Алгоритм решения задач по алгебре на тему «Сравнение арифметических корней»
АЛГОРИТМ
«Срaвнение арифмeтичeских корнeй»
- Запишите каждую часть равенства или неравенства в виде корней a = √a 2 , а > 0.
- Сравните числа, стоящие под знаком корня:
если а >b > 0, то √a > √b;
если 0
ПРИМЕР 1 . Сравните числа:
Решение.
ПРИМЕР 2 . (Сравнение суммы корней) Какое из чисел больше — (√5 + √6) или (2 + √7)?
Решение.
Ответ: первое число больше.
ПРИМЕР 3 . (Сравнение разности корней) Сравните числа:
Ответ: первое число меньше.
ПРИМЕР 4 . При каких значениях а равенство будет верным?
Решение.
Ответ: равенство будет верным при а = 19.
Вы смотрели алгоритм решения задач по алгебре на тему «Сравнение корней».
Видео:Как сравнивать арифметические квадратные корни на ОГЭСкачать
Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней
Готовиться с нами — ЛЕГКО!
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Эффективное решение существует!
Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.
Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.
После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.
Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0) ). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b) , при возведении которого в квадрат мы получим число (a) : [sqrt a=bquad textquad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0) .
(bullet) Чему равен (sqrt) ? Мы знаем, что (5^2=25) и ((-5)^2=25) . Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt=5) (так как (25=5^2) ).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a) , а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt) , (sqrt) и т.п. не имеют смысла.
Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20) : [begin hline 1^2=1 & quad11^2=121 \ 2^2=4 & quad12^2=144\ 3^2=9 & quad13^2=169\ 4^2=16 & quad14^2=196\ 5^2=25 & quad15^2=225\ 6^2=36 & quad16^2=256\ 7^2=49 & quad17^2=289\ 8^2=64 & quad18^2=324\ 9^2=81 & quad19^2=361\ 10^2=100& quad20^2=400\ hline end]
Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt] Таким образом, если вам нужно вычислить, например, (sqrt+sqrt) , то первоначально вы должны найти значения (sqrt) и (sqrt) , а затем их сложить. Следовательно, [sqrt+sqrt=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt 2+ sqrt ) мы можем найти (sqrt) – это (7) , а вот (sqrt 2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt=sqrt 2+7) . Дальше это выражение, к сожалению, упростить никак нельзя (bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrtquad textquad sqrt a:sqrt b=sqrt] (при условии, что обе части равенств имеют смысл)
Пример: (sqrtcdot sqrt 2=sqrt=sqrt=8) ; (sqrt:sqrt3=sqrt=sqrt=16) ; (sqrt=sqrt=sqrtcdot sqrt= 5cdot 8=40) . (bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt) . Так как (44100:100=441) , то (44100=100cdot 441) . По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49) , то есть (441=9cdot 49) .
Таким образом, мы получили: [sqrt=sqrt= sqrt9cdot sqrtcdot sqrt=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt<dfrac>= sqrt<dfrac>= sqrt< dfrac>=dfrac<sqrtcdot sqrt4 cdot sqrt>=dfrac3=dfrac3]
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot sqrt2) ). Так как (5=sqrt) , то [5sqrt2=sqrtcdot sqrt2=sqrt=sqrt] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2) ,
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a) .
Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|) , равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3) .
(bullet) Если (a) – неотрицательное число, то (|a|=a) .
Пример: (|5|=5) ; (qquad |sqrt2|=sqrt2) . (bullet) Если (a) – отрицательное число, то (|a|=-a) .
Пример: (|-5|=-(-5)=5) ; (qquad |-sqrt3|=-(-sqrt3)=sqrt3) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|) . (bullet) Имеют место следующие формулы: [<large<sqrt=|a|>>] [<large>, text ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1) . Тогда (sqrt=sqrt=1) , а вот выражение ((sqrt )^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt) не равен ((sqrt a)^2) ! Пример: 1) (sqrt=|-sqrt2|=sqrt2) , т.к. (-sqrt2 ;
(phantom) 2) ((sqrt)^2=2) . (bullet) Так как (sqrt=|a|) , то [sqrt<a^>=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt=|4^3|=4^3=64)
2) (sqrt=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt<x^>=|x^8|=x^8) (так как любое число в четной степени неотрицательно)
Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
- Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
- Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.
Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.
🎦 Видео
Сравнения и корни. ОГЭ математика задача 4 (тип 9) 🔴Скачать
Дробно-рациональные уравнения. 8 класс.Скачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Корни. Сравнение корней. Математика 8 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзаменуСкачать
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.Скачать
Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать
Алгебра 8 класс. Уравнения с корнямиСкачать
Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать
Как сравнивать корниСкачать
Уравнение с корнем и подвохомСкачать
Универсальный метод сравнения логарифмов ★ Что больше?Скачать
Сравнение корней 😉Скачать
Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Уравнения с корнем. Иррациональные уравнения #shortsСкачать
Свойства корней, которые надо знатьСкачать