Как составлять уравнение сил относительно точки

iSopromat.ru

Как составлять уравнение сил относительно точки

Правила знаков для моментов и проекций сил на оси координат:

Видео:Момент силы. Определение, размерность и знаки. Плечо силыСкачать

Момент силы. Определение, размерность и знаки. Плечо силы

Правило знаков проекций сил

То есть, для уравнений сумм проекций сил на оси:
Проекции сил и нагрузок на координатную ось имеющие одинаковое направление принимаются положительными, а проекции усилий противоположного направления – отрицательными.

Как составлять уравнение сил относительно точки

Например, для такой схемы нагружения:

Как составлять уравнение сил относительно точки

уравнение суммы сил имеет вид

Как составлять уравнение сил относительно точки

А так как суммы проекций разнонаправленных сил равны, то данное уравнение можно записать и так:

Как составлять уравнение сил относительно точки

Здесь F(q) – равнодействующая от распределенной нагрузки, определяемая произведением интенсивности нагрузки на ее длину.

Видео:Момент силы относительно точки и осиСкачать

Момент силы относительно точки и оси

Правило знаков для моментов

Сосредоточенные моменты и моменты сил стремящиеся повернуть систему относительно рассматриваемой точки по ходу часовой стрелки записываются в уравнения с одним знаком, и соответственно моменты, имеющие обратное направление с противоположным знаком.

Как составлять уравнение сил относительно точки
Например, для суммы моментов относительно точки A

Как составлять уравнение сил относительно точки

Как составлять уравнение сил относительно точки

или, что одно и то же

Как составлять уравнение сил относительно точки

Здесь m(F) – моменты сил F относительно точки A.
M(q) – моменты распределенных нагрузок q относительно рассматриваемой точки.

При составлении уравнений статики для систем находящихся в равновесии (например при определении опорных реакций) правила знаков могут быть упрощены до следующего вида:
Нагрузки направленные в одну сторону принимаются положительными, а соответственно, нагрузки обратного направления записываются со знаком минус.

Уважаемые студенты!
На нашем сайте можно получить помощь по техническим и другим предметам:
✔ Решение задач и контрольных
✔ Выполнение учебных работ
✔ Помощь на экзаменах

Видео:Момент силы относительно точкиСкачать

Момент силы относительно точки

Как составить силовые уравнения

В задачах динамики учитывают силы, действующие на тело. Векторы сил могут действовать в различных направлениях. Большинство школьных задач можно решить, располагая векторы сил в одной плоскости. Поэтому, в статье будем рассматривать векторы, лежащие в одной плоскости — компланарные векторы.

Видео:Составляем уравнение прямой по точкамСкачать

Составляем уравнение прямой по точкам

Что такое равнодействующая

Равнодействующий вектор – это вектор, который мы получаем, когда складываем несколько векторов сил.

Результат сложения может дать:

  1. вектор, имеющий длину,
  2. или вектор, не имеющий длины.

Примечание: Когда у вектора отсутствует длина, говорят, что вектор равен нулю. На рисунке нулевой вектор можно изобразить одной точкой. Длины у точки нет – т. е. длина нулевая, а направление может быть любым.

Длина вектора содержит сумму квадратов всех его проекций на оси.

Где ( a_ ) и ( a_ ) — это проекции вектора (ссылка) ( vec ) на оси Ox и Oy.

Когда вектор равен нулю, равна нулю каждая его проекция на осях.

Длина вектора отлична от нуля, когда хотя бы одна его проекция ненулевая.

Видео:Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1Скачать

Момент импульса и момент силы относительно точки и оси | Студенты, абитуриенты МФТИ | Вуз. физика #1

Левая часть силового уравнения

В левой части силового уравнения записываем силы, действующие на тело.

Когда векторы сил направлены вдоль параллельных прямых, проводим на рисунке одну ось. Если векторы сил не параллельные, проводим две оси на плоскости. Раскладываем векторы на проекции по осям. Для каждой оси составляем отдельное уравнение. Количество уравнений совпадает с количеством осей.

Если сила сонаправлена с осью, то она войдет в левую часть уравнения со знаком «+», а если она направлена против оси — то со знаком «минус».

Видео:Определение опорных реакций балки. Сопромат для чайников ;)Скачать

Определение опорных реакций балки. Сопромат для чайников ;)

Правая часть силового уравнения

В правой части уравнения записываем равнодействующую. В задаче может присутствовать несколько осей, вдоль каждой оси направляем отдельную проекцию равнодействующей.

Примечание: Тело может вдоль одной оси двигаться с ускорением, а вдоль другой оси двигаться без ускорения, или, вообще, покоиться. Например, тело может двигаться по вертикали под действием силы тяжести, а по горизонтали при этом не смещаться.

Когда проекция равнодействующей вдоль какой-либо оси не равна нулю, тело по оси будет двигаться с ускорением. Это следует из второго закона Ньютона.

Тогда в правой части уравнения запишем:

  • (ma), если ускорение направлено туда же, куда направлена ось;
  • (- ma), если ускорение направлено противоположно оси;

А когда проекция равнодействующей на ось нулевая, ускорение вдоль оси отсутствует. Тогда вдоль этой оси тело движется с неизменной скоростью, или же, вдоль этой оси движение отсутствует. Это следует из первого закона Ньютона.

В правой части уравнения запишем ноль (0 = ускорения нет).

Видео:Определение реакций опор в балке. Сопромат.Скачать

Определение реакций опор в балке. Сопромат.

Векторы сил параллельны

В случае, когда векторы направлены вдоль одной прямой, достаточно выбрать и провести единственную ось.

Выясним, как выглядит силовое уравнение для задачи, в которой векторы сил направлены вдоль единственной оси. Например, парашютист спускается вертикально вниз (рис. 1) на парашюте под действием силы тяжести.

Как составлять уравнение сил относительно точки

Проведем на рисунке ось, направим ее вверх.

Примечание: Мы можем направить ось вниз, если захотим. При таком направлении оси знаки проекций векторов изменятся на противоположные, но на конечный ответ это никак не повлияет.

Составим левую часть уравнения. В левой части мы запишем силы, действующие на парашютиста:

Сила ( F_<text>) направлена по оси, поэтому войдет в уравнение со знаком «+». А сила ( m cdot g ) вошла в уравнение со знаком «минус», так как направлена против оси.

В правую часть уравнения поместим равнодействующую.

Размеры парашюта рассчитаны так, что парашютист опускается вниз с постоянной (неизменной, т. е. одной и той же) скоростью. Значит, скорость есть, она не меняется, ускорения нет.

Математики запишут, что ускорение есть, но оно – нулевое (vec=0).

То есть, вдоль вертикальной оси тело движется без ускорения, значит, силы компенсировались. По первому закону Ньютона, равнодействующая равна нулю и, в правой части уравнения запишем ноль.

Примечания:

  1. На рисунке 1 скорость обозначена красным вектором, направленным вниз и обозначенным, как (vec<v_>). Обычно математики дописывают нижний индекс к величине, которая не должна меняться. Так как у вектора скорости этот индекс есть, скорость считаем неизменной.
  2. На рисунке векторы скоростей и ускорений нужно рисовать отдельно от векторов сил! Решая задачу, мы будем складывать векторы (ссылка), имеющие одинаковую размерность. Силы измеряют в Ньютонах, поэтому их можно складывать. А ускорения и скорости измеряют в других единицах, с Ньютонами их сложить не получится. Именно поэтому, чтобы не запутаться, ускорения и скорости рисуем на небольшом расстоянии от тела, отдельно от векторов сил.

Итоговое силовое уравнение имеет вид:

[large F_<text> — m cdot g = 0 ]

Зная массу парашютиста, можно вычислить силу сопротивления воздуха. А зная эту силу, можно рассчитать и размеры парашюта.

Видео:Определение реакций опор простой рамыСкачать

Определение  реакций опор простой рамы

Векторы сил не параллельны

Когда векторы направлены вдоль разных прямых, будем проводить две взаимно перпендикулярные оси на плоскости.

Разберем задачу равнозамедленного движения тела по горизонтальной шероховатой поверхности (рис. 2).

Как составлять уравнение сил относительно точки

Поверхность шероховатая, это намек на то, что есть сила трения. А если в условии напишут, что поверхность гладкая, значит, силы трения нет.

Движение равнозамедленное (ссылка), значит, скорость тела уменьшается и есть вектор ускорения, который направлен против вектора скорости.

Нарисуем взаимно перпендикулярные оси. Ось Ox проведем горизонтально, а ось Oy – вертикально. Рассмотрим оси и проекции векторов на них по очереди.

Горизонтальная ось. Пусть движение тела происходит в положительном направлении оси Ox. Сила трения всегда направлена против движения, поэтому направим ее влево. Скорость тела направлена вправо и будет уменьшаться, значит, ускорение, так же, направим влево. Вектор ускорения рисуем отдельно от векторов сил.

Наличие ускорения говорит о том, что вдоль оси Ox равнодействующая имеет не нулевую проекцию. Ускорение направлено против оси, запишем (- ma) в правой части уравнения.

Так выглядит уравнение для горизонтальной оси

Вертикальная ось. Вниз направлена сила тяжести, а вверх – сила реакции опоры. Так как поверхность горизонтальная и тело не движется ни вверх, ни вниз, то движения вдоль оси Oy нет. Значит, сила тяжести и реакция опоры компенсировались и нет ускорения вдоль оси Oy. В правой части уравнения для вертикальной оси запишем ноль.

Для вертикальной оси уравнение выглядит так:

[large N — m cdot g = 0 ]

Система, пригодная для решения задачи, состоит из двух уравнений

Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать

Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 класс

Куда направить оси

Разберем равнозамедленное движение тела вверх по наклонной шероховатой плоскости (рис. 3).

Силы, действующие на тело в этой задаче, не параллельные, направлены вдоль разных прямых. Поэтому для составления уравнений нужно использовать две взаимно перпендикулярные оси. Попробуем для начала провести ось Oy вертикально, а ось Ox горизонтально.

Как составлять уравнение сил относительно точки

Из рисунка 3 видно, вдоль оси направлен только один вектор (mg). Остальные векторы сил не параллельны ни одной из осей. Такие векторы придется раскладывать на проекции, это усложнит конечную систему уравнений.

Если выберем оси так, как показано на рисунке 3, на проекции нужно будет разложить три вектора.

Попробуем теперь провести оси так, чтобы как можно большее количество векторов оказались параллельными осям (рис. 4). Из рисунка видно, что только один вектор (mg) окажется ненаправленным вдоль какой-либо оси. Остальные векторы сил параллельны осям.

Как составлять уравнение сил относительно точки

При таком выборе осей раскладывать на проекции придется только один вектор. Это позволит быстрее решить задачу и решать более простые уравнения.

Примечание: Если мы выбререм оси так, как это представлено на рисунке 3, получим более сложные уравнения. Но решив их, мы получим точно такой же ответ, как и в случае выбора осей на рисунке 4.

Выводы:

  1. Выбор осей на конечный результат не влияет! А влияет только на сложность полученных уравнений.
  2. Оси проводим так, чтобы как можно больше векторов оказались направленными вдоль осей.

Видео:Момент силыСкачать

Момент силы

Движение по наклонной плоскости

Составим систему уравнений для решения такой задачи:

Велосипедист подъезжает с начальной скоростью к подъему, посыпанному песком и, едет в гору на велосипеде по инерции, не крутя педали. Масса велосипедиста с велосипедом, начальная скорость его, коэффициент сопротивления поверхности и угол наклона известны.

Нужно составить систему силовых уравнений, чтобы найти ускорение велосипедиста. А после, зная начальную скорость и ускорение, найти путь, который велосипедист сможет проехать по инерции в горку.

Выражение для ускорения

Составим рисунок, на котором изобразим силы, действующие на велосипедиста (рис. 5)

Как составлять уравнение сил относительно точки

Мы провели оси так, чтобы пришлось разложить на проекции только один вектор и система силовых уравнений оказалась достаточно простой.

Пользуясь осями координат, составляем теперь уравнения в проекциях.

Уравнение для проекций векторов на ось Ox:

[ large — F_<text> – m cdot g_ = — m cdot a ]

Уравнение для проекций векторов на ось Oy:

[ large N – m cdot g_ = 0 ]

Разложим теперь силу тяжести — вектор (mg) на проекции. Чтобы проделать это разложение, нужно отметить угол (alpha ) межу вектором (mg) и одной из осей. В нашем случае, это угол между вектором (mg) и осью Oy.

[ large begin m cdot g_ = mg cdot cos left(alpha right) \ m cdot g_ = mg cdot sin left(alpha right) end ]

Подставив разложение вектора (mg) в уравнения для осей, получим такую систему уравнений

[ large begin — F_<text> – mg cdot sin left(alpha right) = — m cdot a \ N – mg cdot cos left(alpha right) = 0 end ]

Дополним эту систему выражением для силы трения.

Запишем эти уравнения в систему и выразим из нее уравнение для ускорения.

[ large begin N = mg cdot cos left(alpha right) \ F_<text> = mu cdot mg cdot cos left(alpha right) \ mu cdot mg cdot cos left(alpha right) + mg cdot sin left(alpha right) = m cdot a end ]

Поделим нижнее уравнение системы на массу велосипедиста и запишем окончательно уравнение для ускорения:

[ large mu cdot g cdot cos left(alpha right) + g cdot sin left(alpha right) = a ]

Выражение для пройденного пути

Запишем выражения для связи скоростей и пройденного пути. Велосипедист движется по инерции в гору и его скорость уменьшается из-за силы тяжести и силы сопротивления поверхности, посыпанной песком. Когда скорость велосипедиста обратится в ноль, он, проехав часть пути в гору, остановится. Используем систему двух уравнений, она описывает путь при учете уменьшения скорости до нуля:

[ large begin 0 = v_ — a cdot t \ S = v_ cdot t — a cdot frac end ]

Получим теперь уравнение для пути, в котором будут присутствовать только начальная скорость и ускорение и, будет отсутствовать время.

Упрощенная система для решения задачи теперь включает всего два уравнения

[ large begin mu cdot g cdot cos left(alpha right) + g cdot sin left(alpha right) = a \ S = v_ cdot frac<v_> — frac<v_> cdot frac<v_> end ]

Подставив в эту систему известные значения начальной (v_) скорости велосипедиста, коэффициент (mu) сопротивления поверхности и угол (alpha) наклона плоскости, сможем посчитать путь, пройденный велосипедистом до его полной остановки.

Видео:Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физикеСкачать

Как разложить силы на проекции (динамика 10-11 класс) ЕГЭ по физике

Теоретическая механика. В помощь студенту

Теоретическая механика – это раздел механики, в котором излагаются основные законы механического движения и механического взаимодействия материальных тел.

Теоретическая механика является наукой, в которой изучаются перемещения тел с течением времени (механические движения). Она служит базой других разделов механики (теория упругости, сопротивление материалов, теория пластичности, теория механизмов и машин, гидроаэродинамика) и многих технических дисциплин.

Механическое движение — это изменение с течением времени взаимного положения в пространстве материальных тел.

Механическое взаимодействие – это такое взаимодействие, в результате которого изменяется механическое движение или изменяется взаимное положение частей тела.

Видео:Урок 80 (осн). Момент силы. Правило моментовСкачать

Урок 80 (осн). Момент силы. Правило моментов

Статика твердого тела

Статика — это раздел теоретической механики, в котором рассматриваются задачи на равновесие твердых тел и преобразования одной системы сил в другую, ей эквивалентную.

    Основные понятия и законы статики

  • Абсолютно твердое тело (твердое тело, тело) – это материальное тело, расстояние между любыми точками в котором не изменяется.
  • Материальная точка – это тело, размерами которого по условиям задачи можно пренебречь.
  • Свободное тело – это тело, на перемещение которого не наложено никаких ограничений.
  • Несвободное (связанное) тело – это тело, на перемещение которого наложены ограничения.
  • Связи – это тела, препятствующие перемещению рассматриваемого объекта (тела или системы тел).
  • Реакция связи — это сила, характеризующая действие связи на твердое тело. Если считать силу, с которой твердое тело действует на связь, действием, то реакция связи является противодействием. При этом сила — действие приложена к связи, а реакция связи приложена к твердому телу.
  • Механическая система – это совокупность взаимосвязанных между собой тел или материальных точек.
  • Твердое тело можно рассматривать как механическую систему, положения и расстояние между точками которой не изменяются.
  • Сила – это векторная величина, характеризующая механическое действие одного материального тела на другое.
    Сила как вектор характеризуется точкой приложения, направлением действия и абсолютным значением. Единица измерения модуля силы – Ньютон.
  • Линия действия силы – это прямая, вдоль которой направлен вектор силы.
  • Сосредоточенная сила – сила, приложенная в одной точке.
  • Распределенные силы (распределенная нагрузка) – это силы, действующие на все точки объема, поверхности или длины тела.
    Распределенная нагрузка задается силой, действующей на единицу объема (поверхности, длины).
    Размерность распределенной нагрузки – Н/м 3 (Н/м 2 , Н/м).
  • Внешняя сила – это сила, действующая со стороны тела, не принадлежащего рассматриваемой механической системе.
  • Внутренняя сила – это сила, действующая на материальную точку механической системы со стороны другой материальной точки, принадлежащей рассматриваемой системе.
  • Система сил – это совокупность сил, действующих на механическую систему.
  • Плоская система сил – это система сил, линии действия которых лежат в одной плоскости.
  • Пространственная система сил – это система сил, линии действия которых не лежат в одной плоскости.
  • Система сходящихся сил – это система сил, линии действия которых пересекаются в одной точке.
  • Произвольная система сил – это система сил, линии действия которых не пересекаются в одной точке.
  • Эквивалентные системы сил – это такие системы сил, замена которых одна на другую не изменяет механического состояния тела.
    Принятое обозначение: Как составлять уравнение сил относительно точки.
  • Равновесие – это состояние, при котором тело при действии сил остается неподвижным или движется равномерно прямолинейно.
  • Уравновешенная система сил – это система сил, которая будучи приложена к свободному твердому телу не изменяет его механического состояния (не выводит из равновесия).
    Как составлять уравнение сил относительно точки.
  • Равнодействующая сила – это сила, действие которой на тело эквивалентно действию системы сил.
    Как составлять уравнение сил относительно точки.
  • Момент силы – это величина, характеризующая вращающую способность силы.
  • Пара сил – это система двух параллельных равных по модулю противоположно направленных сил.
    Принятое обозначение: Как составлять уравнение сил относительно точки.
    Под действием пары сил тело будет совершать вращательное движение.
  • Проекция силы на ось – это отрезок, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой оси.
    Проекция положительна, если направление отрезка совпадает с положительным направлением оси.
  • Проекция силы на плоскость – это вектор на плоскости, заключенный между перпендикулярами, проведенными из начала и конца вектора силы к этой плоскости.
  • Закон 1 (закон инерции). Изолированная материальная точка находится в покое либо движется равномерно и прямолинейно.
    Равномерное и прямолинейное движение материальной точки является движением по инерции. Под состоянием равновесия материальной точки и твердого тела понимают не только состояние покоя, но и движение по инерции. Для твердого тела существуют различные виды движения по инерции, например равномерное вращение твердого тела вокруг неподвижной оси.
  • Закон 2. Твердое тело находится в равновесии под действием двух сил только в том случае, если эти силы равны по модулю и направлены в противоположные стороны по общей линии действия.
    Эти две силы называются уравновешивающимися.
    Вообще силы называются уравновешивающимися, если твердое тело, к которому приложены эти силы, находится в покое.
  • Закон 3. Не нарушая состояния (слово «состояние» здесь означает состояние движения или покоя) твердого тела, можно добавлять и отбрасывать уравновешивающиеся силы.
    Следствие. Не нарушая состояния твердого тела, силу можно переносить по ее линии действия в любую точку тела.
    Две системы сил называются эквивалентными, если одну из них можно заменить другой, не нарушая состояния твердого тела.
  • Закон 4. Равнодействующая двух сил, приложенных в одной точке, приложена в той же точке, равна по модулю диагонали параллелограмма, построенного на этих силах, и направлена вдоль этой
    диагонали.
    По модулю равнодействующая равна:
    Как составлять уравнение сил относительно точки
  • Закон 5 (закон равенства действия и противодействия). Силы, с которыми два тела действуют друг на друга, равны по модулю и направлены в противоположные стороны по одной прямой.
    Следует иметь в виду, что действие — сила, приложенная к телу Б, и противодействие — сила, приложенная к телу А, не уравновешиваются, так как они приложены к разным телам.
  • Закон 6 (закон отвердевания). Равновесие нетвердого тела не нарушается при его затвердевании.
    Не следует при этом забывать, что условия равновесия, являющиеся необходимыми и достаточными для твердого тела, являются необходимыми, но недостаточными для соответствующего нетвердого тела.
  • Закон 7 (закон освобождаемости от связей). Несвободное твердое тело можно рассматривать как свободное, если его мысленно освободить от связей, заменив действие связей соответствующими реакциями связей.
    • Связи и их реакции

    • Гладкая поверхность ограничивает перемещение по нормали к поверхности опоры. Реакция направлена перпендикулярно поверхности.
    • Шарнирная подвижная опора ограничивает перемещение тела по нормали к опорной плоскости. Реакция направлена по нормали к поверхности опоры.
    • Шарнирная неподвижная опора противодействует любому перемещению в плоскости, перпендикулярной оси вращения.
    • Шарнирный невесомый стержень противодействует перемещению тела вдоль линии стержня. Реакция будет направлена вдоль линии стержня.
    • Глухая заделка противодействует любому перемещению и вращению в плоскости. Ее действие можно заменить силой, представленной в виде двух составляющих и парой сил с моментом.
      Момент силы относительно точки

    • Абсолютное значение момента равно произведению модуля силы на кратчайшее расстояние h от центра вращения до линии действия силы. Расстояние h называют плечом силы.
      Как составлять уравнение сил относительно точки
    • Момент считают положительным, если сила стремится вращать плечо h против хода часовой стрелки и отрицательным при вращении по ходу часовой стрелки.
    • Свойства момента силы относительно точки:
      1) Момент силы не изменится при переносе точки приложения силы вдоль линии действия силы.
      2) Момент силы равен нулю, если линия действия силы проходит через точку приложения силы.
      3) Момент равнодействующей силы относительно точки равен сумме моментов слагаемых сил относительно этой точки.
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки
      Момент силы относительно оси

    • Момент силы относительно оси — это момент проекции этой силы на плоскость, перпендикулярную оси, относительно точки пересечения оси с плоскостью.
      Момент считается положительным, если с положительного конца оси поворот, который сила стремится совершить, виден происходящим против хода часовой стрелки, и отрицательным – если по ходу часовой стрелки.
      Как составлять уравнение сил относительно точки
    • Чтобы найти момент силы относительно оси, нужно:
      1) Провести плоскость перпендикулярную оси z.
      2) Спроецировать силу Как составлять уравнение сил относительно точкина эту плоскость и вычислить величину проекции Как составлять уравнение сил относительно точки.
      3) Провести плечо h из точки пересечения оси с плоскостью на линию действия проекции силы Как составлять уравнение сил относительно точкии вычислить его длину.
      4) Найти произведение этого плеча и проекции силы с соответствующим знаком.
    • Свойства момента силы относительно оси.
      Момент силы относительно оси равен нулю, если:
      1) Как составлять уравнение сил относительно точки, то есть сила Как составлять уравнение сил относительно точкипараллельна оси.
      2) h=0, то есть линия действия силы пересекает ось.
      Момент пары сил

    • Момент пары сил равен произведению одной силы на кратчайшее расстояние между линиями действия сил пары, которое называется плечом пары (пара сил оказывает на тело вращающее действие)
      Как составлять уравнение сил относительно точки,
      где: Как составлять уравнение сил относительно точки— силы, составляющие пару;
      h — плечо пары.
      Момент пары считают положительным, если силы стремятся вращать плечо против хода часовой стрелки.
    • Свойства пары сил.
      1) Сумма проекций сил пары на любую ось равна нулю.
      2) Не изменяя момента пары можно одновременно соответственно изменять значение сил и плечо пары.
      3) Пару можно переносить в плоскости ее действия при этом действие пары на тело не изменится.
      Преобразование сходящейся системы сил

    • Равнодействующая Как составлять уравнение сил относительно точкидвух сходящихся сил находится на основании аксиомы о параллелограмме сил.
      Геометрическая сумма любого числа сходящихся сил может быть определена путем последовательного сложения двух сил – способ векторного многоугольника.
      Вывод: система сходящихся сил (Как составлять уравнение сил относительно точки) приводится к одной равнодействующей силе Как составлять уравнение сил относительно точки.
    • Аналитически равнодействующая сила может быть определена через ее проекции на оси координат:
      Как составлять уравнение сил относительно точки
      Согласно теореме: проекция равнодействующей на ось равна сумме проекций слагаемых сил на эту ось: Как составлять уравнение сил относительно точки, или в общем виде Как составлять уравнение сил относительно точки
      С учетом Как составлять уравнение сил относительно точкиравнодействующая определяется выражением:
      Как составлять уравнение сил относительно точки.
    • Направление вектора равнодействующей определяется косинусами углов между вектором Как составлять уравнение сил относительно точкии осями x, y, z:
      Как составлять уравнение сил относительно точки
      Преобразование произвольной системы сил

    • Теорема: силу, приложенную к твердому телу, можно, не изменяя оказываемого ею действия, перенести параллельно в другую точку тела, прибавляя при этом пару сил с моментом, равным моменту переносимой силы относительно точки, в которую она переносится.
      В результате указанного преобразования получается сходящаяся система сил и сумма моментов пар сил. Действие сходящейся системы сил заменяют действием суммарной силы, действие моментов — суммарным моментом.
      Суммарный вектор Как составлять уравнение сил относительно точки— это главный вектор системы сил.
      Суммарный момент Как составлять уравнение сил относительно точки— это главный момент системы сил.
      Вывод: произвольная система сил в результате тождественного преобразования приводится к главному вектору и главному моменту системы сил.
    • Аналитически главный вектор и главный момент системы сил могут быть определены через их проекции на оси координат:
      Как составлять уравнение сил относительно точки,
      Как составлять уравнение сил относительно точки
      Условия равновесия систем сил

    • Равновесие системы сходящихся сил
      Действие системы сходящихся сил эквивалентно действию одной равнодействующей силы.
      Для равновесия тела необходимо и достаточно, чтобы равнодействующая равнялась нулю Как составлять уравнение сил относительно точки.
      Из формулы Как составлять уравнение сил относительно точкиследует, что для равновесия пространственной системы сходящихся сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y,Z равнялась нулю:
      Как составлять уравнение сил относительно точки
    • Для равновесия плоской сходящейся системы сил необходимо и достаточно, чтобы сумма проекций всех сил на оси X,Y равнялась нулю:
      Как составлять уравнение сил относительно точки
      Равновесие произвольной системы сил.

    • Действие произвольной системы сил эквивалентно действию главного вектора и главного момента. Для равновесия необходимо и достаточно выполнения условия:
      Как составлять уравнение сил относительно точки.
    • Для равновесия произвольной системы сил необходимо и достаточно, чтобы суммы проекций всех сил на оси X,Y,Z и суммы моментов всех сил относительно осей X,Y,Z равнялись нулю:
      Как составлять уравнение сил относительно точки
    • Для равновесия плоской произвольной системы сил необходимо и достаточно, чтобы сумма проекций главного вектора на оси X,Y, и алгебраическая сумма моментов сил относительно центра О были равны нулю:
      Как составлять уравнение сил относительно точки

    Видео:Момент силыСкачать

    Момент силы

    Кинематика

    Кинематика — раздел теоретической механики, в котором рассматриваются общие геометрические свойства механического движения, как процесса, происходящего в пространстве и во времени. Движущиеся объекты рассматривают как геометрические точки или геометрические тела.

      Основные понятия кинематики

  • Закон движения точки (тела) – это зависимость положения точки (тела) в пространстве от времени.
  • Траектория точки – это геометрическое место положений точки в пространстве при ее движении.
  • Скорость точки (тела) – это характеристика изменения во времени положения точки (тела) в пространстве.
  • Ускорение точки (тела) – это характеристика изменения во времени скорости точки (тела).
    • Способы задания движения точки

    • Задать движение точки — значит задать изменение ее положения по отношению к выбранной системе отсчета. Существуют три основные системы отсчета: векторная, координатная, естественная.
    • В векторной системе положение точки относительно начала отсчета задается радиус-вектором.
      Закон движения: Как составлять уравнение сил относительно точки.
    • В системе координат OXYZ положение точки задается тремя координатами X, Y, Z.
      Закон движения: x = x(t), y = y(t); z = z(t).
    • В естественной системе отсчета положение точки задается расстоянием S от начала отсчета до этой точки вдоль траектории.
      Закон движения: Как составлять уравнение сил относительно точки.
      Движение точки, при естественном способе задания движения, определено если известны:
      1) Траектория движения.
      2) Начало и направление отсчета дуговой координаты.
      3) Уравнение движения.
      При естественном способе задания движения, в отличии от других способов, используются подвижные координатные оси, движущиеся вместе с точкой по траектории. Такими осями являются:
      Касательная (τ) – направлена в сторону возрастания дуговой координаты по касательной к траектории.
      Главная нормаль (n) – направлена в сторону вогнутости кривой.
      Бинормаль (b) – направлена перпендикулярно к осям τ, n.
      Определение кинематических характеристик точки

    • Траектория точки
      В векторной системе отсчета траектория описывается выражением: Как составлять уравнение сил относительно точки.
      В координатной системе отсчета траектория определяется по закону движения точки и описывается выражениями z = f(x,y) — в пространстве, или y = f(x) – в плоскости.
      В естественной системе отсчета траектория задается заранее.
    • Определение скорости точки в векторной системе координат
      При задании движения точки в векторной системе координат отношение перемещения к интервалу времени Как составлять уравнение сил относительно точкиназывают средним значением скорости на этом интервале времени: Как составлять уравнение сил относительно точки.
      Принимая интервал времени бесконечно малой величиной, получают значение скорости в данный момент времени (мгновенное значение скорости): Как составлять уравнение сил относительно точки.
      Вектор средней скорости Как составлять уравнение сил относительно точкинаправлен вдоль вектора Как составлять уравнение сил относительно точкив сторону движения точки, вектор мгновенной скорости Как составлять уравнение сил относительно точкинаправлен по касательной к траектории в сторону движения точки.
      Вывод:скорость точки – векторная величина, равная производной от закона движения по времени.
      Свойство производной:производная от какой либо величины по времени определяет скорость изменения этой величины.
    • Определение скорости точки в координатной системе отсчета
      Скорости изменения координат точки:
      Как составлять уравнение сил относительно точки.
      Модуль полной скорости точки при прямоугольной системе координат будет равен:
      Как составлять уравнение сил относительно точки.
      Направление вектора скорости определяется косинусами направляющих углов:
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки— углы между вектором скорости и осями координат.
    • Определение скорости точки в естественной системе отсчета
      Скорость точки в естественной системе отсчета определяется как производная от закона движения точки: Как составлять уравнение сил относительно точки.
      Согласно предыдущим выводам вектор скорости направлен по касательной к траектории в сторону движения точки и в осях Как составлять уравнение сил относительно точкиопределяется только одной проекцией Как составлять уравнение сил относительно точки.
      Ускорение точки

    • По определению ускорение характеризует изменение скорости, то есть скорость изменения скорости.
    • Ускорения точки в векторной системе отсчета
      На основании свойства производной:
      Как составлять уравнение сил относительно точки.
      Вектор скорости может изменяться по модулю и направлению.
      Вектор ускорения направлен по линии приращения вектора скорости, т. е. в сторону искривления траектории.
    • Ускорение точки в координатной системе отсчета
      Ускорение изменения координат точки равно производной по времени от скоростей изменения этих координат:
      Как составлять уравнение сил относительно точки.
      Полное ускорение в прямоугольной системе координат будет определяться выражением:
      Как составлять уравнение сил относительно точки.
      Направляющие косинусы вектора ускорения:
      Как составлять уравнение сил относительно точки.
    • Ускорение точки в естественной системе отсчета Приращение вектора скорости Как составлять уравнение сил относительно точкиможно разложить на составляющие, параллельные осям естественной системы координат:
      Как составлять уравнение сил относительно точки.
      Разделив левую и правую части равенства на dt, получим:
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки— тангенциальное ускорение;
      Как составлять уравнение сил относительно точки— нормальное ускорение;
      R — радиус кривизны траектории в окрестности точки.
      Кинематика твердого тела

    • В кинематике твердых тел решаются две основные задачи:
      1) задание движения и определение кинематических характеристик тела в целом;
      2) определение кинематических характеристик точек тела.
    • Поступательное движение твердого тела
      Поступательное движение — это движение, при котором прямая, проведенная через две точки тела, остается параллельной ее первоначальному положению.
      Теорема:при поступательном движении все точки тела движутся по одинаковым траекториям и имеют в каждой момент времени одинаковые по модулю и направлению скорости и ускорения.
      Вывод:поступательное движение твердого тела определяется движением любой его точки, в связи с чем, задание и изучение его движения сводится к кинематике точки.
    • Вращательное движение твердого тела вокруг неподвижной оси
      Вращательное движение твердого тела вокруг неподвижной оси — это движение твердого тела, при котором две точки, принадлежащие телу, остаются неподвижными в течение всего времени движения.
      Положение тела определяется углом поворота Как составлять уравнение сил относительно точки. Единица измерения угла – радиан. (Радиан — центральный угол окружности, длина дуги которого равна радиусу, полный угол окружности содержит радиана.)
      Закон вращательного движения тела вокруг неподвижной оси Как составлять уравнение сил относительно точки.
      Угловую скорость и угловое ускорение тела определим методом дифференцирования:
      Как составлять уравнение сил относительно точки— угловая скорость, рад/с;
      Как составлять уравнение сил относительно точки— угловое ускорение, рад/с².
      Если рассечь тело плоскостью перпендикулярной оси, выбрать на оси вращения точку С и произвольную точку М, то точка М будет описывать вокруг точки С окружность радиуса R. За время dt происходит элементарный поворот на угол Как составлять уравнение сил относительно точки, при этом точка М совершит перемещение вдоль траектории на расстояние Как составлять уравнение сил относительно точки.
      Модуль линейной скорости:
      Как составлять уравнение сил относительно точки.
      Ускорение точки М при известной траектории определяется по его составляющим Как составлять уравнение сил относительно точки:
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки.
      В итоге, получаем формулы
      тангенциальное ускорение: Как составлять уравнение сил относительно точки;
      нормальное ускорение: Как составлять уравнение сил относительно точки.
      Плоско-параллельное движение твердого тела

    • Плоско-параллельное движение твердого тела — это движение твердого тела, при котором все его точки перемещаются в плоскостях, параллельных одной неподвижной плоскости.
      Движение сечения S в своей плоскости можно рассматривать как сложное, состоящее из двух элементарных движений:
      1) поступательного и вращательного;
      2) вращательного относительно подвижного (мгновенного) центра.
    • В первом варианте движение сечения может быть задано уравнениями движения одной его точки (полюса) и вращением сечения вокруг полюса.
      В качестве полюса может быть принята любая точка сечения.
      Уравнения движения запишутся в виде:
      Как составлять уравнение сил относительно точки.
      Ускорение точки движущейся плоской фигуры складывается из ускорения полюса относительно неподвижной системы отсчета и ускорения за счет вращательного движения вокруг полюса.
      Как составлять уравнение сил относительно точки
      Как составлять уравнение сил относительно точки
    • Во втором варианте движение сечения рассматривается как вращательное вокруг подвижного (мгновенного) центра P.
      В этом случае скорость любой точки В сечения будет определяться по формуле для вращательного движения:
      Как составлять уравнение сил относительно точки.
      Угловая скорость вокруг мгновенного центра Р может быть определена если известна скорость какой либо точки сечения, например точки А.
      Как составлять уравнение сил относительно точки.
    • Положение мгновенного центра вращения может быть определено на основании следующих свойств:
      1) вектор скорости точки перпендикулярен радиусу;
      2) модуль скорости точки пропорционален расстоянию от точки до центра вращения (Как составлять уравнение сил относительно точки);
      3) скорость в центре вращения равна нулю.
    • Теорема:проекции скоростей двух точек твердого тела на прямую, проведенную через эти точки, равны между собой и одинаково направлены.
      Доказательство: расстояние АВ изменяться не может, следовательно, Как составлять уравнение сил относительно точкине может быть больше или меньше Как составлять уравнение сил относительно точки.
      Вывод:Как составлять уравнение сил относительно точки.
      Сложное движение точки

    • Относительное движение — это движение точки относительно подвижной системы.
      Переносное движение — это движение точки вместе с подвижной системой.
      Абсолютное движение — это движение точки относительно неподвижной системы.
      Соответственно называют скорости и ускорения:
      Как составлять уравнение сил относительно точки— относительные;
      Как составлять уравнение сил относительно точки— переносные;
      Как составлять уравнение сил относительно точки— абсолютные.
    • Абсолютная скорость точки равна векторной сумме относительной и переносной скоростей (согласно теореме о сложении скоростей):
      Как составлять уравнение сил относительно точки.
      Абсолютное значение скорости определяется по теореме косинусов:
      Как составлять уравнение сил относительно точки.
    • Ускорение по правилу параллелограмма определяется только при поступательном переносном движении
      Как составлять уравнение сил относительно точки.
      Как составлять уравнение сил относительно точки.
    • При непоступательном переносном движении появляется третья составляющая ускорения, называемое поворотным или кориолисовым.
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки.
      Кориолисово ускорение численно равно:
      Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки– угол между векторами Как составлять уравнение сил относительно точкии Как составлять уравнение сил относительно точки.
      Направление вектора кориолисова ускорения удобно определять по правилу Н.Е. Жуковского: вектор Как составлять уравнение сил относительно точкиспроектировать на плоскость, перпендикулярную оси переносного вращения, проекцию повернуть на 90 градусов в сторону переносного вращения. Полученное направление будет соответствовать направлению кориолисова ускорения.

    Видео:Статика. Условия равновесия плоской системы сил (23)Скачать

    Статика. Условия равновесия плоской системы сил (23)

    Динамика

    Динамика — это раздел теоретической механики, в котором изучаются механические движении материальных тел в зависимости от причин, их вызывающих.

      Основные понятия динамики

  • Инерционность — это свойство материальных тел сохранять состояние покоя или равномерного прямолинейного движения, пока внешние силы не изменят этого состояния.
  • Масса — это количественная мера инерционности тела. Единица измерения массы — килограмм (кг).
  • Материальная точка — это тело, обладающее массой, размерами которого при решении данной задачи пренебрегают.
  • Центр масс механической системы — геометрическая точка, координаты которой определяются формулами:
    Как составлять уравнение сил относительно точки
    где mk, xk, yk, zk — масса и координаты k-той точки механической системы, m — масса системы.
    В однородном поле тяжести положение центра масс совпадает с положением центра тяжести.
  • Момент инерции материального тела относительно оси – это количественная мера инертности при вращательном движении.
    Момент инерции материальной точки относительно оси равен произведению массы точки на квадрат расстояния точки от оси:
    Как составлять уравнение сил относительно точки.
    Момент инерции системы (тела) относительно оси равен арифметической сумме моментов инерции всех точек:
    Как составлять уравнение сил относительно точки
  • Сила инерции материальной точки — это векторная величина, равная по модулю произведению массы точки на модуль ускорения и направленная противоположно вектору ускорения: Как составлять уравнение сил относительно точки
  • Сила инерции материального тела — это векторная величина, равная по модулю произведению массы тела на модуль ускорения центра масс тела и направленная противоположно вектору ускорения центра масс: Как составлять уравнение сил относительно точки,
    где Как составлять уравнение сил относительно точки— ускорение центра масс тела.
  • Элементарный импульс силы — это векторная величина Как составлять уравнение сил относительно точки, равная произведению вектора силы Как составлять уравнение сил относительно точкина бесконечно малый промежуток времени dt:
    Как составлять уравнение сил относительно точки.
    Полный импульс силы за Δt равен интегралу от элементарных импульсов:
    Как составлять уравнение сил относительно точки.
  • Элементарная работа силы — это скалярная величина dA, равная скалярному произведению вектора силы Как составлять уравнение сил относительно точкина бесконечно малое перемещение Как составлять уравнение сил относительно точки.
    Скалярное произведение векторов равно произведению их модулей на косинус угла между направлениями векторов:
    Как составлять уравнение сил относительно точки,
    где α — угол между направлениями векторов перемещения и силы.
  • Работа силы Как составлять уравнение сил относительно точкина конечном перемещении точки её приложения равна интегралу от элементарной работы, взятому по перемещению:
    Как составлять уравнение сил относительно точки.
    Единица измерения работы — Джоуль (1 Дж = 1 Н·м).
  • Количество движения материальной точки — это векторная величина Как составлять уравнение сил относительно точки, равная произведению массы m на её скорость Как составлять уравнение сил относительно точки:
    Как составлять уравнение сил относительно точки.
  • Количество движения механической системы равно векторной сумме количества движения её точек.
    Как составлять уравнение сил относительно точкиили
    Как составлять уравнение сил относительно точки,
    где m — масса механической системы, Как составлять уравнение сил относительно точки— вектор скорости центра масс системы.
  • Кинетическая энергия материальной точки — это скалярная величина Т, равная половине произведения массы точки на квадрат её скорости:
    Как составлять уравнение сил относительно точки.
  • Кинетическая энергия механической системы равна сумме кинетических энергий всех её точек:
    Как составлять уравнение сил относительно точки.
    • Аксиомы динамики

    • Первая аксиома — это закон инерции.
      Если на свободную материальную точку не действуют никакие силы или действует уравновешенная система сил, то точка будет находиться в состоянии покоя или равномерного прямолинейного движения.
    • Вторая аксиома — закон пропорциональности ускорения.
      Ускорение, сообщаемое материальной точке действующей на неё силой, пропорционально этой силе и по направлению совпадает с направлением силы: Как составлять уравнение сил относительно точки— это основной закон динамики.
    • Третья аксиома — это закон противодействия.
      Силы, с которыми действуют друг на друга две материальные точки, равны по модулю и направлены вдоль прямой, соединяющей эти точки, в противоположные стороны:
      Как составлять уравнение сил относительно точки.
    • Четвертая аксиома — закон независимости действия сил.
      При действии на материальную точку системы сил полное ускорение этой точки равно геометрической сумме ускорений от действия каждой силы:
      Как составлять уравнение сил относительно точки
      Дифференциальные уравнения динамики

    • Дифференциальные уравнения движения точки связывают ускорение точки с действующими на нее силами. Фактически дифференциальные уравнения являются записью основного закона динамики в явной дифференциальной форме.
      Для абсолютного движения точки (движение в инерциальной системе отсчета) дифференциальное уравнение имеет вид:
      Как составлять уравнение сил относительно точки.
    • Векторное уравнение Как составлять уравнение сил относительно точкиможет быть записано в проекциях на оси прямоугольной инерциальной системы координат:
      Как составлять уравнение сил относительно точки
    • При известной траектория движения точки уравнение Как составлять уравнение сил относительно точкиможет быть записано в проекциях на оси естественной системы координат:
      Как составлять уравнение сил относительно точки
      С учетом того, что Как составлять уравнение сил относительно точки,
      где Как составлять уравнение сил относительно точки— тангенциальное ускорение;
      Как составлять уравнение сил относительно точки— нормальное ускорение,
      уравнения примут вид:
      Как составлять уравнение сил относительно точки
      Общие теоремы динамики

    • Общие теоремы динамики устанавливают зависимость между мерами механического движения и механического взаимодействия. Выводы теорем являются результатом тождественного преобразования основного закона динамики.
    • Теорема об изменении количества движения: изменение количества движения материальной точки (механической системы) за конечный промежуток времени равно сумме импульсов внешних сил за тот же промежуток времени Как составлять уравнение сил относительно точки— для материальной точки;
      Как составлять уравнение сил относительно точки— для механической системы.
    • Теорема об изменении кинетической энергии: изменение кинетической энергии точки (механической системы) при её перемещении равно сумме работ всех действующих внешних сил на этом перемещении Как составлять уравнение сил относительно точки— для материальной точки;
      Как составлять уравнение сил относительно точки— для механической системы.
    • Кинетическая энергия механической системы определяется в соответствии с Как составлять уравнение сил относительно точки, при этом для твердых тел выведены следующие зависимости:
      Как составлять уравнение сил относительно точки— при поступательном движении тела;
      Как составлять уравнение сил относительно точки— при вращательном движении тела;
      Как составлять уравнение сил относительно точки— при плоско-параллельном движении тела.
    • Момент инерции цилиндра относительно его оси:
      Как составлять уравнение сил относительно точки.
    • Момент инерции стержня относительно оси z:
      Как составлять уравнение сил относительно точки.
    • Момент инерции прямоугольной пластины относительно осей х и y: Как составлять уравнение сил относительно точки.
    • Момент инерции шара определяется по формуле:
      Как составлять уравнение сил относительно точки.
    • Работа силы тяжести:
      Как составлять уравнение сил относительно точки,
      где P — сила тяжести;
      h — изменение положения тела по вертикали.
    • Работа силы при вращательном движении тела
      Как составлять уравнение сил относительно точки,
      где M — момент силы,
      w — угловая скорость тела.
      Следует иметь в виду, что работа, как скалярная величина, может быть положительной или отрицательной. Работа будет положительной если направление действия силы совпадает с направлением движения.
      Принцип Даламбера

    • Формулировка принципа Даламбера: если в любой момент времени к действующим на точку силам присоединить силы инерции, то полученная система сил будет уравновешенной:
      Как составлять уравнение сил относительно точки.
    • Для механической системы:
      Как составлять уравнение сил относительно точки.

    Видео:БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механикаСкачать

    БАЛКА С СИЛОЙ ПОД УГЛОМ. Реакции опор. Техническая механика

    Примеры решения задач

    Решение примеров по теме: «Статика твердого тела»

    Пример 1. Условия равновесия

    Как составлять уравнение сил относительно точки
    Висящий на нити, под углом в сорок пять градусов к гладкой стене шар весом в десять Ньютон, находится в состоянии равновесия (рис. а). Необходимо определить давление однородного шара на гладкую стенку и натяжение нити.

    Дано: P = 10 Н; α = 45°
    Найти: N, T — ?

    Решение.
    Отбрасываем связи, а их действие на шар заменяем реакциями.
    Реакция стенки N направлена перпендикулярно стенке (от точки касания С к центру шара О), реакция нити Т — вдоль нити от точки А к точке В.
    Тем самым выявляется полная система сил, приложенных к покоящемуся шару.

    Это система сил, сходящихся в центре О шара, и состоящая из веса шара Р (активная сила), реакции стенки N и реакции нити Т (рис. б).

    Реакции N и Т по величине неизвестны. Для их определения следует воспользоваться условиями равновесия (в той или иной форме — геометрической, аналитической).

    При геометрическом способе решения строится замкнутый многоугольник сил и используются соотношения школьной геометрии (теорема синусов, теорема косинусов, теорема Пифагора и т.д.).

    В данном случае это замкнутый силовой треугольник (рис. в), из которого получаем:
    Как составлять уравнение сил относительно точки

    После подстановки в формулы числовых значений, получим:
    Как составлять уравнение сил относительно точки.

    Ответ: Как составлять уравнение сил относительно точки.

    Решение примеров по теме: «Кинематика»

    Пример 2. Уравнение траектории точки

    Дано:
    Движение точки задано уравнениями Как составлять уравнение сил относительно точки;
    (x, у — в сантиметрах, t — в секундах).
    Найти: уравнение траектории точки в координатной форме.

    Решение. Для определения уравнения траектории из уравнений движения исключаем время t. Для этого из первого уравнения выражаем Как составлять уравнение сил относительно точкии подставляем это значение во второе уравнение, преобразованное к функциям одинарного угла:
    Как составлять уравнение сил относительно точки.

    Опуская промежуточные выражения, получаем уравнение траектории:
    Как составлять уравнение сил относительно точки.

    Как составлять уравнение сил относительно точкиУравнение определяет параболу, расположенную симметрично относительно оси у, с вершиной в точке (0, 4). Траекторией служит кусок этой параболы, заключенный между точками с координатами (-2, -4) и (2, -4).

    Ответ: Как составлять уравнение сил относительно точки.

    Решение примеров по теме: «Динамика»

    Пример 3. Основной закон динамики точки

    Свободная материальная точка, масса которой десять килограмм, движется прямолинейно с ускорением пол метра в секунду в квадрате. Определить силу, приложенную к точке.

    Дано: m = 10 кг; a = 0,5 м/с 2 .
    Найти: F — ?

    Решение.
    Согласно основному закону динамики: Как составлять уравнение сил относительно точки.

    Подставив значения в формулу, получим:
    Как составлять уравнение сил относительно точки

    Ответ: сила, сообщающая массе, равной 10 кг,
    ускорение 0,5 м/с 2 , равна 5 Н.

    В помощь студенту
      Формулы, правила, законы, теоремы, уравнения, примеры решения задач

    Список литературы:
    Бать М.И., Джанелидзе Г.Ю., Кельзон А.С. Теоретическая механика в примерах и задачах.
    Буторин Л.В., Бусыгина Е.Б. Теоретическая механика. Учебно-практическое пособие.

    🎦 Видео

    § 2.1. Момент силы относительно точкиСкачать

    § 2.1. Момент силы  относительно  точки

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1Скачать

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 1

    Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

    Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 2Скачать

    Теоретическая механика. Нахождение реакций связей на при плоской системе сил. Задача 1, часть 2

    Урок 4. Расчет цепей постоянного тока. Законы КирхгофаСкачать

    Урок 4. Расчет цепей постоянного тока. Законы Кирхгофа
    Поделиться или сохранить к себе: