Как составить уравнение высоты тетраэдра

Как составить уравнение высоты тетраэдра

Учасники групи мають 10% знижку при замовленні робіт, і ще багато бонусів!

Контакты

Администратор, решение задач
Роман

Tel. +380685083397
[email protected]
skype, facebook:
roman.yukhym

Решение задач
Андрей

facebook:
dniprovets25

Видео:Нахождение высоты тетраэдра.Скачать

Нахождение высоты тетраэдра.

Онлайн решение Пирамиды по координатам вершин

1) чертёж пирамиды по координатам её вершин;

2) длины и уравнения рёбер, медиан, апофем, высот;

3) площади и уравнения граней;

4) система линейных неравенств, определяющих пирамиду;

5) основания и точка пересечения медиан (центроид);

6) уравнения плоскостей, проходящих через вершины параллельно противолежащим граням;

7) объём пирамиды;

8) основания, площади и уравнения биссекторов;

9) углы между рёбрами, между рёбрами и гранями, двугранные (внутренние между гранями), телесные;

10) параметры и уравнения вписанной и описанной сфер;

Внимание! Этот сервис может не работать в браузере Internet Explorer.

Запишите координаты вершин пирамиды и нажмите кнопку.

Как составить уравнение высоты тетраэдра

A ( ; ; ), B ( ; ; ),
C ( ; ; ), D ( ; ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Вычисляем высоту через координаты вершин 1Скачать

Вычисляем высоту через координаты вершин  1

Как найти высоту тетраэдра формула

Как составить уравнение высоты тетраэдра

Высота тетраэдра — равна корню квадратному из двух третих, помноженному на длину ребра тетраэдра

(h — высота тетраэдра, a — ребро тетраэдра)

Видео:Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACDСкачать

Даны вершины пирамиды A, B, C, D. Найдите объём пирамиды и высоту, опущенную на грань ACD

Вывод формулы высоты тетраэдра

Чтобы получить формулу высоты тетраэдра необходимо произвести дополнительные геометрические построения. На рисунке красные линии CF и FS — это высоты соответствующих правильных треугольников ABC и ABS:

Теперь в треугольнике CFS известны все стороны. Высота тетраэдра, как видно из геометрических построений — это высота треугольника CFS. Подставив стороны треугольника в формулу и произведя простые сокращения (используем формулу разность квадратов) получим формулу (1).

Рассмотрим произвольный треугольник ABC и точку D , не лежащую в плоскости этого треугольника. Соединим отрезками эту точку с вершинами треугольника ABC . В результате получим треугольники ADC , CDB , ABD . Поверхность ограниченная четырьмя треугольниками ABC , ADC , CDB и ABD называется тетраэдром и обозначается DABC .
Как составить уравнение высоты тетраэдраТреугольники, из которых состоит тетраэдр, называются его гранями.
Стороны данных треугольников называют ребрами тетраэдра. А их вершины – вершинами тетраэдра

Тетраэдр имеет 4 грани, 6 ребер и 4 вершины.
Два ребра, которые не имеют общей вершины, называются противоположными.
Зачастую для удобства, одну из граней тетраэдра называют основанием, а оставшиеся три грани боковыми гранями.

Как составить уравнение высоты тетраэдраНо также верно и утверждение, что любая произвольная треугольная пирамида является тетраэдром. Тогда также верно, что тетраэдром называют пирамиду, в основании которой лежит треугольник.

Высотой тетраэдра называется отрезок, который соединяет вершину с точкой, расположенной на противоположной грани и перпендикулярный к ней.
Медианой тетраэдра называется отрезок, который соединяет вершину с точкой пересечения медиан противоположной грани.
Бимедианой тетраэдра называется отрезок, который соединяет середины скрещивающихся ребер тетраэдра.

Так как тетраэдр – это пирамида с треугольным основанием, то объем любого тетраэдра можно рассчитать по формуле

  • S – площадь любой грани,
  • H – высота, опущенная на эту грань

Видео:Математика без Ху!ни. Смешанное произведение векторовСкачать

Математика без Ху!ни. Смешанное произведение векторов

Правильный тетраэдр – частный вид тетраэдра

Тетраэдр, у которого все грани равносторонние треугольник называется правильным.
Свойства правильного тетраэдра:

  • Все грани равны.
  • Все плоские углы правильного тетраэдра равны 60°
  • Так как каждая его вершина является вершиной трех правильных треугольников, то сумма плоских углов при каждой вершине равна 180°
  • Любая вершина правильного тетраэдра проектируется в ортоцентр противоположной грани (в точку пересечения высот треугольника).

Как составить уравнение высоты тетраэдра

Пусть нам дан правильный тетраэдр ABCD с ребрами равными a . DH – его высота.
Произведем дополнительные построения BM – высоту треугольника ABC и DM – высоту треугольника ACD .
Высота BM равна BM и равна Как составить уравнение высоты тетраэдра
Рассмотрим треугольник BDM , где DH , являющаяся высотой тетраэдра также и высота данного треугольника.
Высоту треугольника, опущенную на сторону MB можно найти, воспользовавшись формулой

Как составить уравнение высоты тетраэдра, где
BM=Как составить уравнение высоты тетраэдра, DM=Как составить уравнение высоты тетраэдра, BD=a,
p=1/2 (BM+BD+DM)= Как составить уравнение высоты тетраэдра
Подставим эти значения в формулу высоты. Получим
Как составить уравнение высоты тетраэдра
Вынесем 1/2a. Получим

Как составить уравнение высоты тетраэдра
Как составить уравнение высоты тетраэдра
Применим формулу разность квадратов
Как составить уравнение высоты тетраэдра
После небольших преобразований получим
Как составить уравнение высоты тетраэдра
Как составить уравнение высоты тетраэдра
Объем любого тетраэдра можно рассчитать по формуле
Как составить уравнение высоты тетраэдра,
где Как составить уравнение высоты тетраэдра,
Как составить уравнение высоты тетраэдра
Подставив эти значения, получим
Как составить уравнение высоты тетраэдра

Таким образом формула объема для правильного тетраэдра

Как составить уравнение высоты тетраэдра

где a –ребро тетраэдра

Видео:Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на граньСкачать

Задача 6. Вычислить объём тетраэдра с вершинами в точках и его высоту, опущенную из вершины на грань

Вычисление объема тетраэдра, если известны координаты его вершин

Пусть нам даны координаты вершин тетраэдра
Как составить уравнение высоты тетраэдра
Из вершины Как составить уравнение высоты тетраэдрапроведем векторы Как составить уравнение высоты тетраэдра, Как составить уравнение высоты тетраэдра, Как составить уравнение высоты тетраэдра.
Для нахождения координат каждого из этих векторов вычтем из координаты конца соответствующую координату начала. Получим
Как составить уравнение высоты тетраэдра
Как составить уравнение высоты тетраэдра
Как составить уравнение высоты тетраэдра

Геометрических смысл смешенного произведения трех векторов заключается в следующем – смешенное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах.
Так как тетраэдр есть пирамида с треугольным основанием, а объем пирамиды в шесть раз меньше объема параллелепипеда, то тогда имеет смысл следующая формула

Как составить уравнение высоты тетраэдра

Видео:Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.Скачать

Высшая математика. 4 урок. Аналитическая геометрия. Вычисление объема тетраэдра.

Свойства

Зная высоту тетраэдра, можно вычислить его ребро, перевернув формулу так, чтобы ребро было равно корню из трех вторых, умноженному на высоту. a=√(3/2) h

Выразив таким образом ребро тетраэдра через его высоту, можно найти периметр тетраэдра, то есть длину всех его ребер, площадь одной грани и площадь полной поверхности тетраэдра. Периметр тетраэдра будет равен шести длинам его ребер, площадь одной грани – ребру в квадрате, умноженному на корень из трех, деленный на четыре, а площадь полной поверхности – четырем площадям одной грани. P=6a=6√(3/2) h S_1=(√3 a^2)/4=(3√3 h^2)/8 S_(п.п.)=4S_1=(3√3 h^2)/2

Через высоту, подставленную вместо ребра в определенном соотношении можно найти соответственно и радиусы вписанной и описанной окружностей в основание тетраэдра. r=h/(2√2) R=h/√2

Апофема тетраэдра проходит из вершины к противоположной стороне грани под прямым углом и рассчитать ее можно как из прямоугольного треугольника с боковым ребром по той же грани, так и из прямоугольного треугольника во внутреннем пространстве тетраэдра с высотой. l=3h/(2√2)

Чтобы вычислить объем тетраэдра, необходимо возвести в куб ребро и разделить полученное значение на шесть корней из двух, либо подставить вместо ребра корень из трех вторых, умноженный на высоту и преобразовать формулу объема для высоты. V=(√3 h^3)/8

В тетраэдр можно вписать сферу или описать сферу около него, тогда, зная высоту, чтобы вычислить радиусы вписанной и описанной сфер, необходимо воспользоваться следующими, уже готовыми формулами. (рис.60.2, 60.3) r_1=h/4 R_1=3h/4

📺 Видео

Уравнение прямой и треугольник. Задача про высотуСкачать

Уравнение прямой и треугольник. Задача про высоту

Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Уравнение высоты пирамиды (устар.)Скачать

Уравнение высоты пирамиды (устар.)

Как строить сечения тетраэдра и пирамидыСкачать

Как строить сечения тетраэдра и пирамиды

10 класс, 12 урок, ТетраэдрСкачать

10 класс, 12 урок, Тетраэдр

Задача C2: координаты вершин тетраэдраСкачать

Задача C2: координаты вершин тетраэдра

Вычисление медианы, высоты и угла по координатам вершинСкачать

Вычисление медианы, высоты и угла по координатам вершин

Аналитическая геометрия, 6 урок, Уравнение прямойСкачать

Аналитическая геометрия, 6 урок, Уравнение прямой

Решение задачи с тетраэдром(на 4). Алгебра и геометрияСкачать

Решение задачи с тетраэдром(на 4). Алгебра и геометрия

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

найти уравнение высоты треугольникаСкачать

найти уравнение высоты треугольника

Задача про пирамидуСкачать

Задача про пирамиду

Тетраэдр. 10 класс.Скачать

Тетраэдр. 10 класс.

Уравнение высоты пирамидыСкачать

Уравнение высоты пирамиды
Поделиться или сохранить к себе: