Алгоритм решения задач по алгебре на тему «Сравнение арифметических корней»
АЛГОРИТМ
«Срaвнение арифмeтичeских корнeй»
- Запишите каждую часть равенства или неравенства в виде корней a = √a 2 , а > 0.
- Сравните числа, стоящие под знаком корня:
если а >b > 0, то √a > √b;
если 0
ПРИМЕР 1 . Сравните числа:
Решение.
ПРИМЕР 2 . (Сравнение суммы корней) Какое из чисел больше — (√5 + √6) или (2 + √7)?
Решение.
Ответ: первое число больше.
ПРИМЕР 3 . (Сравнение разности корней) Сравните числа:
Ответ: первое число меньше.
ПРИМЕР 4 . При каких значениях а равенство будет верным?
Решение.
Ответ: равенство будет верным при а = 19.
Вы смотрели алгоритм решения задач по алгебре на тему «Сравнение корней».
Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать
Квадратный корень. Действия с квадратными корнями. Модуль. Сравнение квадратных корней
Готовиться с нами — ЛЕГКО!
Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать
Эффективное решение существует!
Вы ищете теорию и формулы для ЕГЭ по математике ? Образовательный проект «Школково» предлагает вам заглянуть в раздел «Теоретическая справка». Здесь представлено пособие по подготовке к ЕГЭ по математике, которое фактически является авторским. Оно разработано в соответствии с программой школьного курса и включает такие разделы, как арифметика, алгебра, начала анализа и геометрия (планиметрия и стереометрия). Каждое теоретическое положение, содержащееся в пособии по подготовке к ЕГЭ по математике, сопровождается методически подобранными задачами с подробными разъяснениями.
Таким образом, вы не только приобретете определенные знания. Полный справочник для ЕГЭ по математике поможет вам научиться логически и нестандартно мыслить , выполнять самые разнообразные задачи и грамотно объяснять свои решения. А это уже половина успеха при сдаче единого государственного экзамена.
После того, как вы нашли необходимые формулы и теорию для ЕГЭ по математике, рекомендуем вам перейти в раздел «Каталоги» и закрепить полученные знания на практике. Для этого достаточно выбрать задачу по данной теме и решить ее. Кроме того, справочные материалы по математике для ЕГЭ пригодятся вам и для других естественнонаучных дисциплин, таких как физика, химия и т. д.
Факт 1.
(bullet) Возьмем некоторое неотрицательное число (a) (то есть (ageqslant 0) ). Тогда (арифметическим) квадратным корнем из числа (a) называется такое неотрицательное число (b) , при возведении которого в квадрат мы получим число (a) : [sqrt a=bquad textquad a=b^2] Из определения следует, что (ageqslant 0, bgeqslant 0) . Эти ограничения являются важным условием существования квадратного корня и их следует запомнить!
Вспомним, что любое число при возведении в квадрат дает неотрицательный результат. То есть (100^2=10000geqslant 0) и ((-100)^2=10000geqslant 0) .
(bullet) Чему равен (sqrt) ? Мы знаем, что (5^2=25) и ((-5)^2=25) . Так как по определению мы должны найти неотрицательное число, то (-5) не подходит, следовательно, (sqrt=5) (так как (25=5^2) ).
Нахождение значения (sqrt a) называется извлечением квадратного корня из числа (a) , а число (a) называется подкоренным выражением.
(bullet) Исходя из определения, выражения (sqrt) , (sqrt) и т.п. не имеют смысла.
Факт 2.
Для быстрых вычислений полезно будет выучить таблицу квадратов натуральных чисел от (1) до (20) : [begin hline 1^2=1 & quad11^2=121 \ 2^2=4 & quad12^2=144\ 3^2=9 & quad13^2=169\ 4^2=16 & quad14^2=196\ 5^2=25 & quad15^2=225\ 6^2=36 & quad16^2=256\ 7^2=49 & quad17^2=289\ 8^2=64 & quad18^2=324\ 9^2=81 & quad19^2=361\ 10^2=100& quad20^2=400\ hline end]
Факт 3.
Какие действия можно выполнять с квадратными корнями?
(bullet) Сумма или разность квадратных корней НЕ РАВНА квадратному корню из суммы или разности, то есть [sqrt apmsqrt bne sqrt] Таким образом, если вам нужно вычислить, например, (sqrt+sqrt) , то первоначально вы должны найти значения (sqrt) и (sqrt) , а затем их сложить. Следовательно, [sqrt+sqrt=5+7=12] Если значения (sqrt a) или (sqrt b) при сложении (sqrt a+sqrt b) найти не удается, то такое выражение дальше не преобразуется и остается таким, как есть. Например, в сумме (sqrt 2+ sqrt ) мы можем найти (sqrt) – это (7) , а вот (sqrt 2) никак преобразовать нельзя, поэтому (sqrt 2+sqrt=sqrt 2+7) . Дальше это выражение, к сожалению, упростить никак нельзя (bullet) Произведение/частное квадратных корней равно квадратному корню из произведения/частного, то есть [sqrt acdot sqrt b=sqrtquad textquad sqrt a:sqrt b=sqrt] (при условии, что обе части равенств имеют смысл)
Пример: (sqrtcdot sqrt 2=sqrt=sqrt=8) ; (sqrt:sqrt3=sqrt=sqrt=16) ; (sqrt=sqrt=sqrtcdot sqrt= 5cdot 8=40) . (bullet) Пользуясь этими свойствами, удобно находить квадратные корни из больших чисел путем разложения их на множители.
Рассмотрим пример. Найдем (sqrt) . Так как (44100:100=441) , то (44100=100cdot 441) . По признаку делимости число (441) делится на (9) (так как сумма его цифр равна 9 и делится на 9), следовательно, (441:9=49) , то есть (441=9cdot 49) .
Таким образом, мы получили: [sqrt=sqrt= sqrt9cdot sqrtcdot sqrt=3cdot 7cdot 10=210] Рассмотрим еще один пример: [sqrt<dfrac>= sqrt<dfrac>= sqrt< dfrac>=dfrac<sqrtcdot sqrt4 cdot sqrt>=dfrac3=dfrac3]
(bullet) Покажем, как вносить числа под знак квадратного корня на примере выражения (5sqrt2) (сокращенная запись от выражения (5cdot sqrt2) ). Так как (5=sqrt) , то [5sqrt2=sqrtcdot sqrt2=sqrt=sqrt] Заметим также, что, например,
1) (sqrt2+3sqrt2=4sqrt2) ,
2) (5sqrt3-sqrt3=4sqrt3)
3) (sqrt a+sqrt a=2sqrt a) .
Почему так? Объясним на примере 1). Как вы уже поняли, как-то преобразовать число (sqrt2) мы не можем. Представим, что (sqrt2) – это некоторое число (a) . Соответственно, выражение (sqrt2+3sqrt2) есть не что иное, как (a+3a) (одно число (a) плюс еще три таких же числа (a) ). А мы знаем, что это равно четырем таким числам (a) , то есть (4sqrt2) .
Факт 4.
(bullet) Часто говорят “нельзя извлечь корень”, когда не удается избавиться от знака (sqrt ) корня (радикала) при нахождении значения какого-то числа. Например, извлечь корень из числа (16) можно, потому что (16=4^2) , поэтому (sqrt=4) . А вот извлечь корень из числа (3) , то есть найти (sqrt3) , нельзя, потому что нет такого числа, которое в квадрате даст (3) .
Такие числа (или выражения с такими числами) являются иррациональными. Например, числа (sqrt3, 1+sqrt2, sqrt) и т.п. являются иррациональными.
Также иррациональными являются числа (pi) (число “пи”, приблизительно равное (3,14) ), (e) (это число называют числом Эйлера, приблизительно оно равно (2,7) ) и т.д.
(bullet) Обращаем ваше внимание на то, что любое число будет либо рациональным, либо иррациональным. А вместе все рациональные и все иррациональные числа образуют множество, называющееся множеством действительных (вещественных) чисел. Обозначается это множество буквой (mathbb) .
Значит, все числа, которые на данный момент мы знаем, называются вещественными числами.
Факт 5.
(bullet) Модуль вещественного числа (a) – это неотрицательное число (|a|) , равное расстоянию от точки (a) до (0) на вещественной прямой. Например, (|3|) и (|-3|) равны 3, так как расстояния от точек (3) и (-3) до (0) одинаковы и равны (3) .
(bullet) Если (a) – неотрицательное число, то (|a|=a) .
Пример: (|5|=5) ; (qquad |sqrt2|=sqrt2) . (bullet) Если (a) – отрицательное число, то (|a|=-a) .
Пример: (|-5|=-(-5)=5) ; (qquad |-sqrt3|=-(-sqrt3)=sqrt3) .
Говорят, что у отрицательных чисел модуль “съедает” минус, а положительные числа, а также число (0) , модуль оставляет без изменений.
НО такое правило годится только для чисел. Если у вас под знаком модуля находится неизвестная (x) (или какая-то другая неизвестная), например, (|x|) , про которую мы не знаем, положительная она, равна нулю или отрицательная, то избавиться от модуля мы не можем. В этом случае это выражение таким и остается: (|x|) . (bullet) Имеют место следующие формулы: [<large<sqrt=|a|>>] [<large>, text ageqslant 0] Очень часто допускается такая ошибка: говорят, что (sqrt) и ((sqrt a)^2) – одно и то же. Это верно только в том случае, когда (a) – положительное число или ноль. А вот если (a) – отрицательное число, то это неверно. Достаточно рассмотреть такой пример. Возьмем вместо (a) число (-1) . Тогда (sqrt=sqrt=1) , а вот выражение ((sqrt )^2) вообще не существует (ведь нельзя под знак корня помещать отрицательные числа!).
Поэтому обращаем ваше внимание на то, что (sqrt) не равен ((sqrt a)^2) ! Пример: 1) (sqrt=|-sqrt2|=sqrt2) , т.к. (-sqrt2 ;
Факт 6.
Как сравнить два квадратных корня?
(bullet) Для квадратных корней верно: если (sqrt a , то (a ; если (sqrt a=sqrt b) , то (a=b) .
Пример:
1) сравним (sqrt) и (6sqrt2) . Для начала преобразуем второе выражение в (sqrtcdot sqrt2=sqrt=sqrt) . Таким образом, так как (50 , то и (sqrt . Следовательно, (sqrt .
2) Между какими целыми числами находится (sqrt) ?
Так как (sqrt=7) , (sqrt=8) , а (49 , то (7 , то есть число (sqrt) находится между числами (7) и (8) .
3) Сравним (sqrt 2-1) и (0,5) . Предположим, что (sqrt2-1>0,5) : [begin &sqrt 2-1>0,5 big| +1quad text\[1ex] &sqrt2>0,5+1 big| ^2 quadtext\[1ex] &2>1,5^2\ &2>2,25 end] Видим, что мы получили неверное неравенство. Следовательно, наше предположение было неверным и (sqrt 2-1 .
Заметим, что прибавление некоторого числа к обеим частям неравенства не влияет на его знак. Умножение/деление обеих частей неравенства на положительное число также не влияет на его знак, а умножение/деление на отрицательное число меняет знак неравенства на противоположный!
Возводить обе части уравнения/неравенства в квадрат можно ТОЛЬКО ТОГДА, когда обе части неотрицательные. Например, в неравенстве из предыдущего примера возводить обе части в квадрат можно, в неравенстве (-3 нельзя (убедитесь в этом сами)! (bullet) Следует запомнить, что [begin &sqrt 2approx 1,4\[1ex] &sqrt 3approx 1,7 end] Знание приблизительного значения данных чисел поможет вам при сравнении чисел! (bullet) Для того, чтобы извлечь корень (если он извлекается) из какого-то большого числа, которого нет в таблице квадратов, нужно сначала определить, между какими “сотнями” оно находится, затем – между какими “десятками”, а потом уже определить последнюю цифру этого числа. Покажем, как это работает, на примере.
Возьмем (sqrt) . Мы знаем, что (100^2=10,000) , (200^2=40,000) и т.д. Заметим, что (28224) находится между (10,000) и (40,000) . Следовательно, (sqrt) находится между (100) и (200) .
Теперь определим, между какими “десятками” находится наше число (то есть, например, между (120) и (130) ). Также из таблицы квадратов знаем, что (11^2=121) , (12^2=144) и т.д., тогда (110^2=12100) , (120^2=14400) , (130^2=16900) , (140^2=19600) , (150^2=22500) , (160^2=25600) , (170^2=28900) . Таким образом, мы видим, что (28224) находится между (160^2) и (170^2) . Следовательно, число (sqrt) находится между (160) и (170) .
Попробуем определить последнюю цифру. Давайте вспомним, какие однозначные числа при возведении в квадрат дают на конце (4) ? Это (2^2) и (8^2) . Следовательно, (sqrt) будет заканчиваться либо на 2, либо на 8. Проверим это. Найдем (162^2) и (168^2) :
(162^2=162cdot 162=26224)
(168^2=168cdot 168=28224) .
Следовательно, (sqrt=168) . Вуаля!
Для того чтобы достойно решить ЕГЭ по математике, прежде всего необходимо изучить теоретический материал, который знакомит с многочисленными теоремами, формулами, алгоритмами и т. д. На первый взгляд может показаться, что это довольно просто. Однако найти источник, в котором теория для ЕГЭ по математике изложена легко и понятно для учащихся с любым уровнем подготовки, — на деле задача довольно сложная. Школьные учебники невозможно всегда держать под рукой. А найти основные формулы для ЕГЭ по математике бывает непросто даже в Интернете.
Видео:Как сравнивать арифметические квадратные корни на ОГЭСкачать
Почему так важно изучать теорию по математике не только для тех, кто сдает ЕГЭ?
- Потому что это расширяет кругозор . Изучение теоретического материала по математике полезно для всех, кто желает получить ответы на широкий круг вопросов, связанных с познанием окружающего мира. Все в природе упорядоченно и имеет четкую логику. Именно это и отражается в науке, через которую возможно понять мир.
- Потому что это развивает интеллект . Изучая справочные материалы для ЕГЭ по математике, а также решая разнообразные задачи, человек учится логически мыслить и рассуждать, грамотно и четко формулировать мысли. У него вырабатывается способность анализировать, обобщать, делать выводы.
Предлагаем вам лично оценить все преимущества нашего подхода к систематизации и изложению учебных материалов.
🌟 Видео
Решение квадратных уравнений. Дискриминант. 8 класс.Скачать
СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать
Дробно-рациональные уравнения. 8 класс.Скачать
Сравнения и корни. ОГЭ математика задача 4 (тип 9) 🔴Скачать
Корни. Сравнение корней. Математика 8 класс. Подготовка к ЕГЭ, ОГЭ, ЦТ, экзаменуСкачать
Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать
Повысь свой уровень по теме КОРНИ | Математика | TutorOnlineСкачать
Алгебра 8 класс. Уравнения с корнямиСкачать
Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.Скачать
Как сравнивать корниСкачать
Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать
Уравнение с корнем и подвохомСкачать
Сравнение корней 😉Скачать
Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать
Универсальный метод сравнения логарифмов ★ Что больше?Скачать
Уравнения с корнем. Иррациональные уравнения #shortsСкачать
Свойства корней, которые надо знатьСкачать