Как строить графики уравнений с модулем

Графики уравнений, содержащих знак модуля

Разделы: Математика

Цель:

  • закрепить методы построения графика линейной функции,
  • закрепить умение учащихся задавать уравнением функцию, заданную при помощи графика,
  • познакомить учащихся с тем, каким образом влияет знак модуля на отображение графика линейной функции

При решении многих математических задач необходимо быстро и точно строить графики любых функций, изучаемых в школьном курсе алгебры. Т.к. на уроке предстоит много построений, начинаем, вспоминая, как строить график линейной функции y = kx + b на основе анализа углового коэффициента и коэффициента смещения (слайд 2)

Сопоставляем уравнения и графики (слайд 3):

Как строить графики уравнений с модулем

Построим в тетрадях в одной системе координат графики функций (y = —x; y = —x -4; y = -1/3 x – 2; y = 2x + 5; y = x + 1), проверяя себя при помощи слайда 4

Вспомним определение модуля числа x (слайд 5)

Рассматриваем, как можно построить график функции y = |x| на основании определения модуля, отбрасывая части прямых, не лежащих в полуплоскостях x 0 (слайд 6)

Аналогично рассматриваем способ построения графика функции y = |x + 1| (слайд 7)

Сравнивая графики и уравнения функций (слайд 8-9),

Как строить графики уравнений с модулем

Как строить графики уравнений с модулем

делаем вывод о том, как можно построить график функции y = |x + a| — b смещением графика функции y = |x| (слайд 10-11)

Строим в тетрадях графики функций y = |x-3| + 3, y = |x – 3| — 2, y = |x+2| — 5, y = |x + 3| + 2 и проверяем себя при помощи слайда 12

Далее учащиеся должны на основе рисунка, представленного на слайде 13, задать функцию уравнением:

Как строить графики уравнений с модулем

При построении графиков очень важно научить ребят анализировать область определения и множество значений функции и “переносить” указанные множества на координатную плоскость.

Заполняем таблицу (слайд 12):

D(y)E (y)
y = |x|
y = |x – 3|
y = |x – 3| +2
y = — |x|
y = |x + 2| -5
y = — |x +2| -5

И рассматриваем, как множества значений можно определить на основе графиков (слайд 15)

Учащимся предлагается определить D (y) и E(y) по рисунку (слайд 16):

Как строить графики уравнений с модулем

Ученики самостоятельно придумывают уравнение функции по заданным D(y) и E(y) (слайд 17):

Как строить графики уравнений с модулем

Анализируя графики и уравнения (слайд 18), ученики делают вывод о том, как влияет знак минуса перед модульными скобками на график. И самостоятельно задают уравнение по графикам, представленным на слайде 19.

Устно проговариваем уравнения функций по графикам (слайд 20):

Как строить графики уравнений с модулем

Аналогично схеме предыдущего урока (слайд 21-27) ученики знакомятся с тем, каким образом влияет коэффициент перед аргументом функции на график. В результате они должны научиться описывать уравнением следующие графики:

Как строить графики уравнений с модулем

Для закрепления полученных знаний, в тетрадях в одной системе координат ребята строят следующие графики:

Видео:8 класс, 23 урок, Графики функций, содержащих модулиСкачать

8 класс, 23 урок, Графики функций, содержащих модули

Как строить графики уравнений с модулем

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Задание 23 из ОГЭ Построение графиков функций с модулем | МатематикаСкачать

Задание 23 из ОГЭ Построение графиков функций с модулем | Математика

Построение графиков с модулем
путём преобразований

Видео:График функции с модулемСкачать

График функции с модулем

Модуль аргумента и модуль функции

Если Вы попали на эту страницу из поисковика, миновав предыдущие разделы темы «Графики функций и их преобразования», то рекомендую сначала повторить графики основных элементарных функций и общие правила преобразования графиков функций.

В контексте построения графиков это означает использование преобразования симметрии относительно осей координат.

Как строить графики уравнений с модулемКак строить графики уравнений с модулем

Пример 1.

Как строить графики уравнений с модулемКак строить графики уравнений с модулем

В этом примере оба графика получены из графика функции y = x − 3.
Первый — преобразованием Гf(x) → Гf(|x|) , второй — преобразованием Гf(x) → Г|f(x)| .

Пример 2.

Как строить графики уравнений с модулемКак строить графики уравнений с модулем

В этом примере оба графика получены из графика функции y = x 2 − 2x − 3.
Первый — преобразованием Гf(x) → Гf(|x|) , второй — преобразованием Гf(x) → Г|f(x)| .

Один из способов быстро и точно построить исходную параболу по характерным точкам показан в видео на канале Mathematichka.

III При построении из графика функции y = f(x) более сложных графиков, например, вида y = k·f (a|x| + b) + c или y = k·|f (ax + b)| + c тщательно соблюдайте последовательность преобразований.

Ниже показаны примеры графиков различных функций, содержащих модуль, которые получены из графика функции (y=sqrt.) y = √|x| __ .

    1.Как строить графики уравнений с модулем2.Как строить графики уравнений с модулем3.Как строить графики уравнений с модулем4.Как строить графики уравнений с модулем5.Как строить графики уравнений с модулем
Как строить графики уравнений с модулем
1. (y=sqrt) √x _ —>2. (y=sqrt) √|x| __ —>3. (y=sqrt) y = √|x − 1| _____4. (y=sqrt) y = √|x| − 1 _____5. (y=|sqrt-1|.) y = | √x − 1 _ |

IV Равенство вида |y| = f (x) по определению не является функцией, так как допускает неоднозначность при вычислении значения y. Однако линию на координатной плоскости оно задает, и эту линию тоже можно построить, исходя из графика функции y = f(x) .
Для этого нужно:

  1. Построить график функции y = f(x) .
  2. Исключить его часть, расположенную ниже оси абсцисс, поскольку указанное равенство возможно только для положительных значений f(x).
  3. Построить нижнюю часть линии (при отрицательных y) симметричным отображением относительно оси Ox.

Эти кривые также получены из графика функции (y=sqrt). y = √x _ .

    6.Как строить графики уравнений с модулем7.Как строить графики уравнений с модулем8.Как строить графики уравнений с модулем
6. (|y|=sqrt)7. (|y|=|sqrt-1|)8. (|y|=sqrt.)

Пример 3.

Задан график функции y = x 2 .
Построить кривые, удовлетворяющие уравнению, |y| = x 2 − 2|x| − 5 .

Заметим, что x 2 = |x| 2 (значение четной степени, как и значение модуля, всегда неотрицательно). Поэтому, выделяя полный квадрат, преобразуем функцию к виду |y| = (|x| − 1) 2 − 6 и строим её график последовательными преобразованиями.

Строим график функции f(x) = (x − 1) 2 − 6 переносом на 1 вправо вдоль оси Ox, а затем переносом вниз на 6 единиц вдоль оси Oy.
Строим график функции f(|x|) = (|x| − 1) 2 − 6 с использованием преобразования симметрии относительно оси Oy.
Строим линии, удовлетворяющие уравнению |y| = (|x| − 1) 2 − 6 с использованием преобразования симметрии относительно оси Ox.

    1.Как строить графики уравнений с модулем2.Как строить графики уравнений с модулем3.Как строить графики уравнений с модулем4.Как строить графики уравнений с модулем
    5.Как строить графики уравнений с модулем6.Как строить графики уравнений с модулем
1.y = x 22.y = (x − 1) 23.y = (x − 1) 2 − 64.y = (|x| − 1) 2 − 6
5.y = (|x| − 1) 2 − 6, y ≥ 06.|y| = (|x| − 1) 2 − 6

Следующий график постройте самостоятельно, чтобы убедиться, что вы правильно поняли материал.

Пример 4.

Задан график функции y = x 2 .
Построить график функции y = |x 2 − 2x − 5| .

Как строить графики уравнений с модулем

Видео:Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnlineСкачать

Уравнения с модулем. Разбор 22 задания из ОГЭ | Математика 9 класс | TutorOnline

Сумма модулей

Если формула функции включает сумму или разность несколько модулей, то следует разбить координатную плоскость на участки и построить каждую ветвь графика отдельно. Границы участков определяются приравниванием каждого модуля к нулю и решением соответствующего уравнения. Подробный пример такого подхода можно увидеть в задаче 1 на странице, посвященной решению уравнений с параметрами.

Однако, если подмодульные выражения простые и содержат элементарные функции, графики которых вам хорошо известны, то можно получить результат прямым сложением ординат этих графиков в характерных точках.

Пример 5.

Построить график функции y = |x + 2| + |x − 1| .

Как строить графики уравнений с модулем

Эти два модуля содержат только линейные функции, графиками которых являются прямые линии. В результате сложения должна получиться ломаная линия, состоящая из трёх звеньев. (2 модуля, следовательно 2 уравнения, каждое из которых имеет одно решение, следовательно 2 границы, которыми плоскость разбита на 3 участка.) Трёхзвенную ломаную можно построить по 4-ём точкам.

На одних осях независимо друг от друга строим графики функций y = |x + 2| и y = |x − 1| , используя сдвиг и отражение. Складываем ординаты в точках излома x = −2 и x = 1 и в двух удобных точках на крайних участках, например, при x = −3 и x = 3 . На приведенном рисунке красным цветом представлен результирующий график, полученный по этим 4-ём точкам: (−3;5 ), (−2;3 ), (1; 3), (3;7).

Теперь проверьте себя.

Пример 6.

Построить график функции y = |x + 2| + |x − 1| − |x| .

Как строить графики уравнений с модулем

Как строить графики уравнений с модулем

Понравились материалы сайта? Узнайте, как поддержать сайт и помочь его развитию.

Есть вопросы? пожелания? замечания?
Обращайтесь — mathematichka@yandex.ru

Внимание, ©mathematichka. Прямое копирование материалов на других сайтах запрещено. Ставьте ссылки.

🔥 Видео

Модуль линейной функцииСкачать

Модуль линейной функции

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

График функции с модулем ★ Быстрый способСкачать

График функции с модулем ★ Быстрый способ

Математика | Двойной модуль. ОГЭСкачать

Математика | Двойной модуль. ОГЭ

Как построить график функции с модулем? | Математика ЕГЭ 2024 #егэ #егэпрофиль #профильнаяматематикаСкачать

Как построить график функции с модулем? | Математика ЕГЭ 2024 #егэ #егэпрофиль #профильнаяматематика

Уравнение модуль в модулеСкачать

Уравнение модуль в модуле

Уравнения с модулемСкачать

Уравнения с модулем

Как построить график функции без таблицыСкачать

Как построить график функции без таблицы

Графики функций с модулем | Дробно-линейная функцияСкачать

Графики функций с модулем | Дробно-линейная функция

Алгебра. 8 класс. Урок 11 "График функции с модулем"Скачать

Алгебра. 8 класс. Урок 11 "График функции с модулем"

ОГЭ Задание 23 График ломанаяСкачать

ОГЭ Задание 23 График   ломаная

График функции с модулем | Математика ЕГЭ 2024 #умскул #егэпрофиль #математика #егэСкачать

График функции с модулем | Математика ЕГЭ 2024 #умскул #егэпрофиль #математика #егэ

График функции с модулем. #ShortsСкачать

График функции с модулем. #Shorts

График функции, содержащей модульСкачать

График функции, содержащей модуль

Функция модуль Х / Как ее построить ? / y = |x|Скачать

Функция модуль Х / Как ее построить ? / y = |x|

10 класс. графики функций с модулем. построение. алгебраСкачать

10 класс. графики функций с модулем. построение. алгебра
Поделиться или сохранить к себе: