На протяжении долгого времени человека не оставляли мечты о взаимопревращении элементов – точнее, о превращении различных металлов в один. После осознания бесплодности этих попыток утвердилась точка зрения о незыблемости химических элементов. И только открытие структуры ядра в начале XX века показало, что превращение элементов один в другой возможно – но не химическими методами, то есть воздействием на внешние электронные оболочки атомов, а путем вмешательства в структуру атомного ядра. Такого рода явления (и некоторые другие) относятся к ядерным реакциям, примеры которых будут рассмотрены ниже. Но прежде необходимо вспомнить о некоторых основных понятиях, которые потребуются в ходе этого рассмотрения.
- Общее понятие о ядерных реакциях
- Правила записи ядерных реакций
- Энергетика ядерных реакций
- Энергия связи и стабильность ядер
- Реакции распада
- Деление ядер
- Цепные реакции
- Ядерный синтез
- Примеры решения задач
- Ядерные реакции (примеры объяснения фото)
- Что такое простейшие ядерные реакции
- Механизм ядерных реакций
- Условия при которых происходит ядерные реакции
- Вероятность ядерной реакции
- Закон пропорциональности массы и энергии
- Соотношение Эйнштейна
- Энергетическим баланс ядерной реакции
- Расщепление протоном ядра лития
- Аннигиляция реакция образования и аннигиляции пары
- Похожие страницы:
- Leave a Comment
- Ядерные реакции
- 📹 Видео
Видео:Ядерные реакции. 10 класс.Скачать
Общее понятие о ядерных реакциях
Вам будет интересно: Ацетон: состав и свойства
Существуют явления, в которых ядро атома того или иного элемента вступает во взаимодействие с другим ядром или какой-либо элементарной частицей, то есть обменивается с ними энергией и импульсом. Подобные процессы и называются ядерными реакциями. Результатом их может стать изменение состава ядра или образование новых ядер с испусканием определенных частиц. При этом возможны такие варианты, как:
- превращение одного химического элемента в другой;
- деление ядра;
- синтез, то есть слияние ядер, при котором образуется ядро более тяжелого элемента.
Вам будет интересно: Что такое главные члены предложения и второстепенные члены предложений?
Начальная фаза реакции, определяемая типом и состоянием вступающих в нее частиц, называется входным каналом. Выходные каналы – это возможные пути, по которым реакция будет протекать.
Видео:Уравнения ядерных реакций для разных видов распада (видео 19)| Квантовая физика | ФизикаСкачать
Правила записи ядерных реакций
В примерах, приведенных ниже, демонстрируются способы, с помощью которых принято описывать реакции с участием ядер и элементарных частиц.
Первый способ – тот же, что применяется в химии: в левой части ставятся исходные частицы, в правой – продукты реакции. Например, взаимодействие ядра бериллия-9 с налетающей альфа-частицей (так называемая реакция открытия нейтрона) записывается следующим образом:
94Be + 42He → 126C + 10n.
Верхние индексы обозначают количество нуклонов, то есть массовые числа ядер, нижние – количество протонов, то есть атомные номера. Суммы тех и других в левой и правой части должны совпадать.
Вам будет интересно: Что такое дисциплина: описание, задачи, методы
Сокращенный способ написания уравнений ядерных реакций, часто применяющийся в физике, выглядит так:
Общий вид такой записи: A (a, b1b2…) B. Здесь A – ядро-мишень; a – налетающая частица или ядро; b1, b2 и так далее – легкие продукты реакции; B – конечное ядро.
Видео:9 класс. Решение задач "Ядерные реакции"Скачать
Энергетика ядерных реакций
В ядерных превращениях выполняется закон сохранения энергии (наряду с другими законами сохранения). При этом кинетическая энергия частиц во входном и выходном канале реакции могут различаться за счет изменения энергии покоя. Так как последняя эквивалентна массе частиц, до и после реакции массы также будут неодинаковы. Но полная энергия системы всегда сохраняется.
Разность энергии покоя вступающих в реакцию и выходящих из нее частиц называется энергетическим выходом и выражается в изменении их кинетической энергии.
В процессах с участием ядер задействуются три вида фундаментальных взаимодействий – электромагнитное, слабое и сильное. Благодаря последнему ядро обладает такой важнейшей особенностью, как высокая энергия связи между составляющими его частицами. Она существенно выше, чем, например, между ядром и атомными электронами или между атомами в молекулах. Об этом свидетельствует заметный дефект массы – разница между суммой масс нуклонов и массой ядра, которая всегда меньше на величину, пропорциональную энергии связи: Δm = Eсв/c2. Расчет дефекта массы производится по простой формуле Δm = Zmp + Amn – Мя, где Z – заряд ядра, A – массовое число, mp – масса протона (1,00728 а.е.м.), mn – масса нейтрона (1,00866 а.е.м.), Mя – масса ядра.
При описании ядерных реакций используется понятие удельной энергии связи (то есть в расчете на один нуклон: Δmc2/A).
Видео:Химические уравнения // Как Составлять Уравнения Реакций // Химия 9 классСкачать
Энергия связи и стабильность ядер
Наибольшей устойчивостью, то есть наивысшей удельной энергией связи, отличаются ядра с массовым числом от 50 до 90, например, железо. Такой «пик стабильности» обусловлен нецентральным характером ядерных сил. Поскольку каждый нуклон взаимодействует только с соседями, на поверхности ядра он связан слабее, нежели внутри. Чем меньше в ядре взаимодействующих нуклонов, тем меньше и энергия связи, поэтому легкие ядра менее стабильны. В свою очередь, с ростом количества частиц в ядре возрастают кулоновские силы отталкивания между протонами, так что энергия связи тяжелых ядер тоже уменьшается.
Таким образом, для легких ядер наиболее вероятными, то есть энергетически выгодными, являются реакции слияния с формированием устойчивого ядра средней массы, для тяжелых же – напротив, процессы распада и деления (нередко многоступенчатые), в результате которых также образуются более стабильные продукты. Этим реакциям свойственен положительный и часто очень высокий энергетический выход, сопровождающий увеличение энергии связи.
Вам будет интересно: Пополняем словарный запас: дискредитация — это.
Ниже мы рассмотрим некоторые примеры ядерных реакций.
Видео:Знакомство с уравнениями ядерных реакцийСкачать
Реакции распада
Ядра могут претерпевать спонтанное изменение состава и структуры, при которых происходит испускание каких-либо элементарных частиц или фрагментов ядра, таких как альфа-частицы или более тяжелые кластеры.
Так, при альфа-распаде, возможном благодаря квантовому туннелированию, альфа-частица преодолевает потенциальный барьер ядерных сил и покидает материнское ядро, которое, соответственно, уменьшает атомный номер на 2, а массовое число – на 4. Например, ядро радия-226, испуская альфа-частицу, превращается в радон-222:
22688Ra → 22286Rn + α (42He).
Энергия распада ядра радия-226 составляет около 4,87 МэВ.
Бета-распад, обусловленный слабым взаимодействием, происходит без изменения количества нуклонов (массового числа), но с увеличением или уменьшением заряда ядра на 1, при испускании антинейтрино или нейтрино, а также электрона или позитрона. Примером ядерной реакции данного типа является бета-плюс-распад фтора-18. Здесь один из протонов ядра превращается в нейтрон, излучаются позитрон и нейтрино, а фтор превращается в кислород-18:
189K → 188Ar + e+ + νe.
Энергия бета-распада фтора-18 – около 0,63 МэВ.
Видео:Урок 471. Ядерные реакции. Энергетический выход ядерной реакцииСкачать
Деление ядер
Гораздо больший энергетический выход имеют реакции деления. Так называется процесс, при котором ядро самопроизвольно или вынужденно распадается на близкие по массе осколки (как правило, два, редко – три) и некоторые более легкие продукты. Ядро делится, если его потенциальная энергия превысит исходное значение на некоторую величину, называемую барьером деления. Однако вероятность спонтанного процесса даже для тяжелых ядер невелика.
Она существенно возрастает при получении ядром соответствующей энергии извне (при попадании в него частицы). Наиболее легко проникает в ядро нейтрон, поскольку он не подвержен силам электростатического отталкивания. Попадание нейтрона приводит к повышению внутренней энергии ядра, оно деформируется с образованием перетяжки и делится. Осколки разлетаются под действием кулоновских сил. Пример ядерной реакции деления демонстрирует уран-235, поглотивший нейтрон:
23592U + 10n → 14456Ba + 8936Kr + 3 10n.
Расщепление на барий-144 и криптон-89 – лишь один из возможных вариантов деления урана-235. Эту реакцию можно записать в виде 23592U + 10n → 23692U* → 14456Ba + 8936Kr + 3 10n, где 23692U* – сильно возбужденное составное ядро с высокой потенциальной энергией. Избыток ее наряду с разностью энергий связи материнского и дочерних ядер выделяется главным образом (около 80%) в форме кинетической энергии продуктов реакции, а также частично в форме потенциальной энергии осколков деления. Общая энергия деления массивного ядра – примерно 200 МэВ. В пересчете на 1 грамм урана-235 (при условии, что прореагировали все ядра) это составляет 8,2 ∙ 104 мегаджоулей.
Видео:8 класс. Составление уравнений химических реакций.Скачать
Цепные реакции
Деление урана-235, а также таких ядер, как уран-233 и плутоний-239, характеризуется одной важной особенностью – наличием среди продуктов реакции свободных нейтронов. Эти частицы, проникая в другие ядра, в свою очередь, способны инициировать их деление опять-таки с вылетом новых нейтронов и так далее. Подобный процесс именуется цепной ядерной реакцией.
Течение цепной реакции зависит от того, как соотносится число вылетающих нейтронов очередного поколения с количеством их в предыдущем поколении. Это отношение k = Ni/Ni–1 (здесь N – количество частиц, i – порядковый номер поколения) носит название коэффициента размножения нейтронов. При k 1 число нейтронов, а значит, и делящихся ядер, возрастает лавинообразно. Пример цепной ядерной реакции такого типа – взрыв атомной бомбы. При k = 1 процесс протекает стационарно, примером чему служит реакция, управляемая при помощи поглощающих нейтроны стержней, в ядерных реакторах.
Видео:Решение задач на ядерные реакцииСкачать
Ядерный синтез
Наибольшее энерговыделение (в расчете на один нуклон) происходит при слиянии легких ядер – так называемых реакциях синтеза. Чтобы вступить в реакцию, положительно заряженные ядра должны преодолеть кулоновский барьер и сблизиться на расстояние сильного взаимодействия, не превышающее размеров самого ядра. Поэтому они должны обладать чрезвычайно большой кинетической энергией, что означает высокие температуры (десятки миллионов градусов и выше). По этой причине реакции синтеза еще называют термоядерными.
Пример ядерной реакции синтеза – образование гелия-4 с вылетом нейтрона при слиянии ядер дейтерия и трития:
21H + 31H → 42He + 10n.
Здесь высвобождается энергия 17,6 МэВ, что в расчете на один нуклон более чем в 3 раза превышает энергию деления урана. Из них 14,1 МэВ приходится на кинетическую энергию нейтрона и 3,5 МэВ – ядра гелия-4. Такая существенная величина создается за счет огромной разницы в энергиях связи ядер дейтерия (2,2246 МэВ) и трития (8,4819 МэВ) с одной стороны, и гелия-4 (28,2956 МэВ) – с другой.
В реакциях деления ядра высвобождается энергия электрического отталкивания, в то время как при синтезе энерговыделение происходит за счет сильного взаимодействия – самого мощного в природе. Это и определяет столь значительный энергетический выход данного типа ядерных реакций.
Видео:Химические уравнения - Как составлять уравнения реакций // Составление Уравнений Химических РеакцийСкачать
Примеры решения задач
Рассмотрим реакцию деления 23592U + 10n → 14054Xe + 9438Sr + 2 10n. Каков ее энергетический выход? В общем виде формула для его расчета, отражающая разность энергий покоя частиц до и после реакции, выглядит следующим образом:
Q = Δmc2 = (mA + mB – mX – mY + …) ∙ c2.
Вместо умножения на квадрат скорости света можно умножить разность масс на коэффициент 931,5 и получить значение энергии в мегаэлектронвольтах. Подставив в формулу соответствующие значения атомных масс, получим:
Q = (235,04393 + 1,00866 – 139,92164 – 93,91536 — 2∙1,00866) ∙ 931,5 ≈ 184,7 МэВ.
Еще один пример – на реакцию синтеза. Это один из этапов протон-протонного цикла – главного источника солнечной энергии.
32He + 32He → 42He + 2 11H + γ.
Применим ту же формулу:
Q = (2 ∙ 3,01603 – 4,00260 — 2 ∙ 1,00728) ∙ 931,5 ≈ 13,9 МэВ.
Основная доля этой энергии – 12,8 МэВ – приходится в данном случае на гамма-фотон.
Мы рассмотрели только простейшие примеры ядерных реакций. Физика этих процессов чрезвычайно сложна, они отличаются огромным разнообразием. Исследование и применение ядерных реакций имеет большое значение как в практической области (энергетика), так и в фундаментальной науке.
Видео:Как расставлять коэффициенты в уравнении реакции? Химия с нуля 7-8 класс | TutorOnlineСкачать
Ядерные реакции (примеры объяснения фото)
Ядерные реакции это реакции где взаимодействует атомное ядро с другими элементарными частицами или же другим ядром, в результате чего в зависимости от условий образуется новое вещество.
В первые ядерную реакцию произвел Резерфорд.
Видео:Ядерные реакции. Простой и понятный советский научный фильм.Скачать
Что такое простейшие ядерные реакции
В 1919 г. Резерфорд впервые осуществил искусственное превращение ядра атома одного элемента — азота в ядро атома другого элемента — кислорода.
Реакция происходила при воздействии (ударе) альфа-частицами, полученными при распаде радия, о ядра атомов азота, которым была предварительно заполнена камера Вильсона.
В результате реакции в камере были обнаружены атомы изотопа кислорода с массовым числом 17 и частицы, имеющие единичный положительный заряд и единичную массу, т. е. протоны.
Реакцию записывают так:
Схема реакции показана на рис. , а. На рис. 2 приведена фотография камеры Вильсона, в которой происходит эта реакция.
На рисунке видны следы альфа-частиц от радиоактивного препарата, помещенного сбоку камеры.
На одном из следов имеется несимметричная развилка — след происшедшей реакции: более толстый и короткий след принадлежит тяжелой частице — ядру кислорода, более тонкий и длинный след — легкой частице — протону.
В качестве другого примера приведем реакцию (Дж. Чедвик, 1932 г.), при которой впервые был выделен из ядра атома нейтрон. Реакция заключается в действии на ядра бериллия альфа-частицами. В результате реакции получаются ядра углерода и нейтроны:
Реакция схематически показана на рис. , б, Нейтрон не существует долго в свободном состоянии или он в процессе теплового движения соударяется с ядром атома какого-либо вещества и вызывает соответствующую ядерную реакцию, или претерпевает радио-активный распад: излучает бета-частицу (электрон) и превращается в протон.
Период полураспада нейтронов составляет 12,8 мин.
Механизм ядерных реакций
Механизм ядерных реакций заключается в том, что, ударяясь о ядро атома с большой силой, альфа-частица сближается с ним на расстояние действия ядерных сил.
Между нуклонами альфа-частицы и ядра возникают ядерные силы. На мгновение ядро поглощает ударившую в него частицу, и в нем происходит перегруппировка нуклонов с образованием нового комплекса частиц.
Если для устойчивости комплекса какая-либо частица оказывается лишней, то она при этом выбрасывается (см. схему на рис. , в).
Основным условием осуществления ядерной реакции является высокая кинетическая энергия частицы, доста точная, чтобы вызвать неупругий удар и перестройку связей в ядре между нуклонами.
Основным правилом составления уравнений ядерных реакций является сохранение равенства обеих частях его суммы индексов: верхних (массовых чисел) и нижних (атомных номеров) ядер.
Эти равенства являются выражением законов сохранения массы и заряда частиц, участвующих в реакции.
Часто применяют сокращенный способ записи ядерных реакций в виде формулы, состоящей из четырех символов: исходное ядро, действующая частица, выбрасываемая частица, конечное ядро.
Символы частиц заключают в скобки, а порядковый номер элемента часто опускают. Например, реакция Резерфорда:
реакция получения нейтрона:
Ве 9 (α; п) С 12; и т. д.
Условия при которых происходит ядерные реакции
Рассмотрим условия, при которых происходят ядерные реакции. В лабораторных условиях для этого пользуются потоком частиц с высокой кинетической энергией, который направляется на небольшое количество соответствующего вещества, нанесенного на экран, называемое мишенью.
В веществе ядра атомов расположены на расстояниях, в десятки тысяч раз превышающих диаметры самих ядер. Падая на вещество, поток частиц пронизывает главным образом электронные оболочки атомов, в которых производит ионизацию, и только единичные частицы сталкиваются с ядрами атомов (весьма условно это показано на рис. 3 ).
При этом, чтобы вызвать ядерную реакцию, частица при столкновении должна обладать достаточной кинетической энергией. Проходя сквозь электронные оболочки, заряженные частицы взаимодействуют с полем атомов, тормозятся и теряют энергию.
Поэтому вероятность столкновения с ядром частиц, имеющих достаточно высокую энергию, необходимую для осуществления ядерной реакции, становится еще меньше.
Соударение частиц с ядром атома в зависимости от энергии частиц может быть упругим и неупругим. В первом случае происходит только упругое рассеяние частиц, сопровождающееся перераспределением кинетической энергии между частицей и ядром.
При неупругом соударении происходит или неупругое рассеяние, когда часть кинетической энергии частицы затрачивается на возбуждение ядра (возбужденное ядро излучает гамма-фотон и возвращается в основное состояние), или ядерная реакция, когда кинетическая энергия частицы затрачивается на внутреннюю перестройку ядра.
Вероятность ядерной реакции
Вероятность ядерной реакции характеризуют ее эффективным поперечным сечением σ, под которым понимают отношение числа п актов осуществленной реакции за 1 сек к количеству N частиц, падающих за 1 сек на 1 см 2 площади вещества, перпендикулярной потоку частиц:
Величина а зависит от природы вещества, характера реакции и от энергии частиц, ее вызывающих. Порядок величины эффективного сечения для различных ядерных реакций от 10 -18 до 10 -24 см 2 , т. е. из N частиц, которые действуют на вещество, только (10 -18 ÷ 10 -24 ) N частиц в действительности вызывают реакцию.
Большая вероятность ядерных реакций имеет место при действии на вещество нейтронов. Не обладая электрическим зарядом, нейтроны проходят через электронные оболочки без потери энергий, поэтому, сталкиваясь с ядрами, они чаще вызывают ядерные реакции.
Закон пропорциональности массы и энергии
Согласно теории относительности масса тел увеличивается с повышением скорости в следующем соотношении:
где т — масса тела при скорости υ , т0 — масса тела при относительном покое, с — скорость света.
В ядерной физике, которая оперирует со скоростями движения частиц, соизмеримыми со скоростью света, изменение массы частиц в зависимости от скорости становится существенным.
В связи с этим различают полную массу движущейся частицы и массу покоя, т. е. массу частицы при относительном покое или незначительной скорости характера теплового движения.
Полная масса т равняется массе покоя т0 плюс приращение массы mv при данной скорости движения:
Из предыдущей формулы путем несложных преобразований можно получить зависимость между приращением mυ массы тела при движении со скоростью v и соответствующей кинетической энергией Ек тела.
Кинетическая энергия тела численно равняется приращению его массы при движении, умноженной на квадрат скорости света.
Соотношение Эйнштейна
Это соотношение, называемое соотношением Эйнштейна, согласно теории относительности является общим законом, обусловливающим связь между массой т и энергией Е тела: полная энергия тела пропорциональна его массе:
где Е — выражено в эргах, т — в граммах и с — в сантиметрах в секунду Закон пропорциональности массы и энергии находится в полном соответствии с одним из основных положений диалектического материализма во взаимосвязи материи и движения.
Из закона пропорциональности массы и энергии следует, что массе покоя частиц должна соответствовать внутренняя энергия, по величине удовлетворяющая этому соотношению.
Эта величина, однако, превышает величину всех известных в те времена форм внутренней энергии тел (химической, электрической и т. п.) почти в миллион раз.
Как оказалось в даль нейшем, этой энергией является внутренняя потенциальная энергия ядер атомов, связанная с действующими между нуклонами ядерными силами.
Соотношение Эйнштейна является универсальным, однако практическое применение оно находит главным образом в области энергетических расчетов при ядерных реакциях.
При ядерных реакциях происходит перегруппировка нуклонов, соответственно изменяется и внутренняя потенциальная энергия ядра. Если при реакции эта энергия уменьшилась, это значит, что часть ее перешла в другие виды энергии, например в кинетическую энергию частиц — продуктов реакции. В этом случае имеется возможность ее полезного использования.
Энергетическим баланс ядерной реакции
Энергетическим балансом ядерной реакции называют соотношение между кинетической энергией частиц, вступивших в реакцию, и кинетической энергией частиц, образовавшихся в результате реакции.
Если общая кинетическая энергия частиц в результате реакции увеличилась (что произошло за счет уменьшения потенциальной энергии вновь образовавшегося ядра), то баланс реакции считается положительным.
В обратном случае (когда, наоборот, часть кинетической энергии частиц, входящих в реакцию, переходит в потенциальную энергию ядра) — отрицательным.
Для составления баланса можно воспользоваться законом сохранения энергии, согласно которому полная энергия Е’ частиц, вступивших в реакцию, равняется полной энергии Е» частиц, образовавшихся в результате нее:
или, развертывая выражение для полной энергии:
где Е0 энергия, соответствующая массе покоя частиц,
а Eк — их кинетическая энергия. Для удобства расчета энергия, соответствующая массе покоя частиц в обеих частях уравнения, может быть выражена, пользуясь соотношением Эйнштейна, через массу покоя соответствующих частиц. Получаем:
Обозначая разность между массами покоя частиц до и после реакции как ∆m0, получаем:
т. е. изменение кинетической энергии частиц в результате ядерной реакции численно равняется изменению массы покоя частиц, участвующих в реакции, умноженному на квадрат скорости света
Если в результате реакции масса покоя частиц уменьшилась, то энергетический баланс ее положителен, если, наоборот, масса покоя увеличилась, то — отрицателен.
Расщепление протоном ядра лития
Рассмотрим осуществленную в 30-х годах реакцию расщепления протоном ядра лития на две альфа-частицы:
Как показывает расчет, масса покоя двух альфа-частиц на ∆m0 — = 0,0185 а. е. м. меньше массы частиц, вступающих в реакцию.
Этому соответствует энергия (переводя массу в граммы и энергию в электронвольты Е = ∆m0с 2 = 0,0185•1,66•10 -24 . (3•10 10 ) 2 •6,24•10 5 = 17 Мэв.
Кинетическая энергия альфа-частиц, определенная по пробегу в воздухе, составляет 2•8,8 = 17,6 Мэв. Совпадение с расчетом вполне удовлетворительное.
Если учесть, что протон должен быть предварительно ускорен до энергии 0,5 Мэв, получается положительный баланс реакции в 17,0 — 0,5 = — 16,5 Мэв на одно ядро лития.
Эта реакция дала полное подтверждение соотношения Эйнштейна и, кроме того, впервые показала принципиальную возможность выделения внутриядерной энергии.
Количество ядерной энергии, освобождающейся на грамм-атом (т.е. 7 г) лития при этой реакции, равняется Ек = 0,17•10 20 эрг или в тепловых единицах 4•10 8 ккал.
Если сравнить это с количеством теплоты, выделяющейся при сгорании лучшего угля (калорийность 8000 ккал/кг), то получится 50 000 кг или 50 т угля.
Таков порядок энергии, которая может освобождаться при ядерных реакциях. Однако в данном случае это не является экономически оправданным.
Вероятность ядерной реакции, как указывалось, составляет примерно 1 : 10 20 . Следовательно, для реакции, которую вызовет одна частица, необходимо затратить энергию на ускорение 10 20 протонов.
Использование ядерной энергии получило практическое значение только после открытия реакции деления ядер урана под действием нейтронов.
Примером отрицательного баланса может быть баланс реакции Резерфорда: кинетическая энергия альфа-частицы, вызывающей реакцию, должна быть не менее 7,7 Мэв энергия ядра азота ничтожно мала, энергия ядра кислорода после реакции 0,5 Мэв и энергия протона 6 Мэв.
Отрицательный баланс реакции 1,2 Мэв на одно ядерное превращение.
Аннигиляция реакция образования и аннигиляции пары
Позитрон и электрон, будучи античастицами, взаимодействуют и превращаются в два гамма-фотона (рис. 4, а):
Реакция была названа реакцией аннигиляции (уничтожения) пары.
Название это не отражает сущности явления, которое имеет существенное значение для правильного понимания единой природы материи.
В данном случае происходит превращение одной из форм материи — частиц вещества в другую форму — частицы поля (фотоны).
Это значение реакции аннигиляции подчеркивается тем, что существует обратная ей реакция образования пары, при которой гамма-фотон достаточно высокой энергии, пролетая сквозь вещество, под действием поля атома превращается в пару электрон-позитрон (рис. 4, б):
При обеих реакциях должно выполняться соотношение Эйнштейна. Массе покоя те электрона или позитрона соответствует энергия Ее = 0,51 Мэв или 8,2•10 -7 эрг. В первом случае эта энергия сообщается каждому из фотонов, в соответствии с чем они должны иметь частоту:
Это подтверждается опытом.
Во втором случае hv ≥ тес 2 , т. е. энергия фотона должна быть не меньше суммы энергий электрона и позитрона, т. е. hv = 2•0,51 = 1,02 Мэв.
Это также подтверждается опытом. При соблюдении этого условия интенсивность образования пар зависит от природы вещества, в котором явление происходит. Она тем больше, чем выше атомный номер вещества.
Статья на тему Ядерные реакции
Похожие страницы:
Понравилась статья поделись ей
Leave a Comment
Для отправки комментария вам необходимо авторизоваться.
Видео:Составление уравнений химических реакций. 1 часть. 8 класс.Скачать
Ядерные реакции
В курсе ядерной физики в школе изучается явление взаимного превращения одного вещества в другое. Данные превращения могут быть как спонтанные (радиоактивный распад), так и индуцированные (несколько ядер сталкивают друг с другом). В результате такой реакции получается новые вещества. Для описания таких превращений используют введённую нами форму записи для элементов и организуют их в подобие уравнения:
- где
- , — ядра до взаимодействия,
- , — ядра после взаимодействия,
- — — количество нуклонов (протонов+нейтронов) в соответствующих атомах,
- — — количество протонов в соответствующих атомах.
Единственное, чем мы можем пользоваться в таких уравнениях, это простая логика — количество нуклонов и протонов в ходе реакции измениться не должно, таким образом, мы можем получить два уравнения:
Такие задачи обычно нацелены на поиск неизвестного элемента, и соотношений (2) — (3) для этого хватает. Находим количество протонов и нейтронов и, используя таблицу Менделеева, определяем нужный элемент.
Пример: пусть ядро азота и ядро гелия, сталкиваясь образуют ядро кислорода и неизвестный элемент. Найти данный элемент. По задаче сформируем уравнение:
Воспользуемся законом сохранения нуклонов (2) и (3):
Тогда искомый элемент — водород ( ).
Среди элементов, которые текстово могут встретиться в таких задачах, присутствуют:
- нейтрон — ,
- протон — , аналогом протона является ядро водорода ( ),
- дейтерий — — ядро водорода (изотоп), которое приобрело дополнительный нейтрон,
- тритий — — ядро водорода (изотоп), которое приобрело два дополнительных нейтрона,
- — частица (альфа-частица) — ядро гелия — ,
- — частица (бетта-частица) — по сути электрон — ,
- — частица (гамма-частица) — фактический фотон — .
Бетта-частица является обычным электроном, однако в ядре электронов нет, тогда электроны из ядра получается в результате ядерной реакции: .
Вывод: задачи на данную тематику практически всегда касаются поиска конкретного элемента в реакции. Поиск осуществляется законом сохранения нуклонов (уравнения (1) и (2)).
📹 Видео
Уравнения химический реакций на ОГЭ: как составлять без ошибок?Скачать
Как составлять ХИМИЧЕСКИЕ УРАВНЕНИЯ | 4 лайфхака - 95 ВСЕХ РЕАКЦИЙ в химии!Скачать
11 класс, 26 урок, Состав атомных ядер. Ядерные реакцииСкачать
Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
11 класс, 28 урок, Энергетический выход ядерных реакцийСкачать
Стабильность ядра и уравнения ядерных реакций(видео 17) | Квантовая физика | ФизикаСкачать
Уравнивание реакций горения углеводородовСкачать
Физика 11 класс (Урок№28 - Ядерные реакции.)Скачать