Как сравнивать уравнения с корнями

Как сравнивать уравнения с корнями

Алгоритм решения задач по алгебре на тему «Сравнение арифметических корней»

Как сравнивать уравнения с корнями

АЛГОРИТМ
«Срaвнение арифмeтичeских корнeй»

  1. Запишите каждую часть равенства или неравенства в виде корней a = √a 2 , а > 0.
  2. Сравните числа, стоящие под знаком корня:
    если а >b > 0, то √a > √b;
    если 0

ПРИМЕР 1 . Сравните числа: Как сравнивать уравнения с корнями

Решение.

Как сравнивать уравнения с корнями

ПРИМЕР 2 . (Сравнение суммы корней) Какое из чисел больше — (√5 + √6) или (2 + √7)?

Решение.

Как сравнивать уравнения с корнями

Ответ: первое число больше.

ПРИМЕР 3 . (Сравнение разности корней) Сравните числа: Как сравнивать уравнения с корнями

Как сравнивать уравнения с корнями

Ответ: первое число меньше.

ПРИМЕР 4 . При каких значениях а равенство Как сравнивать уравнения с корнямибудет верным?

Решение.

Как сравнивать уравнения с корнями

Ответ: равенство будет верным при а = 19.

Вы смотрели алгоритм решения задач по алгебре на тему «Сравнение корней».

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней

Готовиться с нами — ЛЕГКО!

Видео:Как сравнивать арифметические квадратные корни на ОГЭСкачать

Как сравнивать арифметические квадратные корни на ОГЭ

Эффективное решение существует!

Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.

Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.

После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.

Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0) ). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b) , при возведении которого в квадрат мы получим число (a) : [sqrt a=bquad textquad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0) .
(bullet) Чему равен (sqrt) ? Мы знаем, что (5^2=25) и ((-5)^2=25) . Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt=5) (так как (25=5^2) ).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a) , а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt) , (sqrt) и т.п. не имеют смысла.

Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20) : [begin hline 1^2=1 & quad11^2=121 \ 2^2=4 & quad12^2=144\ 3^2=9 & quad13^2=169\ 4^2=16 & quad14^2=196\ 5^2=25 & quad15^2=225\ 6^2=36 & quad16^2=256\ 7^2=49 & quad17^2=289\ 8^2=64 & quad18^2=324\ 9^2=81 & quad19^2=361\ 10^2=100& quad20^2=400\ hline end]

Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt] Таким образом, если вам нужно вычислить, например, (sqrt+sqrt) , то первоначально вы должны найти значения (sqrt) и (sqrt) , а затем их сложить. Следовательно, [sqrt+sqrt=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt 2+ sqrt ) мы можем найти (sqrt) – это (7) , а вот (sqrt 2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt=sqrt 2+7) . Дальше это выражение, к сожалению, упростить никак нельзя (bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrtquad textquad sqrt a:sqrt b=sqrt] (при условии, что обе части равенств имеют смысл)
Пример: (sqrtcdot sqrt 2=sqrt=sqrt=8) ; (sqrt:sqrt3=sqrt=sqrt=16) ; (sqrt=sqrt=sqrtcdot sqrt= 5cdot 8=40) . (bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt) . Так как (44100:100=441) , то (44100=100cdot 441) . По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49) , то есть (441=9cdot 49) .
Таким образом, мы получили: [sqrt=sqrt= sqrt9cdot sqrtcdot sqrt=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt<dfrac>= sqrt<dfrac>= sqrt< dfrac>=dfrac<sqrtcdot sqrt4 cdot sqrt>=dfrac3=dfrac3]
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot sqrt2) ). Так как (5=sqrt) , то [5sqrt2=sqrtcdot sqrt2=sqrt=sqrt] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2) ,
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a) .

Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a) . Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a) ). А мы знаем, что это равно четырем таким числам (a) , то есть (4sqrt2) .

Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2) , поэтому (sqrt=4) . А вот извлечь корень из числа (3) , то есть найти (sqrt3) , нельзя, потому что нет такого числа, которое в квадрате даст (3) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14) ), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7) ) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.

Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|) , равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3) . Как сравнивать уравнения с корнями
(bullet) Если (a) – неотрицательное число, то (|a|=a) .
Пример: (|5|=5) ; (qquad |sqrt2|=sqrt2) . (bullet) Если (a) – отрицательное число, то (|a|=-a) .
Пример: (|-5|=-(-5)=5) ; (qquad |-sqrt3|=-(-sqrt3)=sqrt3) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|) . (bullet) Имеют место следующие формулы: [<large<sqrt
=|a|>>] [<large>, text ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1) . Тогда (sqrt=sqrt=1) , а вот выражение ((sqrt )^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt
) не равен ((sqrt a)^2) ! Пример: 1) (sqrt=|-sqrt2|=sqrt2) , т.к. (-sqrt2 ;

(phantom) 2) ((sqrt)^2=2) . (bullet) Так как (sqrt=|a|) , то [sqrt<a^>=|a^n|] (выражение (2n) обозначает четное число)
То есть при извлечении корня из числа, находящегося в какой-то степени, эта степень уменьшается в два раза.
Пример:
1) (sqrt=|4^3|=4^3=64)
2) (sqrt=|-25|=25) (заметим, что если модуль не поставить, то получится, что корень из числа равен (-25) ; но мы помним, что по определению корня такого быть не может: у нас всегда при извлечении корня должно получаться положительное число или ноль)
3) (sqrt<x^>=|x^8|=x^8) (так как любое число в четной степени неотрицательно)

Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a , то (a ; если (sqrt a=sqrt b) , то (a=b) .
Пример:
1) сравним (sqrt) и (6sqrt2) . Для начала преобразуем второе выражение в (sqrtcdot sqrt2=sqrt=sqrt) . Таким образом, так как (50 , то и (sqrt . Следовательно, (sqrt .
2) Между какими целыми числами находится (sqrt) ?
Так как (sqrt=7) , (sqrt=8) , а (49 , то (7 , то есть число (sqrt) находится между числами (7) и (8) .
3) Сравним (sqrt 2-1) и (0,5) . Предположим, что (sqrt2-1>0,5) : [begin &sqrt 2-1>0,5 big| +1quad text\[1ex] &sqrt2>0,5+1 big| ^2 quadtext\[1ex] &2>1,5^2\ &2>2,25 end] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1 .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3 нельзя (убедитесь в этом сами)! (bullet) Следует запомнить, что [begin &sqrt 2approx 1,4\[1ex] &sqrt 3approx 1,7 end] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! (bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt) . Мы знаем, что (100^2=10,000) , (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000) . Следовательно, (sqrt) находится между (100) и (200) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130) ). Также из таблицы квадратов знаем, что (11^2=121) , (12^2=144) и т.д., тогда (110^2=12100) , (120^2=14400) , (130^2=16900) , (140^2=19600) , (150^2=22500) , (160^2=25600) , (170^2=28900) . Таким образом, мы видим, что (28224) находится между (160^2) и (170^2) . Следовательно, число (sqrt) находится между (160) и (170) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4) ? Это (2^2) и (8^2) . Следовательно, (sqrt) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2) :
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224) .
Следовательно, (sqrt=168) . Вуаля!

Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.

Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?

  1. Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
  2. Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.

Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.

📸 Видео

Корни. Сравнение корней. Математика 8 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзаменуСкачать

Корни. Сравнение корней. Математика 8 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзамену

Сравнения и корни. ОГЭ математика задача 4 (тип 9) 🔴Скачать

Сравнения и корни. ОГЭ математика задача 4 (тип 9) 🔴

СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.Скачать

Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.

Как сравнивать корниСкачать

Как сравнивать корни

Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать

Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.

Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать

Повысь свой уровень по теме КОРНИ | Математика | TutorOnline

Алгебра 8 класс. Уравнения с корнямиСкачать

Алгебра 8 класс. Уравнения с корнями

Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать

Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая  часть. 8 класс.

Уравнение с корнем и подвохомСкачать

Уравнение с корнем и подвохом

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Универсальный метод сравнения логарифмов ★ Что больше?Скачать

Универсальный метод сравнения логарифмов ★ Что больше?

Сравнение корней 😉Скачать

Сравнение корней 😉

Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Уравнения с корнем. Иррациональные уравнения #shorts

Свойства корней, которые надо знатьСкачать

Свойства корней, которые надо знать
Поделиться или сохранить к себе: