равенство 2 = 10 − 8 . Данное равенство можно прочесть так:

2 есть 10 − 8

То есть знак = заменен на слово «есть». Более того, равенство 2 = 10 − 8 можно перевести с математического языка на полноценный человеческий язык. Тогда его можно будет прочитать следующим образом:

Число 2 есть разность числа 10 и числа 8

Число 2 есть разница между числом 10 и числом 8.

Но мы ограничимся лишь заменой знака равенства на слово «есть», и то будем делать это не всегда. Элементарные выражения можно понимать и без перевода математического языка на язык человеческий.

Вернём получившееся равенство 2 = 10 − 8 в первоначальное состояние:

Выразим в этот раз число 8. Что нужно сделать с остальными числами, чтобы получить число 8? Верно, нужно из числа 10 вычесть число 2

Вернем получившееся равенство 8 = 10 − 2 в первоначальное состояние:

В этот раз выразим число 10. Но оказывается, что десятку выражать не нужно, поскольку она уже выражена. Достаточно поменять местами левую и правую часть, тогда получится то, что нам нужно:

Пример 2. Рассмотрим равенство 8 − 2 = 6

Выразим из этого равенства число 8. Чтобы выразить число 8 остальные два числа нужно сложить:

Вернем получившееся равенство 8 = 6 + 2 в первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно из 8 вычесть 6

Пример 3. Рассмотрим равенство 3 × 2 = 6

Выразим число 3. Чтобы выразить число 3, нужно 6 разделить 2

Как в уравнениях называются числа при

Вернем получившееся равенство Как в уравнениях называются числа прив первоначальное состояние:

Выразим из этого равенства число 2. Чтобы выразить число 2, нужно 6 разделить 3

Как в уравнениях называются числа при

Пример 4. Рассмотрим равенство Как в уравнениях называются числа при

Выразим из этого равенства число 15. Чтобы выразить число 15, нужно перемножить числа 3 и 5

Вернем получившееся равенство 15 = 3 × 5 в первоначальное состояние:

Как в уравнениях называются числа при

Выразим из этого равенства число 5. Чтобы выразить число 5, нужно 15 разделить 3

Как в уравнениях называются числа при

Видео:Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

Правила нахождения неизвестных

Рассмотрим несколько правил нахождения неизвестных. Возможно, они вам знакомы, но не мешает повторить их ещё раз. В дальнейшем их можно будет забыть, поскольку мы научимся решать уравнения, не применяя эти правила.

Вернемся к первому примеру, который мы рассматривали в предыдущей теме, где в равенстве 8 + 2 = 10 требовалось выразить число 2.

В равенстве 8 + 2 = 10 числа 8 и 2 являются слагаемыми, а число 10 — суммой.

Как в уравнениях называются числа при

Чтобы выразить число 2, мы поступили следующим образом:

То есть из суммы 10 вычли слагаемое 8.

Теперь представим, что в равенстве 8 + 2 = 10 вместо числа 2 располагается переменная x

В этом случае равенство 8 + 2 = 10 превращается в уравнение 8 + x = 10 , а переменная x берет на себя роль так называемого неизвестного слагаемого

Как в уравнениях называются числа при

Наша задача найти это неизвестное слагаемое, то есть решить уравнение 8 + x = 10 . Для нахождения неизвестного слагаемого предусмотрено следующее правило:

Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое.

Что мы в принципе и сделали, когда выражали двойку в равенстве 8 + 2 = 10 . Чтобы выразить слагаемое 2, мы из суммы 10 вычли другое слагаемое 8

А сейчас, чтобы найти неизвестное слагаемое x , мы должны из суммы 10 вычесть известное слагаемое 8:

Если вычислить правую часть получившегося равенства, то можно узнать чему равна переменная x

Мы решили уравнение. Значение переменной x равно 2 . Для проверки значение переменной x отправляют в исходное уравнение 8 + x = 10 и подставляют вместо x. Так желательно поступать с любым решённым уравнением, поскольку нельзя быть точно уверенным, что уравнение решено правильно:

Как в уравнениях называются числа при

В результате получается верное числовое равенство. Значит уравнение решено правильно.

Это же правило действовало бы в случае, если неизвестным слагаемым было бы первое число 8.

В этом уравнении x — это неизвестное слагаемое, 2 — известное слагаемое, 10 — сумма. Чтобы найти неизвестное слагаемое x , нужно из суммы 10 вычесть известное слагаемое 2

Как в уравнениях называются числа при

Вернемся ко второму примеру из предыдущей темы, где в равенстве 8 − 2 = 6 требовалось выразить число 8.

В равенстве 8 − 2 = 6 число 8 это уменьшаемое, число 2 — вычитаемое, число 6 — разность

Как в уравнениях называются числа при

Чтобы выразить число 8, мы поступили следующим образом:

То есть сложили разность 6 и вычитаемое 2.

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 8 располагается переменная x

В этом случае переменная x берет на себя роль так называемого неизвестного уменьшаемого

Как в уравнениях называются числа при

Для нахождения неизвестного уменьшаемого предусмотрено следующее правило:

Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое.

Что мы и сделали, когда выражали число 8 в равенстве 8 − 2 = 6 . Чтобы выразить уменьшаемое 8, мы к разности 6 прибавили вычитаемое 2.

А сейчас, чтобы найти неизвестное уменьшаемое x , мы должны к разности 6 прибавить вычитаемое 2

Если вычислить правую часть, то можно узнать чему равна переменная x

Теперь представим, что в равенстве 8 − 2 = 6 вместо числа 2 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного вычитаемого

Как в уравнениях называются числа при

Для нахождения неизвестного вычитаемого предусмотрено следующее правило:

Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность.

Что мы и сделали, когда выражали число 2 в равенстве 8 − 2 = 6. Чтобы выразить число 2, мы из уменьшаемого 8 вычли разность 6.

А сейчас, чтобы найти неизвестное вычитаемое x, нужно опять же из уменьшаемого 8 вычесть разность 6

Вычисляем правую часть и находим значение x

Вернемся к третьему примеру из предыдущей темы, где в равенстве 3 × 2 = 6 мы пробовали выразить число 3.

В равенстве 3 × 2 = 6 число 3 — это множимое, число 2 — множитель, число 6 — произведение

Как в уравнениях называются числа при

Чтобы выразить число 3 мы поступили следующим образом:

Как в уравнениях называются числа при

То есть разделили произведение 6 на множитель 2.

Теперь представим, что в равенстве 3 × 2 = 6 вместо числа 3 располагается переменная x

В этом случае переменная x берет на себя роль неизвестного множимого.

Как в уравнениях называются числа при

Для нахождения неизвестного множимого предусмотрено следующее правило:

Чтобы найти неизвестное множимое, нужно произведение разделить на множитель.

Что мы и сделали, когда выражали число 3 из равенства 3 × 2 = 6 . Произведение 6 мы разделили на множитель 2.

А сейчас для нахождения неизвестного множимого x , нужно произведение 6 разделить на множитель 2.

Как в уравнениях называются числа при

Вычисление правой части позволяет нам найти значение переменной x

Это же правило применимо в случае, если переменная x располагается вместо множителя, а не множимого. Представим, что в равенстве 3 × 2 = 6 вместо числа 2 располагается переменная x .

Как в уравнениях называются числа при

В этом случае переменная x берет на себя роль неизвестного множителя. Для нахождения неизвестного множителя предусмотрено такое же, что и для нахождения неизвестного множимого, а именно деление произведения на известный множитель:

Чтобы найти неизвестный множитель, нужно произведение разделить на множимое.

Как в уравнениях называются числа при

Что мы и сделали, когда выражали число 2 из равенства 3 × 2 = 6 . Тогда для получения числа 2 мы разделили произведение 6 на множимое 3.

А сейчас для нахождения неизвестного множителя x мы разделили произведение 6 на множимое 3.

Вычисление правой части равенства Как в уравнениях называются числа припозволяет узнать чему равно x

Множимое и множитель вместе называют сомножителями. Поскольку правила нахождения множимого и множителя совпадают, мы можем сформулировать общее правило нахождения неизвестного сомножителя:

Чтобы найти неизвестный сомножитель, нужно произведение разделить на известный сомножитель.

Например, решим уравнение 9 × x = 18 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 18 разделить на известный сомножитель 9

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при.

Решим уравнение x × 3 = 27 . Переменная x является неизвестным сомножителем. Чтобы найти этот неизвестный сомножитель, нужно произведение 27 разделить на известный сомножитель 3

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при.

Вернемся к четвертому примеру из предыдущей темы, где в равенстве Как в уравнениях называются числа притребовалось выразить число 15. В этом равенстве число 15 — это делимое, число 5 — делитель, число 3 — частное.

Как в уравнениях называются числа при

Чтобы выразить число 15 мы поступили следующим образом:

То есть умножили частное 3 на делитель 5.

Теперь представим, что в равенстве Как в уравнениях называются числа привместо числа 15 располагается переменная x

Как в уравнениях называются числа при

В этом случае переменная x берет на себя роль неизвестного делимого.

Как в уравнениях называются числа при

Для нахождения неизвестного делимого предусмотрено следующее правило:

Чтобы найти неизвестное делимое, нужно частное умножить на делитель.

Что мы и сделали, когда выражали число 15 из равенства Как в уравнениях называются числа при. Чтобы выразить число 15, мы умножили частное 3 на делитель 5.

А сейчас, чтобы найти неизвестное делимое x , нужно частное 3 умножить на делитель 5

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Теперь представим, что в равенстве Как в уравнениях называются числа привместо числа 5 располагается переменная x .

Как в уравнениях называются числа при

В этом случае переменная x берет на себя роль неизвестного делителя.

Как в уравнениях называются числа при

Для нахождения неизвестного делителя предусмотрено следующее правило:

Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Что мы и сделали, когда выражали число 5 из равенства Как в уравнениях называются числа при. Чтобы выразить число 5, мы разделили делимое 15 на частное 3.

А сейчас, чтобы найти неизвестный делитель x , нужно делимое 15 разделить на частное 3

Как в уравнениях называются числа при

Вычислим правую часть получившегося равенства. Так мы узнаем чему равна переменная x .

Итак, для нахождения неизвестных мы изучили следующие правила:

  • Чтобы найти неизвестное слагаемое, нужно из суммы вычесть известное слагаемое;
  • Чтобы найти неизвестное уменьшаемое, нужно к разности прибавить вычитаемое;
  • Чтобы найти неизвестное вычитаемое, нужно из уменьшаемого вычесть разность;
  • Чтобы найти неизвестное множимое, нужно произведение разделить на множитель;
  • Чтобы найти неизвестный множитель, нужно произведение разделить на множимое;
  • Чтобы найти неизвестное делимое, нужно частное умножить на делитель;
  • Чтобы найти неизвестный делитель, нужно делимое разделить на частное.

Видео:Математика 2 класс (Урок№51 - Названия компонентов и результата действия умножения.)Скачать

Математика 2 класс (Урок№51 - Названия компонентов и результата действия умножения.)

Компоненты

Компонентами мы будем называть числа и переменные, входящие в равенство

Так, компонентами сложения являются слагаемые и сумма

Как в уравнениях называются числа при

Компонентами вычитания являются уменьшаемое, вычитаемое и разность

Как в уравнениях называются числа при

Компонентами умножения являются множимое, множитель и произведение

Как в уравнениях называются числа при

Компонентами деления являются делимое, делитель и частное

Как в уравнениях называются числа при

В зависимости от того, с какими компонентами мы будем иметь дело, будут применяться соответствующие правила нахождения неизвестных. Эти правила мы изучили в предыдущей теме. При решении уравнений желательно знать эти правило наизусть.

Пример 1. Найти корень уравнения 45 + x = 60

45 — слагаемое, x — неизвестное слагаемое, 60 — сумма. Имеем дело с компонентами сложения. Вспоминаем, что для нахождения неизвестного слагаемого, нужно из суммы вычесть известное слагаемое:

Вычислим правую часть, получим значение x равное 15

Значит корень уравнения 45 + x = 60 равен 15.

Чаще всего неизвестное слагаемое необходимо привести к виду при котором его можно было бы выразить.

Пример 2. Решить уравнение Как в уравнениях называются числа при

Здесь в отличие от предыдущего примера, неизвестное слагаемое нельзя выразить сразу, поскольку оно содержит коэффициент 2. Наша задача привести это уравнение к виду при котором можно было бы выразить x

В данном примере мы имеем дело с компонентами сложения — слагаемыми и суммой. 2x — это первое слагаемое, 4 — второе слагаемое, 8 — сумма.

Как в уравнениях называются числа при

При этом слагаемое 2x содержит переменную x . После нахождения значения переменной x слагаемое 2x примет другой вид. Поэтому слагаемое 2x можно полностью принять за неизвестное слагаемое:

Как в уравнениях называются числа при

Теперь применяем правило нахождения неизвестного слагаемого. Вычитаем из суммы известное слагаемое:

Как в уравнениях называются числа при

Вычислим правую часть получившегося уравнения:

Как в уравнениях называются числа при

Мы получили новое уравнение Как в уравнениях называются числа при. Теперь мы имеем дело с компонентами умножения: множимым, множителем и произведением. 2 — множимое, x — множитель, 4 — произведение

Как в уравнениях называются числа при

При этом переменная x является не просто множителем, а неизвестным множителем

Как в уравнениях называются числа при

Чтобы найти этот неизвестный множитель, нужно произведение разделить на множимое:

Как в уравнениях называются числа при

Вычислим правую часть, получим значение переменной x

Как в уравнениях называются числа при

Для проверки найденный корень отправим в исходное уравнение Как в уравнениях называются числа прии подставим вместо x

Как в уравнениях называются числа при

Получили верное числовое равенство. Значит уравнение решено правильно.

Пример 3. Решить уравнение 3x + 9x + 16x = 56

Cразу выразить неизвестное x нельзя. Сначала нужно привести данное уравнение к виду при котором его можно было бы выразить.

Приведем подобные слагаемые в левой части данного уравнения:

Как в уравнениях называются числа при

Имеем дело с компонентами умножения. 28 — множимое, x — множитель, 56 — произведение. При этом x является неизвестным множителем. Чтобы найти неизвестный множитель, нужно произведение разделить на множимое:

Как в уравнениях называются числа при

Отсюда x равен 2

Как в уравнениях называются числа при

Видео:Считаем в уме за секунду. #математика #арифметика #счет #ментальнаяарифметика #simplemathСкачать

Считаем в уме за секунду. #математика #арифметика #счет #ментальнаяарифметика #simplemath

Равносильные уравнения

В предыдущем примере при решении уравнения 3x + 9x + 16x = 56 , мы привели подобные слагаемые в левой части уравнения. В результате получили новое уравнение 28x = 56 . Старое уравнение 3x + 9x + 16x = 56 и получившееся новое уравнение 28x = 56 называют равносильными уравнениями, поскольку их корни совпадают.

Уравнения называют равносильными, если их корни совпадают.

Проверим это. Для уравнения 3x + 9x + 16x = 56 мы нашли корень равный 2 . Подставим этот корень сначала в уравнение 3x + 9x + 16x = 56 , а затем в уравнение 28x = 56 , которое получилось в результате приведения подобных слагаемых в левой части предыдущего уравнения. Мы должны получить верные числовые равенства

Как в уравнениях называются числа при

Согласно порядку действий, в первую очередь выполняется умножение:

Как в уравнениях называются числа при

Подставим корень 2 во второе уравнение 28x = 56

Как в уравнениях называются числа при

Видим, что у обоих уравнений корни совпадают. Значит уравнения 3x + 9x + 16x = 56 и 28x = 56 действительно являются равносильными.

Для решения уравнения 3x + 9x + 16x = 56 мы воспользовались одним из тождественных преобразований — приведением подобных слагаемых. Правильное тождественное преобразование уравнения позволило нам получить равносильное уравнение 28x = 56 , которое проще решать.

Из тождественных преобразований на данный момент мы умеем только сокращать дроби, приводить подобные слагаемые, выносить общий множитель за скобки, а также раскрывать скобки. Существуют и другие преобразования, которые следует знать. Но для общего представления о тождественных преобразованиях уравнений, изученных нами тем вполне хватает.

Рассмотрим некоторые преобразования, которые позволяют получить равносильное уравнение

Если к обеим частям уравнения прибавить одно и то же число, то получится уравнение равносильное данному.

Если из обеих частей уравнения вычесть одно и то же число, то получится уравнение равносильное данному.

Другими словами, корень уравнения не изменится, если к обеим частям данного уравнения прибавить (или вычесть из обеих частей) одно и то же число.

Пример 1. Решить уравнение Как в уравнениях называются числа при

Вычтем из обеих частей уравнения число 10

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях:

Как в уравнениях называются числа при

Получили уравнение 5x = 10 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 10 разделить на известный сомножитель 5.

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при.

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 2

Как в уравнениях называются числа при

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как в уравнениях называются числа примы вычли из обеих частей уравнения число 10 . В результате получили равносильное уравнение Как в уравнениях называются числа при. Корень этого уравнения, как и уравнения Как в уравнениях называются числа притак же равен 2

Как в уравнениях называются числа при

Пример 2. Решить уравнение 4(x + 3) = 16

Раскроем скобки в левой части равенства:

Как в уравнениях называются числа при

Вычтем из обеих частей уравнения число 12

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях уравнения:

Как в уравнениях называются числа приВ левой части останется 4x , а в правой части число 4

Как в уравнениях называются числа при

Получили уравнение 4x = 4 . Имеем дело с компонентами умножения. Чтобы найти неизвестный сомножитель x , нужно произведение 4 разделить на известный сомножитель 4

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при

Вернемся к исходному уравнению 4(x + 3) = 16 и подставим вместо x найденное значение 1

Как в уравнениях называются числа при

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение 4(x + 3) = 16 мы вычли из обеих частей уравнения число 12 . В результате получили равносильное уравнение 4x = 4 . Корень этого уравнения, как и уравнения 4(x + 3) = 16 так же равен 1

Как в уравнениях называются числа при

Пример 3. Решить уравнение Как в уравнениях называются числа при

Раскроем скобки в левой части равенства:

Как в уравнениях называются числа при

Прибавим к обеим частям уравнения число 8

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях уравнения:

Как в уравнениях называются числа при

В левой части останется 2x , а в правой части число 9

Как в уравнениях называются числа при

В получившемся уравнении 2x = 9 выразим неизвестное слагаемое x

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 4,5

Как в уравнениях называются числа при

Получили верное числовое равенство. Значит уравнение решено правильно.

Решая уравнение Как в уравнениях называются числа примы прибавили к обеим частям уравнения число 8. В результате получили равносильное уравнение Как в уравнениях называются числа при. Корень этого уравнения, как и уравнения Как в уравнениях называются числа притак же равен 4,5

Как в уравнениях называются числа при

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

То есть корень уравнения не изменится, если мы перенесем слагаемое из одной части уравнения в другую, изменив его знак. Это свойство является одним из важных и одним из часто используемых при решении уравнений.

Рассмотрим следующее уравнение:

Как в уравнениях называются числа при

Корень данного уравнения равен 2. Подставим вместо x этот корень и проверим получается ли верное числовое равенство

Как в уравнениях называются числа при

Получается верное равенство. Значит число 2 действительно является корнем уравнения Как в уравнениях называются числа при.

Теперь попробуем поэкспериментировать со слагаемыми этого уравнения, перенося их из одной части в другую, изменяя знаки.

Например, слагаемое 3x располагается в левой части равенства. Перенесём его в правую часть, изменив знак на противоположный:

Как в уравнениях называются числа при

Получилось уравнение 12 = 9x − 3x . Приведем подобные слагаемые в правой части данного уравнения:

Как в уравнениях называются числа при

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как в уравнениях называются числа при

Отсюда x = 2 . Как видим, корень уравнения не изменился. Значит уравнения 12 + 3x = 9x и 12 = 9x − 3x являются равносильными.

На самом деле данное преобразование является упрощенным методом предыдущего преобразования, где к обеим частям уравнения прибавлялось (или вычиталось) одно и то же число.

Мы сказали, что в уравнении 12 + 3x = 9x слагаемое 3x было перенесено в правую часть, изменив знак. В реальности же происходило следующее: из обеих частей уравнения вычли слагаемое 3x

Как в уравнениях называются числа при

Затем в левой части были приведены подобные слагаемые и получено уравнение 12 = 9x − 3x. Затем опять были приведены подобные слагаемые, но уже в правой части, и получено уравнение 12 = 6x.

Но так называемый «перенос» более удобен для подобных уравнений, поэтому он и получил такое широкое распространение. Решая уравнения, мы часто будем пользоваться именно этим преобразованием.

Равносильными также являются уравнения 12 + 3x = 9x и 3x − 9x = −12 . В этот раз в уравнении 12 + 3x = 9x слагаемое 12 было перенесено в правую часть, а слагаемое 9x в левую. Не следует забывать, что знаки этих слагаемых были изменены во время переноса

Как в уравнениях называются числа при

Следующее правило, которое позволяет получить равносильное уравнение, выглядит следующим образом:

Если обе части уравнения умножить или разделить на одно и то же число, не равное нулю, то получится уравнение равносильное данному.

Другими словами, корни уравнения не изменятся, если обе его части умножить или разделить на одно и то же число. Это действие часто применяется тогда, когда нужно решить уравнение содержащее дробные выражения.

Сначала рассмотрим примеры, в которых обе части уравнения будут умножаться на одно и то же число.

Пример 1. Решить уравнение Как в уравнениях называются числа при

При решении уравнений, содержащих дробные выражения, сначала принято упростить это уравнение.

В данном случае мы имеем дело именно с таким уравнением. В целях упрощения данного уравнения обе его части можно умножить на 8:

Как в уравнениях называются числа при

Мы помним, что для умножения дроби на число, нужно числитель данной дроби умножить на это число. У нас имеются две дроби и каждая из них умножается на число 8. Наша задача умножить числители дробей на это число 8

Как в уравнениях называются числа при

Теперь происходит самое интересное. В числителях и знаменателях обеих дробей содержится множитель 8, который можно сократить на 8. Это позволит нам избавиться от дробного выражения:

Как в уравнениях называются числа при

В результате останется простейшее уравнение

Как в уравнениях называются числа при

Ну и нетрудно догадаться, что корень этого уравнения равен 4

Как в уравнениях называются числа при

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 4

Как в уравнениях называются числа при

Получается верное числовое равенство. Значит уравнение решено правильно.

При решении данного уравнения мы умножили обе его части на 8. В результате получили уравнение Как в уравнениях называются числа при. Корень этого уравнения, как и уравнения Как в уравнениях называются числа приравен 4. Значит эти уравнения равносильны.

Множитель на который умножаются обе части уравнения принято записывать перед частью уравнения, а не после неё. Так, решая уравнение Как в уравнениях называются числа при, мы умножили обе части на множитель 8 и получили следующую запись:

Как в уравнениях называются числа при

От этого корень уравнения не изменился, но если бы мы сделали это находясь в школе, то нам сделали бы замечание, поскольку в алгебре множитель принято записывать перед тем выражением, с которым он перемножается. Поэтому умножение обеих частей уравнения Как в уравнениях называются числа прина множитель 8 желательно переписать следующим образом:

Как в уравнениях называются числа при

Пример 2. Решить уравнение Как в уравнениях называются числа при

Умнóжим обе части уравнения на 15

Как в уравнениях называются числа при

В левой части множители 15 можно сократить на 15, а в правой части множители 15 и 5 можно сократить на 5

Как в уравнениях называются числа при

Перепишем то, что у нас осталось:

Как в уравнениях называются числа при

Раскроем скобки в правой части уравнения:

Как в уравнениях называются числа при

Перенесем слагаемое x из левой части уравнения в правую часть, изменив знак. А слагаемое 15 из правой части уравнения перенесем в левую часть, опять же изменив знак:

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях, получим

Как в уравнениях называются числа при

Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 5

Как в уравнениях называются числа при

Получается верное числовое равенство. Значит уравнение решено правильно. При решении данного уравнения мы умножили обе го части на 15 . Далее выполняя тождественные преобразования, мы получили уравнение 10 = 2x . Корень этого уравнения, как и уравнения Как в уравнениях называются числа приравен 5 . Значит эти уравнения равносильны.

Пример 3. Решить уравнение Как в уравнениях называются числа при

Умнóжим обе части уравнения на 3

Как в уравнениях называются числа при

В левой части можно сократить две тройки, а правая часть будет равна 18

Как в уравнениях называются числа при

Останется простейшее уравнение Как в уравнениях называются числа при. Имеем дело с компонентами умножения. Переменная x является неизвестным сомножителем. Найдём этот известный сомножитель:

Как в уравнениях называются числа при

Отсюда Как в уравнениях называются числа при

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 9

Как в уравнениях называются числа при

Получается верное числовое равенство. Значит уравнение решено правильно.

Пример 4. Решить уравнение Как в уравнениях называются числа при

Умнóжим обе части уравнения на 6

Как в уравнениях называются числа при

В левой части уравнения раскроем скобки. В правой части множитель 6 можно поднять в числитель:

Как в уравнениях называются числа при

Сократим в обеих частях уравнениях то, что можно сократить:

Как в уравнениях называются числа при

Перепишем то, что у нас осталось:

Как в уравнениях называются числа при

Раскроем скобки в обеих частях уравнения:

Как в уравнениях называются числа при

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное x , сгруппируем в левой части уравнения, а слагаемые свободные от неизвестных — в правой:

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях:

Как в уравнениях называются числа при

Теперь найдем значение переменной x . Для этого разделим произведение 28 на известный сомножитель 7

Как в уравнениях называются числа при

Вернемся к исходному уравнению Как в уравнениях называются числа прии подставим вместо x найденное значение 4

Как в уравнениях называются числа при

Получилось верное числовое равенство. Значит уравнение решено правильно.

Пример 5. Решить уравнение Как в уравнениях называются числа при

Раскроем скобки в обеих частях уравнения там, где это можно:

Как в уравнениях называются числа при

Умнóжим обе части уравнения на 15

Как в уравнениях называются числа при

Раскроем скобки в обеих частях уравнения:

Как в уравнениях называются числа при

Сократим в обеих частях уравнения, то что можно сократить:

Как в уравнениях называются числа при

Перепишем то, что у нас осталось:

Как в уравнениях называются числа при

Раскроем скобки там, где это можно:

Как в уравнениях называются числа при

Воспользуемся переносом слагаемых. Слагаемые, содержащие неизвестное, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Не забываем, что во время переноса, слагаемые меняют свои знаки на противоположные:

Как в уравнениях называются числа при

Приведем подобные слагаемые в обеих частях уравнения:

Как в уравнениях называются числа при

Найдём значение x

Как в уравнениях называются числа при

В получившемся ответе можно выделить целую часть:

Как в уравнениях называются числа при

Вернемся к исходному уравнению и подставим вместо x найденное значение Как в уравнениях называются числа при

Как в уравнениях называются числа при

Получается довольно громоздкое выражение. Воспользуемся переменными. Левую часть равенства занесем в переменную A , а правую часть равенства в переменную B

Как в уравнениях называются числа при

Наша задача состоит в том, чтобы убедиться равна ли левая часть правой. Другими словами, доказать равенство A = B

Найдем значение выражения, находящегося в переменной А.

Как в уравнениях называются числа при

Значение переменной А равно Как в уравнениях называются числа при. Теперь найдем значение переменной B . То есть значение правой части нашего равенства. Если и оно равно Как в уравнениях называются числа при, то уравнение будет решено верно

Как в уравнениях называются числа при

Видим, что значение переменной B , как и значение переменной A равно Как в уравнениях называются числа при. Это значит, что левая часть равна правой части. Отсюда делаем вывод, что уравнение решено правильно.

Теперь попробуем не умножать обе части уравнения на одно и то же число, а делить.

Рассмотрим уравнение 30x + 14x + 14 = 70x − 40x + 42 . Решим его обычным методом: слагаемые, содержащие неизвестные, сгруппируем в левой части уравнения, а слагаемые, свободные от неизвестных — в правой. Далее выполняя известные тождественные преобразования, найдем значение x

Как в уравнениях называются числа при

Подставим найденное значение 2 вместо x в исходное уравнение:

Как в уравнениях называются числа при

Теперь попробуем разделить все слагаемые уравнения 30x + 14x + 14 = 70x − 40x + 42 на какое-нибудь число. Замечаем, что все слагаемые этого уравнения имеют общий множитель 2. На него и разделим каждое слагаемое:

Как в уравнениях называются числа при

Выполним сокращение в каждом слагаемом:

Как в уравнениях называются числа при

Перепишем то, что у нас осталось:

Как в уравнениях называются числа при

Решим это уравнение, пользуясь известными тождественными преобразованиями:

Как в уравнениях называются числа при

Получили корень 2 . Значит уравнения 15x + 7x + 7 = 35x − 20x + 21 и 30x + 14x + 14 = 70x − 40x + 42 равносильны.

Деление обеих частей уравнения на одно и то же число позволяет освобождать неизвестное от коэффициента. В предыдущем примере когда мы получили уравнение 7x = 14 , нам потребовалось разделить произведение 14 на известный сомножитель 7. Но если бы мы в левой части освободили неизвестное от коэффициента 7, корень нашелся бы сразу. Для этого достаточно было разделить обе части на 7

Как в уравнениях называются числа при

Этим методом мы тоже будем пользоваться часто.

Видео:КАК НАУЧИТЬСЯ СЧИТАТЬ ДРОБИ / ВСЕГО 3 ПРАВИЛАСкачать

КАК НАУЧИТЬСЯ СЧИТАТЬ ДРОБИ / ВСЕГО 3 ПРАВИЛА

Умножение на минус единицу

Если обе части уравнения умножить на минус единицу, то получится уравнение равносильное данному.

Это правило следует из того, что от умножения (или деления) обеих частей уравнения на одно и то же число, корень данного уравнения не меняется. А значит корень не поменяется если обе его части умножить на −1 .

Данное правило позволяет поменять знаки всех компонентов, входящих в уравнение. Для чего это нужно? Опять же, чтобы получить равносильное уравнение, которое проще решать.

Рассмотрим уравнение Как в уравнениях называются числа при. Чему равен корень этого уравнения?

Прибавим к обеим частям уравнения число 5

Как в уравнениях называются числа при

Приведем подобные слагаемые:

Как в уравнениях называются числа при

А теперь вспомним про коэффициент буквенного выражения. Что же представляет собой левая часть уравнения Как в уравнениях называются числа при. Это есть произведение минус единицы и переменной x

Как в уравнениях называются числа при

То есть минус, стоящий перед переменной x, относится не к самой переменной x , а к единице, которую мы не видим, поскольку коэффициент 1 принято не записывать. Это означает, что уравнение Как в уравнениях называются числа прина самом деле выглядит следующим образом:

Как в уравнениях называются числа при

Имеем дело с компонентами умножения. Чтобы найти х , нужно произведение −5 разделить на известный сомножитель −1 .

Как в уравнениях называются числа при

или разделить обе части уравнения на −1 , что еще проще

Как в уравнениях называются числа при

Итак, корень уравнения Как в уравнениях называются числа приравен 5 . Для проверки подставим его в исходное уравнение. Не забываем, что в исходном уравнении минус стоящий перед переменной x относится к невидимой единице

Как в уравнениях называются числа при

Получилось верное числовое равенство. Значит уравнение решено верно.

Теперь попробуем умножить обе части уравнения Как в уравнениях называются числа прина минус единицу:

Как в уравнениях называются числа при

После раскрытия скобок в левой части образуется выражение Как в уравнениях называются числа при, а правая часть будет равна 10

Как в уравнениях называются числа при

Корень этого уравнения, как и уравнения Как в уравнениях называются числа приравен 5

Как в уравнениях называются числа при

Значит уравнения Как в уравнениях называются числа прии Как в уравнениях называются числа приравносильны.

Пример 2. Решить уравнение Как в уравнениях называются числа при

В данном уравнении все компоненты являются отрицательными. С положительными компонентами работать удобнее, чем с отрицательными, поэтому поменяем знаки всех компонентов, входящих в уравнение Как в уравнениях называются числа при. Для этого умнóжим обе части данного уравнения на −1 .

Понятно, что от умножения на −1 любое число поменяет свой знак на противоположный. Поэтому саму процедуру умножения на −1 и раскрытие скобок подробно не расписывают, а сразу записывают компоненты уравнения с противоположными знаками.

Так, умножение уравнения Как в уравнениях называются числа прина −1 можно записать подробно следующим образом:

Как в уравнениях называются числа при

либо можно просто поменять знаки всех компонентов:

Как в уравнениях называются числа при

Получится то же самое, но разница будет в том, что мы сэкономим себе время.

Итак, умножив обе части уравнения Как в уравнениях называются числа прина −1 , мы получили уравнение Как в уравнениях называются числа при. Решим данное уравнение. Из обеих частей вычтем число 4 и разделим обе части на 3

Как в уравнениях называются числа при

Когда корень найден, переменную обычно записывают в левой части, а её значение в правой, что мы и сделали.

Пример 3. Решить уравнение Как в уравнениях называются числа при

Умнóжим обе части уравнения на −1 . Тогда все компоненты поменяют свои знаки на противоположные:

Как в уравнениях называются числа при

Из обеих частей получившегося уравнения вычтем 2x и приведем подобные слагаемые:

Как в уравнениях называются числа при

Прибавим к обеим частям уравнения единицу и приведем подобные слагаемые: Как в уравнениях называются числа при

Видео:Как называются числа при деленииСкачать

Как называются числа при делении

Приравнивание к нулю

Недавно мы узнали, что если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение равносильное данному.

А что будет если перенести из одной части в другую не одно слагаемое, а все слагаемые? Верно, в той части откуда забрали все слагаемые останется ноль. Иными словами, не останется ничего.

В качестве примера рассмотрим уравнение Как в уравнениях называются числа при. Решим данное уравнение, как обычно — слагаемые, содержащие неизвестные сгруппируем в одной части, а числовые слагаемые, свободные от неизвестных оставим в другой. Далее выполняя известные тождественные преобразования, найдем значение переменной x

Как в уравнениях называются числа при

Теперь попробуем решить это же уравнение, приравняв все его компоненты к нулю. Для этого перенесем все слагаемые из правой части в левую, изменив знаки:

Как в уравнениях называются числа при

Приведем подобные слагаемые в левой части:

Как в уравнениях называются числа при

Прибавим к обеим частям 77 , и разделим обе части на 7

Видео:Классическая теория поля. Занятие 2. Сапонов П. А. Арсеев П. И.Скачать

Классическая теория поля. Занятие 2. Сапонов П. А. Арсеев П. И.

Альтернатива правилам нахождения неизвестных

Очевидно, что зная о тождественных преобразованиях уравнений, можно не заучивать наизусть правила нахождения неизвестных.

К примеру, для нахождения неизвестного в уравнении Как в уравнениях называются числа примы произведение 10 делили на известный сомножитель 2

Как в уравнениях называются числа при

Но если в уравнении Как в уравнениях называются числа приобе части разделить на 2 корень найдется сразу. В левой части уравнения в числителе множитель 2 и в знаменателе множитель 2 сократятся на 2. А правая часть будет равна 5

Как в уравнениях называются числа при

Уравнения вида Как в уравнениях называются числа примы решали выражая неизвестное слагаемое:

Как в уравнениях называются числа при

Как в уравнениях называются числа при

Как в уравнениях называются числа при

Но можно воспользоваться тождественными преобразованиями, которые мы сегодня изучили. В уравнении Как в уравнениях называются числа прислагаемое 4 можно перенести в правую часть, изменив знак:

Как в уравнениях называются числа при

Как в уравнениях называются числа при

Далее разделить обе части на 2

Как в уравнениях называются числа при

В левой части уравнения сократятся две двойки. Правая часть будет равна 2. Отсюда Как в уравнениях называются числа при.

Либо можно было из обеих частей уравнения вычесть 4. Тогда получилось бы следующее:

Как в уравнениях называются числа при

В случае с уравнениями вида Как в уравнениях называются числа приудобнее делить произведение на известный сомножитель. Сравним оба решения:

Как в уравнениях называются числа при

Первое решение намного короче и аккуратнее. Второе решение можно значительно укоротить, если выполнить деление в уме.

Тем не менее, необходимо знать оба метода, и только затем использовать тот, который больше нравится.

Видео:Математика 2 класс (Урок№55 - Название чисел при делении.)Скачать

Математика 2 класс (Урок№55 - Название чисел при делении.)

Когда корней несколько

Уравнение может иметь несколько корней. Например уравнение x(x + 9) = 0 имеет два корня: 0 и −9 .

Как в уравнениях называются числа при

В уравнении x(x + 9) = 0 нужно было найти такое значение x при котором левая часть была бы равна нулю. В левой части этого уравнения содержатся выражения x и (x + 9) , которые являются сомножителями. Из законов умножения мы знаем, что произведение равно нулю, если хотя бы один из сомножителей равен нулю (или первый сомножитель или второй).

То есть в уравнении x(x + 9) = 0 равенство будет достигаться, если x будет равен нулю или (x + 9) будет равно нулю.

Приравняв к нулю оба этих выражения, мы сможем найти корни уравнения x(x + 9) = 0 . Первый корень, как видно из примера, нашелся сразу. Для нахождения второго корня нужно решить элементарное уравнение x + 9 = 0 . Несложно догадаться, что корень этого уравнения равен −9 . Проверка показывает, что корень верный:

Пример 2. Решить уравнение Как в уравнениях называются числа при

Данное уравнение имеет два корня: 1 и 2. Левая часть уравнения является произведение выражений (x − 1) и (x − 2) . А произведение равно нулю, если хотя бы один из сомножителей равен нулю (или сомножитель (x − 1) или сомножитель (x − 2) ).

Найдем такое x при котором выражения (x − 1) или (x − 2) обращаются в нули:

Как в уравнениях называются числа при

Подставляем по-очереди найденные значения в исходное уравнение Как в уравнениях называются числа прии убеждаемся, что при этих значениях левая часть равняется нулю:

Как в уравнениях называются числа при

Видео:Комплексные числа в уравненияхСкачать

Комплексные числа в уравнениях

Когда корней бесконечно много

Уравнение может иметь бесконечно много корней. То есть подставив в такое уравнение любое число, мы получим верное числовое равенство.

Пример 1. Решить уравнение Как в уравнениях называются числа при

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения и привести подобные слагаемые, то получится равенство 14 = 14 . Это равенство будет получаться при любом x

Как в уравнениях называются числа при

Пример 2. Решить уравнение Как в уравнениях называются числа при

Корнем данного уравнения является любое число. Если раскрыть скобки в левой части уравнения, то получится равенство 10x + 12 = 10x + 12. Это равенство будет получаться при любом x

Видео:Положительные и отрицательные числа. 6 класс.Скачать

Положительные и отрицательные числа. 6 класс.

Когда корней нет

Случается и так, что уравнение вовсе не имеет решений, то есть не имеет корней. Например уравнение Как в уравнениях называются числа прине имеет корней, поскольку при любом значении x , левая часть уравнения не будет равна правой части. Например, пусть Как в уравнениях называются числа при. Тогда уравнение примет следующий вид

Как в уравнениях называются числа при

Пусть Как в уравнениях называются числа при

Как в уравнениях называются числа при

Пример 2. Решить уравнение Как в уравнениях называются числа при

Раскроем скобки в левой части равенства:

Как в уравнениях называются числа при

Приведем подобные слагаемые:

Как в уравнениях называются числа при

Видим, что левая часть не равна правой части. И так будет при любом значении y . Например, пусть y = 3 .

Как в уравнениях называются числа при

Видео:Модуль числа. 6 класс.Скачать

Модуль числа. 6 класс.

Буквенные уравнения

Уравнение может содержать не только числа с переменными, но и буквы.

Например, формула нахождения скорости является буквенным уравнением:

Как в уравнениях называются числа при

Данное уравнение описывает скорость движения тела при равноускоренном движении.

Полезным навыком является умение выразить любой компонент, входящий в буквенное уравнение. Например, чтобы из уравнения Как в уравнениях называются числа приопределить расстояние, нужно выразить переменную s .

Умнóжим обе части уравнения Как в уравнениях называются числа прина t

Как в уравнениях называются числа при

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как в уравнениях называются числа при

В получившемся уравнении левую и правую часть поменяем местами:

Как в уравнениях называются числа при

У нас получилась формула нахождения расстояния, которую мы изучали ранее.

Попробуем из уравнения Как в уравнениях называются числа приопределить время. Для этого нужно выразить переменную t .

Умнóжим обе части уравнения на t

Как в уравнениях называются числа при

В правой части переменные t сократим на t и перепишем то, что у нас осталось:

Как в уравнениях называются числа при

В получившемся уравнении v × t = s обе части разделим на v

Как в уравнениях называются числа при

В левой части переменные v сократим на v и перепишем то, что у нас осталось:

Как в уравнениях называются числа при

У нас получилась формула определения времени, которую мы изучали ранее.

Предположим, что скорость поезда равна 50 км/ч

А расстояние равно 100 км

Тогда буквенное уравнение Как в уравнениях называются числа припримет следующий вид

Как в уравнениях называются числа при

Из этого уравнения можно найти время. Для этого нужно суметь выразить переменную t . Можно воспользоваться правилом нахождения неизвестного делителя, разделив делимое на частное и таким образом определить значение переменной t

Как в уравнениях называются числа при

либо можно воспользоваться тождественными преобразованиями. Сначала умножить обе части уравнения на t

Как в уравнениях называются числа при

Затем разделить обе части на 50

Как в уравнениях называются числа при

Пример 2. Дано буквенное уравнение Как в уравнениях называются числа при. Выразите из данного уравнения x

Вычтем из обеих частей уравнения a

Как в уравнениях называются числа при

Разделим обе части уравнения на b

Как в уравнениях называются числа при

Теперь, если нам попадется уравнение вида a + bx = c , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения. Те значения, которые будут подставляться вместо букв a, b, c принято называть параметрами. А уравнения вида a + bx = c называют уравнением с параметрами. В зависимости от параметров, корень будет меняться.

Решим уравнение 2 + 4x = 10 . Оно похоже на буквенное уравнение a + bx = c . Вместо того, чтобы выполнять тождественные преобразования, мы можем воспользоваться готовым решением. Сравним оба решения:

Как в уравнениях называются числа при

Видим, что второе решение намного проще и короче.

Для готового решения необходимо сделать небольшое замечание. Параметр b не должен быть равным нулю (b ≠ 0) , поскольку деление на ноль на допускается.

Пример 3. Дано буквенное уравнение Как в уравнениях называются числа при. Выразите из данного уравнения x

Раскроем скобки в обеих частях уравнения

Как в уравнениях называются числа при

Воспользуемся переносом слагаемых. Параметры, содержащие переменную x , сгруппируем в левой части уравнения, а параметры свободные от этой переменной — в правой.

Как в уравнениях называются числа при

В левой части вынесем за скобки множитель x

Как в уравнениях называются числа при

Разделим обе части на выражение a − b

Как в уравнениях называются числа при

В левой части числитель и знаменатель можно сократить на a − b . Так окончательно выразится переменная x

Как в уравнениях называются числа при

Теперь, если нам попадется уравнение вида a(x − c) = b(x + d) , то у нас будет готовое решение. Достаточно будет подставить в него нужные значения.

Допустим нам дано уравнение 4(x − 3) = 2(x + 4) . Оно похоже на уравнение a(x − c) = b(x + d) . Решим его двумя способами: при помощи тождественных преобразований и при помощи готового решения:

Для удобства вытащим из уравнения 4(x − 3) = 2(x + 4) значения параметров a, b, c, d . Это позволит нам не ошибиться при подстановке:

Как в уравнениях называются числа при

Как в уравнениях называются числа при

Как и в прошлом примере знаменатель здесь не должен быть равным нулю (a − b ≠ 0) . Если нам встретится уравнение вида a(x − c) = b(x + d) в котором параметры a и b будут одинаковыми, мы сможем не решая его сказать, что у данного уравнения корней нет, поскольку разность одинаковых чисел равна нулю.

Например, уравнение 2(x − 3) = 2(x + 4) является уравнением вида a(x − c) = b(x + d) . В уравнении 2(x − 3) = 2(x + 4) параметры a и b одинаковые. Если мы начнём его решать, то придем к тому, что левая часть не будет равна правой части:

Как в уравнениях называются числа при

Пример 4. Дано буквенное уравнение Как в уравнениях называются числа при. Выразите из данного уравнения x

Приведем левую часть уравнения к общему знаменателю:

Как в уравнениях называются числа при

Умнóжим обе части на a

Как в уравнениях называются числа при

В левой части x вынесем за скобки

Как в уравнениях называются числа при

Разделим обе части на выражение (1 − a)

Как в уравнениях называются числа при

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Линейные уравнения с одним неизвестным

Рассмотренные в данном уроке уравнения называют линейными уравнениями первой степени с одним неизвестным.

Если уравнение дано в первой степени, не содержит деления на неизвестное, а также не содержит корней из неизвестного, то его можно назвать линейным. Мы еще не изучали степени и корни, поэтому чтобы не усложнять себе жизнь, слово «линейный» будем понимать как «простой».

Большинство уравнений, решенных в данном уроке, в конечном итоге сводились к простейшему уравнению, в котором нужно было произведение разделить на известный сомножитель. Таковым к примеру является уравнение 2 (x + 3) = 16 . Давайте решим его.

Раскроем скобки в левой части уравнения, получим 2 x + 6 = 16. Перенесем слагаемое 6 в правую часть, изменив знак. Тогда получим 2 x = 16 − 6. Вычислим правую часть, получим 2x = 10. Чтобы найти x , разделим произведение 10 на известный сомножитель 2. Отсюда x = 5.

Уравнение 2 (x + 3) = 16 является линейным. Оно свелось к уравнению 2x = 10 , для нахождения корня которого потребовалось разделить произведение на известный сомножитель. Такое простейшее уравнение называют линейным уравнением первой степени с одним неизвестным в каноническом виде. Слово «канонический» является синонимом слов «простейший» или «нормальный».

Линейное уравнение первой степени с одним неизвестным в каноническом виде называют уравнение вида ax = b.

Полученное нами уравнение 2x = 10 является линейным уравнением первой степени с одним неизвестным в каноническом виде. У этого уравнения первая степень, одно неизвестное, оно не содержит деления на неизвестное и не содержит корней из неизвестного, и представлено оно в каноническом виде, то есть в простейшем виде при котором легко можно определить значение x . Вместо параметров a и b в нашем уравнении содержатся числа 2 и 10. Но подобное уравнение может содержать и другие числа: положительные, отрицательные или равные нулю.

Если в линейном уравнении a = 0 и b = 0 , то уравнение имеет бесконечно много корней. Действительно, если a равно нулю и b равно нулю, то линейное уравнение ax = b примет вид 0x = 0 . При любом значении x левая часть будет равна правой части.

Если в линейном уравнении a = 0 и b ≠ 0 , то уравнение корней не имеет. Действительно, если a равно нулю и b равно какому-нибудь числу, не равному нулю, скажем числу 5, то уравнение ax = b примет вид 0x = 5 . Левая часть будет равна нулю, а правая часть пяти. А ноль не равен пяти.

Если в линейном уравнении a ≠ 0 , и b равно любому числу, то уравнение имеет один корень. Он определяется делением параметра b на параметр a

Как в уравнениях называются числа при

Действительно, если a равно какому-нибудь числу, не равному нулю, скажем числу 3 , и b равно какому-нибудь числу, скажем числу 6 , то уравнение Как в уравнениях называются числа припримет вид Как в уравнениях называются числа при.
Отсюда Как в уравнениях называются числа при.

Существует и другая форма записи линейного уравнения первой степени с одним неизвестным. Выглядит она следующим образом: ax − b = 0 . Это то же самое уравнение, что и ax = b , но параметр b перенесен в левую часть с противоположным знаком. Такие уравнение мы тоже решали в данном уроке. Например, уравнение 7x − 77 = 0 . Уравнение вида ax − b = 0 называют линейным уравнением первой степени с одним неизвестным в общем виде.

В будущем после изучения рациональных выражений, мы рассмотрим такие понятия, как посторонние корни и потеря корней. А пока рассмотренного в данном уроке будет достаточным.

🎥 Видео

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Уравнения. 5 классСкачать

Уравнения. 5 класс

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.
Поделиться или сохранить к себе: