Как упростить уравнение 7 класс со скобками и буквами

Упрощения алгебраических выражений

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Что значит упростить алгебраическое выражение

Алгебраическое выражение — одна или несколько алгебраических величин (чисел и переменных), которые объединены с помощью знаков арифметических действий в виде сложения, вычитания, умножения, деления, извлечения корня, возведения в степень (при целых значениях показателей корня и степени), знаков последовательности, определяющих порядок применения данных операций (скобки разного вида).

Обязательным условием для алгебраического выражения является конечное число величин, которые его составляют. Данный принцип пригодиться математикам для решения задач в средних классах школы.

Упростить выражение — это значит уменьшить число арифметических действий, необходимых для вычисления значения данного выражения с учетом определенных значений переменных.

СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

Видео:7 класс. Упростите выражение.Скачать

7 класс. Упростите выражение.

Правила упрощения алгебраических выражений

Существуют основные методы в алгебре для того, чтобы упростить алгебраическое выражение:

  • приведение подобных;
  • разложение на множители;
  • сокращение дроби;
  • сложение и вычитание дробей;
  • умножение и деление дробей.

В процессе приведения выражения в более простую форму следует использовать полезные советы:

  1. При наличии подобных их рекомендуется привести, при этом не имеет значения то, в какой момент они образовались.
  2. При появлении первой возможности для сокращения дробей, рекомендуется ей сразу воспользоваться. Исключением являются дроби с одинаковыми знаменателями, которые требуется вычитать или суммировать. Такие дроби можно сократить после выполнения необходимых действий.

Приведение подобных

Приведение подобных слагаемых в теории заключается в сложении их коэффициентов и приписывании буквенной части.

Подобными являются слагаемые (одночлены), которые обладают буквенной частью.

В выражении 2ab+3ab+b одночлены 2ab и 3ab являются подобными слагаемыми.

Привести подобные — значит, выполнить сложение нескольких подобных слагаемых для получения в результате одного слагаемого.

К примеру, приведем слагаемые:

2 a + 3 b — a + 8 b + 7 a = 8 a + 11 b

Заметим, что числа в таких слагаемых умножают на буквы. Данные числа носят названия коэффициентов.

Рассмотрим выражение с квадратной степенью:

Здесь число 3 является коэффициентом.

Разложение на множители

Разложить выражение на множители можно, если вынести общий множитель за скобки, применить формулы сокращенного умножения и другие.

a b 2 + a 2 c = a b 2 + a c

4 x 2 — 16 x y + 16 y 2 = 4 x 2 — 4 x y + 4 y 2 = 4 x — 2 y 2

В распространенных случаях разложение на множители следует за приведением подобных при упрощении выражений. В итоге получаются произведения. Чтобы это понять, отдельно нужно упомянуть правила действия с дробями, а именно, при сокращении дроби числитель и знаменатель требуется записать, как произведения.

Сокращение дроби

В процессе сокращения дроби допустимо выполнять умножение или деление числителя и знаменателя дроби на одинаковое число, отличное от нуля, в результате чего величина дроби остается прежней.

Объяснение алгоритм действий при сокращении дробей:

  • разложение на множители числителя и знаменателя;
  • при наличии в числителе и знаменателе общих множителей их допустимо исключить из выражения.

Пример 5

a a + b a 2 = a a + b a · a = a + b a

Важно заметить, что сокращению подлежат исключительно множители.

Озвученное правило является следствием ключевого свойства дроби. Оно состоит в допустимости умножения или деления числителя и знаменателя дроби на одно и то же число, которое не равно нулю. В результате значение дроби останется без изменений.

Существует простой способ, руководствуясь которым можно определить, разложено ли выражение на множители. Арифметическое действие, выполняемое в последнюю очередь при вычислении значения выражения, считается «главным».

Данное правило состоит в том, что, когда при подстановке каких-либо чисел на замену буквам и вычислении значения выражения последнее действие представляет собой умножение, можно заключить, что перед нами произведение, то есть выражение разложено на множители. В том случае, когда на последнем шаге в процессе расчетов выполняется сложение или вычитание, разложение выражения на множители не выполнено, то есть сокращение не допускается.

Сложение и вычитание дробей

При сложении и вычитании обыкновенных дробей требуется найти общий знаменатель, умножить каждую из дробей на недостающий множитель и сложить или вычесть числители:

a b + c d = a · d + c · b b · d ;

a b — c d = a · d — c · b b · d

Разберем правило на конкретных примерах. Вычислим:

Заметим, что знаменатели являются взаимно простыми, то есть не имеют общих множителей. Таким образом, наименьший общий множитель данных чисел соответствует их произведению. В результате:

2 · 4 — 1 · 3 3 · 4 = 5 12

В данном случае общим множителем является число 24. Выполним преобразования и упростим выражение:

3 · 3 + 2 · 4 — 5 · 12 24 = — 43 24

В данном примере следует смешанные дроби записать в виде неправильных. Далее можно упростить выражение по стандартному алгоритму:

3 4 7 — 1 2 3 = 25 · 3 7 — 5 · 7 3 = 75 — 35 21 = 40 21

Разберем самостоятельный случай, когда знаменатели не содержат буквы. При этом алгоритм действий такой же, как и при действиях с обыкновенными дробями:

  • определить общий множитель;
  • умножить каждую дробь на недостающий множитель;
  • сложить или вычесть числители.

Здесь общий множитель равен 12. Тогда:

a 2 b · 3 4 + a · 2 6 = 3 a 2 b + 2 a 12

Далее можно привести подобные в числители, и разложить на множители при их наличии:

a 2 b 4 + a 6 = 3 a 2 b + 2 a 12 = a 3 a b + 2 12

Когда знаменатели содержат буквы, схема действий существенно не меняется:

  • разложение знаменателей на множители;
  • определение одинаковых множителей;
  • выделение всех общих множителей по одному разу;
  • умножение общих множителей на оставшиеся множители, которые не являются общими.

Пример 7

Рассмотрим пример, когда требуется упростить выражение:

1 a b 2 + 1 a 2 b

Разложим знаменатели на множители:

a b 2 = a · b · b a 2 b = a · a · b

Вычислим единые множители:

a b 2 = a ¯ · b ¯ ¯ · b a 2 b = a ¯ · a · b ¯ ¯

Затем можно записать общие множители и выполнить умножение:

a ¯ · b ¯ ¯ · a · b = a 2 b 2

Общим знаменателем является a 2 b 2 . Умножим первую дробь на а, вторую — на b:

1 a b 2 · a + 1 a 2 b · b = a + b a 2 b 2

Умножение и деление дробей

Умножение и деление дробей выполняют таким образом:

a b · c d = a · c b · d ;

a b : c d = a · d b · c

Арифметические действия выполняют в следующем порядке:

  • вычисление степени;
  • умножение и деление;
  • сложение и вычитание.

Важно заметить, что при наличии скобок, операции, которые в них заключены, необходимо выполнить в первую очередь. Далее можно приступать к раскрытию скобок. Когда имеется несколько скобок с арифметическими действиями, которые нужно умножить или разделить, в начале проводят вычисления в каждой из скобок, а затем умножение или деление полученных результатов. При наличии внутренних скобок, заключенных в скобки, действия в них выполняют в первую очередь.

2 + 3 2 — 16 2 1 — 8 5 3 3

Используя правило умножения и деления дробей, получим:

2 + 3 2 — 16 2 1 — 8 5 3 3 = 2 + 9 — 16 2 1 — 8 5 3 3 = — 5 2 1 — 8 5 3 3 = 25 · 1 — 8 5 3 3 = 25 · — 3 5 3 3 = 25 5 · — 3 5 3 3 = 5 · — 3 3 3 = 5 · — 1 3 = — 5 3 = — 125

Во многих примерах имеются не только цифры, но и буквы. В этом случае выполняются алгебраические действия, в том числе, приведение подобных, сложение, сокращение дробей и другие операции. Отличия можно заметить при разложении многочленов на множители. Для этого следует пользоваться формулами сокращенного умножения или вынесением единого множителя за скобки.

Ключевой задачей при работе с такими выражениями является запись выражений в виде произведения или частного.

Попробуем упростить выражение:

x y — y x · 5 x y x + y

Так как имеются скобки, следует начать преобразования именно с них. Упростим разность дробей, которая в них записана, чтобы получить вместо нее произведение или частное. Приведем дроби к единому знаменателю и определим сумму:

x · x y — y · y x = x · x — y · y y x = x 2 — y 2 y x = x — y x + y y x

Заметим, что дальнейшие преобразования не приведут к упрощению данного выражения. Причина этого заключается в том, что каждый из множителей является элементарным. В результате:

x y — y x · 5 x y x + y = x — y x + y y x · 5 x y x + y

x — y x + y y x · 5 x y x + y = x — y x + y · 5 x y y x x + y

x — y x + y · 5 x y y x x + y = 5 x — y

Видео:Задание №1 "Упростить выражение" по теме "Умножение и сложение многочленов и одночленов". Алгебра 7Скачать

Задание №1 "Упростить выражение" по теме "Умножение и сложение многочленов и одночленов". Алгебра 7

Пояснения на примерах

Требуется упростить выражения:

a — 2 b + 3 b + 6 a ;

a + a b — 3 a + 2 b a ;

a 2 b + a b 2 — a b + 2 a b 2 .

Приведем подобные и упростим выражения:

a ¯ — 2 b ¯ ¯ + 3 b ¯ ¯ + 6 a ¯ = 7 a + b

a ¯ + a b ¯ ¯ — 3 a ¯ + 2 b a ¯ ¯ = — 2 a + 3 a b

Заметим, что ab и 2ba являются подобными по той причине, что:

В результате можно сделать вывод, что данные слагаемые обладают одинаковой буквенной частью.

a 2 b + a b 2 ¯ — a b + 2 a b 2 ¯ = a 2 b + 3 ¯ a b 2 ¯ — a b .

Требуется упростить выражения:

a 3 b 4 — 3 a b 2 + 8 a 2 b 3

4 x 2 — 16 x y + 16 y 2

a 2 + 6 a y + 9 y 2 — 4

Путем разложения на множители упростим данные выражения:

a b 2 + a 2 c = a b 2 + a c

a 3 b 4 — 3 a b 2 + 8 a 2 b 3 = a b 2 a 2 b 2 — 3 + 8 a b

4 x 2 — 16 x y + 16 y 2 = 4 x 2 — 4 x y + 4 y 2 = 4 x — 2 y 2

a 2 + 6 a y + 9 y 2 — 4 = a + 3 y 2 — 2 2 = a + 3 y — 2 a + 3 y + 2

a 2 — b 2 a 2 + 2 a b + b 2

72 30 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 2 · 3 · 3 2 · 3 · 5 = 2 · 2 · 3 5 = 12 5

a a + b a 2 = a a + b a · a = a + b a

a 2 — b 2 a 2 + 2 a b + b 2 = a — b a + b a + b 2 = a — b a + b a + b a + b = a — b a + b

x 2 + 2 x y + y 2 x 2 — y 2

x 2 y — 4 y x 2 — 4 x + 4

a 3 — b 3 a 2 + a b + b 2

x 2 — 1 x — 1 = x 2 x = x

В первую очередь выполним разложение на множители:

x 2 — 1 x — 1 = x — 1 x + 1 x — 1 = x + 1

x 2 + 2 x y + y 2 x 2 — y 2 = x + y 2 : x + y x — y x + y : x + y = x + y x — y

x 2 y — 4 y x 2 — 4 x + 4 = y x 2 — 4 x — 2 2 = y x — 2 x + 2 x — 2 2 = y x + 2 x — 2

a 3 — b 3 a 2 + a b + b 2 = a — b a 2 + a b + b 2 a 2 + a b + b 2 = a — b .

Дано выражение, которое требуется упростить:

1 x y — 2 x 2 — x 4 x 2 — y 2

В данном случае требуется разложить знаменатели на множители. Первый знаменатель записан так, что можно вынести за скобки х. Второй знаменатель содержит разность квадратов. Выполним преобразования:

1 x y — 2 x 2 — x 4 x 2 — y 2 = 1 x y — 2 x — x 2 x — y 2 x + y

Рассмотрим выражение на наличие общих множителей:

y — 2 x = — 2 x — y

1 x y — 2 x 2 — x 4 x 2 — y 2 = 1 x y — 2 x — x 2 x — y 2 x + y = = 1 x y — 2 x — x — y — 2 x 2 x + y = 1 x y — 2 x + x y — 2 x 2 x + y

Заметим, что при переносе слагаемых, заключенных в скобках, изменился знак перед дробью. Приведем выражения к единому знаменателю:

1 x y — 2 x + x y — 2 x 2 x + y = 2 x + y + x 2 x y — 2 x 2 x + y = x 2 + 2 x + y x y 2 — 4 x 2

Ответ: x 2 + 2 x + y x y 2 — 4 x 2

x 8 — x 3 + 1 x 2 + 2 x + 4

Воспользуемся формулой сокращенного умножения, а именно, разностью кубов:

x 8 — x 3 + 1 x 2 + 2 x + 4 = x 2 3 — x 3 + 1 x 2 + 2 x + 4

Заметим, что в знаменателе дроби расположено выражение, которое называют неполным квадратом суммы:

x 2 + 2 x + 4 = x 2 + 2 · x + 2 2

Второе по счету слагаемое в неполном квадрате суммы является произведением первого и последнего. Неполный квадрат суммы представляет собой множитель, который входит в состав разложения разности кубов:

x 8 — x 3 + 1 x 2 + 2 x + 4 = x 2 3 — x 3 + 1 x 2 + 2 x + 4 = x 2 — x x 2 + 2 x + 4 + + 1 · 2 — x x 2 + 2 x + 4 = x + 2 — x 2 — x x 2 + 2 x + 4 = 2 8 — x 3

Требуется упростить выражения:

3 a + 1 4 + 2 a — 3 10

2 x 2 — 5 3 + 3 x + 2 2 — 2 x 2 — 2 x — 1 4

5 a b — 3 · 2 a b 15 = 5 a b — 6 a b 15 = — a b 15

5 3 a + 1 + 2 2 a — 3 20 = 15 a + 5 + 4 a — 6 20 = 19 a — 1 20

4 2 x 2 — 5 + 6 3 x + 2 — 3 2 x 2 — 2 x — 1 12 = = 8 x 2 ¯ — 20 ¯ ¯ + 18 x ¯ ¯ ¯ + 12 ¯ ¯ — 6 x 2 ¯ + 6 x ¯ ¯ ¯ + 3 ¯ ¯ 12 = 2 x 2 — 5 + 24 x 12

Дано выражение, которое требуется упростить:

1 a 2 x 2 b 3 y — 1 a x 3 b 2 y 4

При наличии в знаменателях одного и того же множителя, возведенного в разные степени, то в общем знаменателе данный множитель будет обладать самой большой из имеющихся степеней. Применительно к этой задаче, общий знаменатель будет состоять из следующих выражений:

a во второй степени;

x в третьей степени;

b в третьей степени;

y в четвертой степени.

В результате получим:

1 · x · y 3 a 2 x 2 b 3 y — 1 · a · b a x 3 b 2 y 4 = x y 3 — a b a 2 x 3 b 3 y 4

Ответ: x y 3 — a b a 2 x 3 b 3 y 4

Нужно упростить выражение:

t + 3 3 t — 1 + t + 3 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1

Исключить ошибки можно, если расписать заранее порядок операций. В первую очередь целесообразно суммировать дроби, расположенные в скобках. В результате будет получена только одна дробь. Далее можно приступить к делению дробей. Полученный итог следует прибавить к последней дроби.

Выглядит этот алгоритм таким образом:

t + 3 3 t — 1 + t + 3 t + 1 ⏞ 1 : t 2 + 3 t 1 — 3 t ⏞ 2 + t 2 + 3 t + 1 ⏞ 3 .

t + 3 · t + 1 3 t — 1 + t + 3 · 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = = t + 3 t + 1 + t + 3 3 t — 1 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = = t 2 + 3 t + t + 3 + 3 t 2 + 9 t — t — 3 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 =

4 t 2 + 12 t 3 t — 1 t + 1 : t 2 + 3 t 1 — 3 t + t 2 + 3 t + 1 = 4 t t + 3 3 t — 1 t + 1 : t t + 3 1 — 3 t + t 2 + 3 t + 1 = .

= 4 t t + 3 3 t — 1 t + 1 · 1 — 3 t t t + 3 + t 2 + 3 t + 1 = 4 t t + 3 · 1 — 3 t — 1 3 t — 1 t + 1 · t t + 3 + + t 2 + 3 t + 1 = — 4 t + 1 + t 2 + 3 t + 1 = — 4 + t 2 + 3 t + 1 = t 2 — 1 t + 1 = t — 1 t + 1 t + 1 = t — 1

Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

Видео:КАК РАСКРЫТЬ СКОБКИ?Скачать

КАК РАСКРЫТЬ СКОБКИ?

Как упростить алгебраическое выражение

Некоторые алгебраические примеры одним видом способны наводить ужас на школьников. Длинные выражения не только пугают, но и очень затрудняют вычисления. Пытаясь сходу понять, что и за чем следует, недолго запутаться. Именно по этой причине математики всегда стараются максимально упростить «жуткое» задание и только потом приступают к его решению. Как ни странно, такой трюк значительно ускоряет процесс работы.

Упрощение является одним из фундаментальных моментов в алгебре. Если в простых задачах без него ещё можно обойтись, то более трудные для вычисления примеры могут оказаться «не по зубам». Тут-то и пригодятся эти навыки! Тем более что сложных математических знаний не требуется: достаточно будет всего лишь запомнить и научиться применять на практике несколько базовых приёмов и формул.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Необходимые знания и умения

Вне зависимости от сложности вычислений при решении любого выражения важно соблюдать порядок выполнения операций с числами:

  1. скобки;
  2. возведение в степень;
  3. умножение;
  4. деление;
  5. сложение;
  6. вычитание.

Последние два пункта можно спокойно поменять местами и это никак не отразится на результате. Но складывать два соседних числа, когда рядом с одним из них стоит знак умножения категорически нельзя! Ответ если и получится, то неверный. Поэтому нужно запомнить последовательность.

Применение подобных

К таким элементам относятся числа с переменной одного порядка или одинаковой степени. Существуют и так называемые свободные члены, не имеющие рядом с собой буквенного обозначения неизвестного.

Суть заключается в том, что при отсутствии скобок можно упростить выражение, складывая или вычитая между собой подобные.

Несколько наглядных примеров:

  • 8x 2 и 3x 2 — оба числа имеют одну и ту же переменную второго порядка, поэтому они подобны и при сложении упрощаются до (8+3)x 2 =11x 2 , тогда как при вычитании получается (8-3)x 2 =5x 2 ;
  • 4x 3 и 6x — а тут «х» имеет разную степень;
  • 2y 7 и 33x 7 — содержат различные переменные, поэтому, как и в предыдущем случае, не относятся к подобным.

Как упростить уравнение 7 класс со скобками и буквами

Разложение числа на множители

Эта маленькая математическая хитрость, если научиться её правильно использовать, в будущем не раз поможет справиться с каверзной задачкой. Да и понять, как работает «система», несложно: разложением называют произведение нескольких элементов, вычисление которого даёт исходное значение. Таким образом, 20 можно представить как на 20×1, 2×10, 5×4, 2×5×2 или другим способом.

На заметку: множители всегда совпадают с делителями. Так что искать рабочую «пару» для разложения нужно среди чисел, на которые исходное делится без остатка.

Проделывать такую операцию можно как со свободными членами, так и с цифрами при переменной. Главное, не потерять последнюю во время вычислений — даже после разложения неизвестная не может взять и «уйти в никуда». Она остаётся при одном из множителей:

Простые числа, которые можно разделить лишь на себя или 1, никогда не раскладываются — в этом нет смысла.

Как упростить уравнение 7 класс со скобками и буквами

Видео:АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1Скачать

АЛГЕБРАИЧЕСКИЕ ВЫРАЖЕНИЯ 7 класс ПРИМЕРЫ формулы КАК РЕШАТЬ урок 1

Основные способы упрощения

Первое, за что цепляется взгляд:

Алгебраические примеры в школьной программе часто составляются с учётом того, что их можно красиво упростить.

Вычисления в скобках

Внимательно следите за знаком, стоящим перед скобками! Умножение или деление применяется к каждому элементу внутри, а минус — меняет имеющиеся знаки «+» или «-» на противоположные.

Скобки вычисляются по правилам либо по формулам сокращённого умножения, после чего приводятся подобные.

Сокращение дробей

Сокращать дроби тоже несложно. Они сами через раз «охотно убегают», стоит произвести операции с приведением подобных членов. Но упростить пример можно ещё до этого: обращайте внимание на числитель и знаменатель. Они нередко содержат явные или скрытые элементы, которые можно взаимно сократить. Правда, если в первом случае нужно всего лишь вычеркнуть лишнее, во втором придётся подумать, приводя часть выражения к виду для упрощения. Используемые методы:

  • поиск и вынесение за скобки наибольшего общего делителя у числителя и знаменателя;
  • деление каждого верхнего элемента на знаменатель.

Когда выражение или его часть находится под корнем, первостепенная задача упрощения практически аналогична случаю с дробями. Необходимо искать способы полностью от него избавиться или, если это невозможно, максимально сократить мешающий вычислениям знак. Например, до ненавязчивого √(3) или √(7).

Верный способ упростить подкоренное выражение — попытаться разложить его на множители, часть из которых выносится за пределы знака. Наглядный пример: √(90)=√(9×10) =√(9)×√(10)=3√(10).

Другие маленькие хитрости и нюансы:

  • эту операцию упрощения можно проводить с дробями, вынося её за знак как целиком, так и отдельно числитель или знаменатель;
  • раскладывать и выносить за пределы корня часть суммы или разности нельзя;
  • при работе с переменными обязательно учитывайте её степень, она должна быть равной или кратной корню для возможности вынесения: √(x 2 y)=x√(y), √(x 3 )=√(x 2 ×x)=x√(x);
  • иногда допускается избавление от подкоренной переменной путём возведения её в дробную степень: √(y 3 )=y 3/2 .

Как упростить уравнение 7 класс со скобками и буквами

Упрощение степенного выражения

Если в случае простых вычислений на минус или плюс примеры упрощаются за счёт приведения подобных, то как быть при умножении или делении переменных с разными степенями? Их можно легко упростить, запомнив два основных момента:

  1. Если между переменными стоит знак умножения — степени складываются.
  2. Когда они делятся друг на друга — из степени числителя вычитается она же знаменателя.

Единственное условие для такого упрощения — одинаковое основание у обоих членов. Примеры для наглядности:

  • 5x 2 ×4x 7 +(y 13 /y 11 )=(5×4)x 2+7 +y 13- 11 =20x 9 +y 2 ;
  • 2z 3 +z×z 2 -(3×z 8 /z 5 )=2z 3 +z 1+2 -(3×z 8-5 )=2z 3 +z 3 -3z 3 =3z 3 -3z 3 =0.

Отмечаем, что операции с числовыми значениями, стоящими перед переменными, происходят по обычным математическим правилам. И если присмотреться, то становится понятно, что степенные элементы выражения «работают» аналогично:

  • возведение члена в степень обозначает умножение его на самого себя определённое количество раз, т. е. x 2 =x×x;
  • деление аналогично: если разложить степень числителя и знаменателя, то часть переменных сократится, тогда как оставшиеся «собираются», что равносильно вычитанию.

Как и в любом деле, при упрощении алгебраических выражений необходимо не только знание основ, но и практика. Уже через несколько занятий примеры, когда-то кажущиеся сложными, будут сокращаться без особого труда, превращаясь в короткие и легко решаемые.

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Видео

Это видео поможет вам разобраться и запомнить, как упрощаются выражения.

Видео:РАСКРЫТИЕ СКОБОК 7 класс правила раскрытия скобок АЛГЕБРАСкачать

РАСКРЫТИЕ СКОБОК 7 класс правила раскрытия скобок АЛГЕБРА

Формулы сокращенного умножения: таблица, примеры использования

Формулы сокращенного умножения (ФСУ) применяются для возведения в степень и умножения чисел и выражений. Часто эти формулы позволяют произвести вычисления более компактно и быстро.

В данной статье мы перечислим основные формулы сокращенного умножения, сгруппируем их в таблицу, рассмотрим примеры использования этих формул, а также остановимся на принципах доказательств формул сокращенного умножения.

Видео:Упрощение выражений. 5 класс.Скачать

Упрощение выражений.  5 класс.

Формулы сокращенного умножения. Таблица

Впервые тема ФСУ рассматривается в рамках курса «Алгебра» за 7 класс. Приведем ниже 7 основных формул.

Формулы сокращенного умножения

  1. формула квадрата суммы: a + b 2 = a 2 + 2 a b + b 2
  2. формула квадрата разности: a — b 2 = a 2 — 2 a b + b 2
  3. формула куба суммы: a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3
  4. формула куба разности: a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3
  5. формула разности квадратов: a 2 — b 2 = a — b a + b
  6. формула суммы кубов: a 3 + b 3 = a + b a 2 — a b + b 2
  7. формула разности кубов: a 3 — b 3 = a — b a 2 + a b + b 2

Буквами a, b, c в данных выражениях могут быть любые числа, переменные или выражения. Для удобства использования лучше выучить семь основных формул наизусть. Сведем их в таблицу и приведем ниже, обведя рамкой.

Как упростить уравнение 7 класс со скобками и буквами

Первые четыре формулы позволяют вычислять соответственно квадрат или куб суммы или разности двух выражений.

Пятая формула вычисляет разность квадратов выражений путем произведения их суммы и разности.

Шестая и седьмая формулы — соответственно умножение суммы и разности выражений на неполный квадрат разности и неполный квадрат суммы.

Формула сокращенного умножения иногда еще называют тождествами сокращенного умножения. В этом нет ничего удивительного, так как каждое равенство представляет собой тождество.

При решении практических примеров часто используют формулы сокращенного умножения с переставленными местами левыми и правыми частями. Это особенно удобно, когда имеет место разложение многочлена на множители.

Как упростить уравнение 7 класс со скобками и буквами

Видео:7 класс. Упростите выражение.Скачать

7 класс. Упростите выражение.

Дополнительные формулы сокращенного умножения

Не будем ограничиваться курсом 7 класса по алгебре и добавим в нашу таблицу ФСУ еще несколько формул.

Во-первых, рассмотрим формулу бинома Ньютона.

a + b n = C n 0 · a n + C n 1 · a n — 1 · b + C n 2 · a n — 2 · b 2 + . . + C n n — 1 · a · b n — 1 + C n n · b n

Здесь C n k — биномиальные коэффициенты, которые стоят в строке под номером n в треугольнике паскаля. Биномиальные коэффициенты вычисляются по формуле:

C n k = n ! k ! · ( n — k ) ! = n ( n — 1 ) ( n — 2 ) . . ( n — ( k — 1 ) ) k !

Как видим, ФСУ для квадрата и куба разности и суммы — это частный случай формулы бинома Ньютона при n=2 и n=3соответственно.

Но что, если слагаемых в сумме, которую нужно возвести в степень, больше, чем два? Полезной будет формула квадрата суммы трех, четырех и более слагаемых.

a 1 + a 2 + . . + a n 2 = a 1 2 + a 2 2 + . . + a n 2 + 2 a 1 a 2 + 2 a 1 a 3 + . . + 2 a 1 a n + 2 a 2 a 3 + 2 a 2 a 4 + . . + 2 a 2 a n + 2 a n — 1 a n

Как читать эту формулу? Квадрат суммы n слагаемых равен сумме квадратов всех слагаемых и удвоенных произведений всех возможных пар этих слагаемых.

Еще одна формула, которая может пригодится — формула формула разности n-ых степеней двух слагаемых.

a n — b n = a — b a n — 1 + a n — 2 b + a n — 3 b 2 + . . + a 2 b n — 2 + b n — 1

Эту формулу обычно разделяют на две формулы — соответственно для четных и нечетных степеней.

Для четных показателей 2m:

a 2 m — b 2 m = a 2 — b 2 a 2 m — 2 + a 2 m — 4 b 2 + a 2 m — 6 b 4 + . . + b 2 m — 2

Для нечетных показателей 2m+1:

a 2 m + 1 — b 2 m + 1 = a 2 — b 2 a 2 m + a 2 m — 1 b + a 2 m — 2 b 2 + . . + b 2 m

Формулы разности квадратов и разности кубов, как вы догадались, являются частными случаями этой формулы при n = 2 и n = 3 соответственно. Для разности кубов b также заменяется на — b .

Видео:Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

Как читать формулы сокращенного умножения?

Дадим соответствующие формулировки для каждой формулы, но сначала разберемся с принципом чтения формул. Удобнее всего делать это на примере. Возьмем самую первую формулу квадрата суммы двух чисел.

a + b 2 = a 2 + 2 a b + b 2 .

Говорят: квадрат суммы двух выражений a и b равен сумме квадрата первого выражения, удвоенного произведения выражений и квадрата второго выражения.

Все остальные формулы читаются аналогично. Для квадрата разности a — b 2 = a 2 — 2 a b + b 2 запишем:

квадрат разности двух выражений a и b равен сумме квадратов этих выражений минус удвоенное произведение первого и второго выражения.

Прочитаем формулу a + b 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 . Куб суммы двух выражений a и b равен сумме кубов этих выражений, утроенного произведения квадрата первого выражения на второе и утроенного произведения квадрата второго выражения на первое выражение.

Переходим к чтению формулы для разности кубов a — b 3 = a 3 — 3 a 2 b + 3 a b 2 — b 3 . Куб разности двух выражений a и b равен кубу первого выражения минус утроенное произведение квадрата первого выражения на второе, плюс утроенное произведение квадрата второго выражения на первое выражение, минус куб второго выражения.

Пятая формула a 2 — b 2 = a — b a + b (разность квадратов) читается так: разность квадратов двух выражений равна произведению разности и суммы двух выражений.

Выражения типа a 2 + a b + b 2 и a 2 — a b + b 2 для удобства называют соответственно неполным квадратом суммы и неполным квадратом разности.

С учетом этого, формулы суммы и разности кубов прочитаются так:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Видео:№358 стр 72 Алгебра 7 класс Мерзляк Полонский Якир 2019 гдз Упростите выражениеСкачать

№358 стр 72 Алгебра 7 класс Мерзляк Полонский Якир 2019 гдз Упростите выражение

Доказательство ФСУ

Доказать ФСУ довольно просто. Основываясь на свойствах умножения, проведем умножение частей формул в скобках.

Для примера рассмотрим формулу квадрата разности.

a — b 2 = a 2 — 2 a b + b 2 .

Чтобы возвести выражение во вторую степень нужно это выражение умножить само на себя.

a — b 2 = a — b a — b .

a — b a — b = a 2 — a b — b a + b 2 = a 2 — 2 a b + b 2 .

Формула доказана. Остальные ФСУ доказываются аналогично.

Видео:Преобразование целых выражений. 7 класс.Скачать

Преобразование целых выражений. 7 класс.

Примеры применения ФСУ

Цель использования формул сокращенного умножения — быстрое и краткое умножение и возведение выражений в степень. Однако, это не вся сфера применения ФСУ. Они широко используются при сокращении выражений, сокращении дробей, разложении многочленов на множители. Приведем примеры.

Упростим выражение 9 y — ( 1 + 3 y ) 2 .

Применим формулу суммы квадратов и получим:

9 y — ( 1 + 3 y ) 2 = 9 y — ( 1 + 6 y + 9 y 2 ) = 9 y — 1 — 6 y — 9 y 2 = 3 y — 1 — 9 y 2

Сократим дробь 8 x 3 — z 6 4 x 2 — z 4 .

Замечаем, что выражение в числителе — разность кубов, а в знаменателе — разность квадратов.

8 x 3 — z 6 4 x 2 — z 4 = 2 x — z ( 4 x 2 + 2 x z + z 4 ) 2 x — z 2 x + z .

Сокращаем и получаем:

8 x 3 — z 6 4 x 2 — z 4 = ( 4 x 2 + 2 x z + z 4 ) 2 x + z

Также ФСУ помогают вычислять значения выражений. Главное — уметь заметить, где применить формулу. Покажем это на примере.

Возведем в квадрат число 79 . Вместо громоздких вычислений, запишем:

79 = 80 — 1 ; 79 2 = 80 — 1 2 = 6400 — 160 + 1 = 6241 .

Казалось бы, сложное вычисление проведено быстро всего лишь с использованием формул сокращенного умножения и таблицы умножения.

Еще один важный момент — выделение квадрата двучлена. Выражение 4 x 2 + 4 x — 3 можно преобразовать в вид 2 x 2 + 2 · 2 · x · 1 + 1 2 — 4 = 2 x + 1 2 — 4 . Такие преобразования широко используются в интегрировании.

📹 Видео

Упрощение выражений. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

Упрощение выражений.  Практическая часть - решение задачи. 1 часть. 5 класс.

Как раскрывать такие скобки? Алгебра 7 класс 8 класс # #математика #алгебра #7класс #8классСкачать

Как раскрывать такие скобки? Алгебра 7 класс 8 класс # #математика #алгебра #7класс #8класс

Алгебра 7 класс №3а Контрольная В-1 упростить выражение с дробями и буквами онлайнСкачать

Алгебра 7 класс №3а Контрольная В-1 упростить выражение с дробями и буквами онлайн

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!Скачать

ЧТО НАДО ГОВОРИТЬ ЕСЛИ НЕ СДЕЛАЛ ДОМАШКУ!

5 класс, 14 урок, Упрощение выраженийСкачать

5 класс, 14 урок, Упрощение выражений

Алгебра.7 класс (Урок№14 - Буквенные выражения.)Скачать

Алгебра.7 класс (Урок№14 - Буквенные выражения.)
Поделиться или сохранить к себе: