Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.
1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.
Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:
Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:
2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).
Так как центр окружности — точка A(8; -3), то a=8, b=-3.
Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.
Следовательно, уравнение данной окружности
3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).
Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка
Центр окружности — точка O(1;-2). Значит, a=1, b=-2.
Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,
Таким образом, уравнение окружности с диаметром AB —
4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).
Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение
получаем систему уравнений:
Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим
Приравняем правые части 2-го и 3-го уравнений:
на -1 и сложив результат почленно с уравнением
получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:
Следовательно, уравнение окружности, проходящей через три данные точки —
5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).
Решение аналогично решению задания 4. В результате получим уравнение
- Как составить уравнение окружности по одной точке
- Написать уравнение окружности
- Уравнение окружности.
- Уравнения окружностей имеющих одну общую точку
- Уравнение окружности.
- § 3. Уравнения окружности и прямой
- Уравнение окружности
- Уравнение прямой
- Взаимное расположение двух окружностей
- Использование уравнений окружности и прямой при решении задач
- Ответы к § 3
- Геометрия. 9 класс
- НАШИ ПАРТНЁРЫ
- Уравнение окружности.
- Примеры решения задач про уравнение окружности
- Задача. Составить уравнение заданной окружности
- Задача. Принадлежит ли точка уравнению окружности
- 📸 Видео
Видео:Уравнение окружности (1)Скачать
Как составить уравнение окружности по одной точке
Видео:ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
Написать уравнение окружности
Рассмотрим некоторые примеры, в которых требуется написать уравнение окружности по заданным условиям.
1) Написать уравнение окружности с центром в точке K(5;-1) и радиусом 7.
Уравнение окружности с центром в точке (a;b) и радиусом R имеет вид:
Так как центр окружности — точка K(5; -1), то a=5, b=-1.Подставляем эти данные в уравнение окружности:
2) Напишите уравнение окружности с центром в точке A (8;-3) проходящей через точку C(3;-6).
Так как центр окружности — точка A(8; -3), то a=8, b=-3.
Остаётся найти радиус. Он равен расстоянию от центра окружности до точки, лежащей на окружности, то есть в данном случае радиус окружности равен расстоянию между точками A и C.
Следовательно, уравнение данной окружности
3) Составить уравнение окружности, диаметром которой является отрезок AB, если A (-4; -9), B(6;5).
Центром окружности является середина диаметра, в нашем случае — середина отрезка AB. По формулам координат середины отрезка
Центр окружности — точка O(1;-2). Значит, a=1, b=-2.
Радиус можно найти как расстояние от центра окружности до любой из точек A или B окружности. Например,
Таким образом, уравнение окружности с диаметром AB —
4) Написать уравнение окружности, проходящей через три точки: A(4; -5), B(8; 3) C(-8; 11).
Так как точки A, B C принадлежат окружности, то их координаты удовлетворяют уравнению окружности. Подставив координаты точек в уравнение
получаем систему уравнений:
Поскольку правые части уравнений равны, левые также равны. Приравняв правые части 1-го и 2-го уравнений получим
Приравняем правые части 2-го и 3-го уравнений:
на -1 и сложив результат почленно с уравнением
получаем a=-2, b=3. Подставив этот результат в первое уравнение системы:
Следовательно, уравнение окружности, проходящей через три данные точки —
5) Написать уравнение окружности, описанной около треугольника ABC с вершинами в точках A(2; 6), B(1; 5) C(8; -2).
Решение аналогично решению задания 4. В результате получим уравнение
Видео:№968. Напишите уравнение окружности с центром в точке А(0; 6), проходящей через точку В (-3; 2).Скачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
Уравнения окружностей имеющих одну общую точку
Видео:Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
Видео:Составляем уравнение окружностиСкачать
§ 3. Уравнения окружности и прямой
При изучении алгебры мы строили графики некоторых функций в прямоугольной системе координат, например график функции у-х. Известно, что графиком этой функции является прямая, проходящая через точки О (0; 0) и А(1;1) (рис. 284). Координаты любой точки М (х; у), лежащей на прямой О А, удовлетворяют уравнению у = х (так как ММ1 = ММ2), а координаты любой точки, не лежащей на прямой ОА, этому уравнению не удовлетворяют. Говорят, что уравнение у = х является уравнением прямой О А. Введём теперь понятие уравнения произвольной линии.
Пусть на плоскости задана прямоугольная система координат Оху и дана некоторая линия L (рис. 285). Уравнение с двумя переменными х и у называется уравнением линии L, если этому уравнению удовлетворяют координаты любой точки линии L и не удовлетворяют координаты никакой точки, не лежащей на этой линии.
При изучении линий методом координат возникают две задачи: 1) по геометрическим свойствам данной линии найти её уравнение; 2) обратная задача: по заданному уравнению линии исследовать её геометрические свойства. В следующем пункте мы рассмотрим первую из этих задач применительно к окружности. Вторая задача рассматривалась в курсе алгебры при построении графиков функций.
Уравнение окружности
Выведем уравнение окружности радиуса г с центром С в заданной прямоугольной системе координат. Пусть точка С имеет координаты (x0; у0) (рис. 286). Расстояние от произвольной точки М (х; у) до точки С вычисляется по формуле Если точка М лежит на данной окружности, то МС = r, МС 2 = r 2 , т. е. координаты точки М удовлетворяют уравнению
Если же точка М (х; у) не лежит на данной окружности, то МС 2 ≠ r 2 , и, значит, координаты точки М не удовлетворяют уравнению (1). Следовательно, в прямоугольной системе координат уравнение окружности радиуса r с центром в точке С (х0; у0) имеет вид:
(х — х1) 2 + (у — у0) 2 = r 2 .
В частности, уравнение окружности радиуса r с центром в начале координат имеет вид:
Найти уравнение окружности с центром в точке (-3; 4), проходящей через начало координат.
Центр окружности имеет координаты (-3; 4). Поэтому уравнение этой окружности можно записать в виде (х + 3) 2 + (у — 4) 2 = r 2 , где r — пока неизвестный радиус окружности. Найдём его. Для этого воспользуемся тем, что окружность проходит через начало координат, т. е. координаты точки О (0; 0) удовлетворяют этому уравнению: (0 + 3) 2 + (0 — 4) 2 = r 2 . Отсюда r 2 = 25, и, значит, r = 5. Итак, искомое уравнение окружности имеет вид (х + 3) 2 + (у — 4) 2 = 25.
Если раскрыть скобки и привести подобные члены, то получится уравнение х 2 + у 2 + 6х — 8у = 0, которое также является уравнением данной окружности.
Уравнение прямой
Выведем уравнение данной прямой l в заданной прямоугольной системе координат. Отметим две точки А (x1; у1) и В (х2; у2) так, чтобы прямая l была серединным перпендикуляром к отрезку АВ (рис. 287, а). Если точка М (х; у) лежит на прямой l, то АМ = ВМ, или AM 2 = ВМ 2 , т. е. координаты точки М удовлетворяют уравнению
Если же точка М (x; у) не лежит на прямой l, то AM 2 ≠ ВМ 2 , и, значит, координаты точки М не удовлетворяют уравнению (2). Следовательно, уравнение (2) является уравнением прямой I в заданной системе координат. После возведения выражений в скобках в квадрат и приведения подобных членов уравнение (2) принимает вид
где а = 2 (х1 — х2), b = 2(у1 — у2), Так как А (x1; у1) и В (x2; y2) — различные точки, то хотя бы одна из разностей (х1 — х2) и (у1 — у2) не равна нулю, т. е. хотя бы один из коэффициентов а и b отличен от нуля. Таким образом, уравнение прямой в прямоугольной системе координат является уравнением первой степени.
Если в уравнении (3) коэффициент b отличен от нуля, то это уравнение можно записать так:
где Число k называется угловым коэффициентом прямой, заданной этим уравнением. Докажите самостоятельно, что:
две параллельные прямые, не параллельные оси Оу, имеют одинаковые угловые коэффициенты; вели две прямые имеют одинаковые угловые коэффициенты, то эти прямые параллельны. |
Выведем уравнение прямой l, проходящей через точку М0 (x0; у0) и параллельной оси Оу (рис. 287, б). Абсцисса любой точки М (х; у) прямой l равна x0, т. е. координаты любой точки М (x; у) прямой l удовлетворяют уравнению х = х0. В то же время координаты любой точки, не лежащей на прямой l, этому уравнению не удовлетворяют. Следовательно, уравнение х = х0 является уравнением прямой l.
Ясно, что ось Ох имеет уравнение у = О, а ось Оу — уравнение х = 0.
Взаимное расположение двух окружностей
Исследуем взаимное расположение двух окружностей в зависимости от их радиусов r, R и расстояния d между их центрами. Для определённости будем считать, что r ≤ R.
Если центры окружностей совпадают, т. е. d = 0, то окружности называются концентрическими, и окружность радиуса г лежит внутри круга радиуса R (рис. 288, а).
Пусть d > 0. Введём прямоугольную систему координат Оху так, чтобы точка О была центром первой окружности, а точка с координатами (d; 0) — центром второй окружности. В этой системе координат уравнения первой и второй окружностей имеют вид
х 2 + у 2 = R 2 , (х — d) 2 + у 2 = r 2 . (4)
Если система уравнений (4) имеет решением пару чисел х = х0, у = у0, то точка М0 (х0; у0) является общей точкой данных окружностей (рис. 288, б), и обратно: если М0 (x0; у0) — общая точка данных окружностей, то пара чисел х = х0, у = у0 является решением системы уравнений (4).
Пусть система (4) имеет решением пару чисел x = х0, у = у0, т. е. справедливы числовые равенства
Вычитая из первого равенства второе, подучаем равенство 2x0d — d 2 = R 2 — r 2 , откуда
Заметим, что х0 > 0, поскольку R ≥ r и d > 0. Кроме того, как следует из первого равенства (5), х0 = т. е. для величин R, r и d должно выполняться неравенство или R 2 + d 2 — r 2 ≤ 2dR. Последнее неравенство запишем в виде (d — R) 2 ≤ r 2 . Отсюда следует, что -r ≤ d — R ≤ r, или
Отметим, что х0 = R, если d = R — r или d = R + r, и x0 R + r (рис. 288, г). В этом случае говорят, что одна окружность лежит вне другой.
Если неравенства (7) выполнены, то возможны три случая:
3) d = R — r, при этом R > r, поскольку d > 0. Как уже было отмечено, в этом случае x0 = R, поэтому из первого из равенств (5) следует, что y0 = 0. Непосредственной проверкой можно убедиться в том, что пара чисел x = R, у = 0 есть решение системы (4). Таким образом, в данном случае окружности имеют ровно одну общую точку, и их взаимное расположение изображено на рисунке 288, д. Говорят, что окружности касаются изнутри.
4) d = R + r. В этом случае также х0 = R, поэтому y0 = 0, и непосредственно проверяется, что пара чисел x = R, у = 0 есть решение системы (4). Таким образом, в данном случае, как и в случае 3, окружности имеют ровно одну общую точку, но их взаимное расположение иное (рис. 288, е). Говорят, что окружности касаются извне.
5) R — r 2 + у 2 = 9; б) (х — 1) 2 + (у + 2) 2 = 4; в) (х + 5) 2 + (у — 3) 2 = 25; г) (х — 1) 2 + у 2 = 4; д) х 2 + (у + 2) 2 = 2.
960. Какие из точек А (3; -4), В (1; 0), С (0; 5), D (0; 0) и Е (0; 1) лежат на окружности, заданной уравнением:
а) х 2 + у 2 = 25; б) (х — 1) 2 + (у + 3) 2 = 9; в) (х — 0,5) 2 — у 2 = 0,25;
961. Окружность задана уравнением (х + 5) 2 + (у — 1) 2 = 16. Не пользуясь чертежом, укажите, какие из точек А (-2; 4), В (-5; -3), С (-7; -2) и D (1; 5) лежат:
а) внутри круга, ограниченного данной окружностью;
6) на окружности;
в) вне круга, ограниченного данной окружностью.
962. Даны окружность х 2 + у 2 = 25 и две точки А (3; 4) и В (4;-3). Докажите, что АВ — хорда данной окружности.
963. На окружности, заданной уравнением х 2 + у 2 = 25, найдите точки: а) с абсциссой -4; б) с ординатой 3.
964. На окружности, заданной уравнением (x — 3) 2 + (у — 5) 2 = 25, найдите точки: а) с абсциссой 3; б) с ординатой 5.
965. Напишите уравнения окружностей с центром в начале координат и радиусами r1 = 3, r2 = √2, r2 = 5/2.
966. Напишите уравнение окружности радиуса r с центром А, если: а) А (0; 5), r = 3; б) А (-1;2), r = 2; в) А (-3;-7), r = 1/2; г) А (4;-3), r =10.
967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).
968. Напишите уравнение окружности с центром в точке А (0; 6), проходящей через точку В (-3; 2).
969. Напишите уравнение окружности с диаметром MN, если: а) М (-3; 5), N (7; -3); б) М (2; -1), N (4; 3).
970. Напишите уравнение окружности, проходящей через точку А (1;3), если известно, что центр окружности лежит на оси абсцисс, а радиус равен 5. Сколько существует таких окружностей?
971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и В (0; 9), если известно, что центр окружности лежит на оси ординат.
972. Напишите уравнение прямой, проходящей через две данные точки: а) А (1; -1) и В (-3; 2); б) С (2; 5) и D (5; 2); в) М (0; 1) и N (-4; -5).
а) Уравнение прямой АВ имеет вид ах + by + с = 0. Так как точки А и В лежат на прямой АВ, то их координаты удовлетворяют этому уравнению:
а • 1 + b • (-1) + с = 0, а • (-3) + b • 2 + с = 0,
или а — b + с = 0, -3а + 2b + с = 0.
Из этих уравнений выразим коэффициенты а и b через с: а = 3с, b = 4с. Подставив эти значения в уравнение прямой, получим 3сх + 4су + с = 0. При любом с ≠ 0 это уравнение является уравнением прямой АВ. Сократив на с, запишем искомое уравнение в виде 3х + 4у + 1 = 0.
973. Даны координаты вершин треугольника АВС: А (4; 6), В (-4; 0), С (-1; -4). Напишите уравнение прямой, содержащей медиану СМ.
974. Даны координаты вершин трапеции ABCD: А (-2; -2), В (-3;1), С (7; 7) и D (3; 1). Напишите уравнения прямых, содержащих: а) диагонали АС и BD трапеции; б) среднюю линию трапеции.
975. Найдите координаты точек пересечения прямой 3х — 4у + 12 = О с осями координат. Начертите эту прямую.
976. Найдите координаты точки пересечения прямых 4х + 3у — 6 = О и 2х + у — 4 = 0.
977. Напишите уравнения прямых, проходящих через точку М (2; 5) и параллельных осям координат.
978. Начертите прямую, заданную уравнением: а) у = 3; б) х = -2; в) у = -4; г) х = 7.
979. Найдите ординату точки М, лежащей на прямой АВ, если известно, что А (-8; -6), В (-3; -1) и абсцисса точки М равна 5.
980 Напишите уравнения прямых, содержащих стороны ромба, диагонали которого равны 10 см и 4 см, если известно, что его диагонали лежат на осях координат.
Использование уравнений окружности и прямой при решении задач
981. Даны две точки А и В. Найдите множество всех точек, для каждой из которых расстояние от точки А в два раза больше расстояния от точки В.
Введём прямоугольную систему координат так, как показано на рисунке 289,а. Тогда точки А и В имеют координаты А (0; 0), В (а; 0), где а = АВ.
Найдём расстояния от произвольной точки М (х; у) до точек А и В:
Если точка М (х; у) принадлежит искомому множеству, то
AM = 2ВМ, или AM 2 = 4ВМ 2 .
Поэтому её координаты удовлетворяют уравнению
х 2 + у 2 = 4 ((х — а) 2 + у 2 ). (8)
Если же точка М не принадлежит искомому множеству, то её координаты не удовлетворяют этому уравнению.
Следовательно, уравнение (8) и есть уравнение искомого множества точек в выбранной системе координат. Раскрывая скобки и группируя слагаемые соответствующим образом, приводим уравнение (8) к виду
Таким образом, искомым множеством точек является окружность радиуса 2/3a с центром в точке C(4/3a; 0). Эта окружность изображена на рисунке 289, б.
Аналогично можно доказать, что множеством всех точек М, удовлетворяющих условию AM = kBM, где k — данное положительное число, не равное единице, является окружность радиуса с центром в точке
Эти окружности, соответствующие различным значениям k ≠ 1, называют окружностями Аполлония, поскольку они рассматривались ещё древнегреческим математиком Аполлонием в его трактате «О кругах» во II в. до н. э.
Если k = 1, то задача сводится к известной нам задаче о нахождении множества всех точек, равноудалённых от точек А и В. Таким множеством, как мы знаем, является серединный перпендикуляр к отрезку АВ.
982. Точка В — середина отрезка АС, длина которого равна 2. Найдите множество всех точек М, для каждой из которых: a) AM 2 + ВМ 2 + СМ 2 = 50; б) AM 2 + 2ВМ 2 + 3СМ 2 = 4.
983. Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM 2 + ВМ 2 = k 2 , где k — данное число.
984. Даны две точки А и В. Найдите множество всех точек М, для каждой из которых AM 2 — ВМ 2 = k, где k — данное число.
Введём прямоугольную систему координат так, чтобы точка А была началом координат, а точка В имела координаты (а; 0), где а = АВ. Найдём расстояния от произвольной точки М (х; у) до точек А и В:
Если точка М (х; у) принадлежит искомому множеству, то AM 2 — ВМ 2 = k, поэтому координаты точки М удовлетворяют уравнению х 2 + у 2 — (х — а) 2 — у 2 = k, или 2ах — а 2 — k = 0.
Если же точка М не принадлежит искомому множеству, то её координаты не удовлетворяют этому уравнению. Итак, полученное уравнение является уравнением искомого множества точек. Но этим уравнением определяется прямая, параллельная оси Оу, если а 2 + k ≠ 0, и сама ось Оу, если a 2 + k = 0. Таким образом, искомым множеством точек является прямая, перпендикулярная к прямой АВ.
985. Даны две точки А и B. Найдите множество всех точек М, для каждой из которых ВМ 2 — AM 2 = 2АВ 2 .
986. Дан прямоугольник ABCD. Найдите множество всех точек М, для каждой из которых
(AM 2 + DM 2 ) — (ВМ 2 + СМ 2 ) = 2АВ 2 .
987.* Дан ромб ABCD, диагонали которого равны 2а и 2Ь. Найдите множество всех точек М, для каждой из которых
AM 2 + DM 2 = ВМ 2 + СМ 2 .
Видео:Составляем уравнение прямой по точкамСкачать
Ответы к § 3
960. а) А и С; б) В; в) В и D.
961. а) С; б) В; в) А и D.
963. а) (-4; -3), М;3);б) (4; 3), (-4; 3).
964. а) (3; 0), (3; 10); б) (-2; 5), (8; 5).
965. 1) х 2 + у 2 = 9; 2) х 2 + у 2 = 2; 3)
966. а) х 2 + (у-5) 2 = 9; б) (х + 1) 2 + (y — 2) 2 = 4; в) г) (х — 4) 2 + (y + 3) 2 = 100.
967. х 2 + у 2 = 10.
968. х 2 + (у — 6) 2 = 25.
969. а) (х — 2) 2 + (y — 1) 2 = 41; б) (х — 3) 2 + (у — 1) 2 = 5.
970. (х — 5) 2 + у 2 = 25, (х + 3) 2 + у 2 = 25; две окружности.
971. х 2 + (у — 4) 2 = 25.
972. б) х + у- 7 = 0; в) 3х — 2у + 2 = 0.
973. 7х — у + 3 = 0.
974. а) х — у = 0, у — 1 = 0; б) 3х — 5у + 5 = 0.
977. х = 2 и у = 5.
980. 5х + 2у — 10 = 0, 5х — 2у — 10 = 0, 5х + 2у + 10 = 0, 5х — 2у + 10 = 0 или 2х + 5у- 10 = 0, 2х — 5у -10 = 0, 2х + 5y + 10 = 0, 2х — 5у+ 10 = 0.
982. а) Окружность радиуса 4 с центром В; б) окружность радиуса 1/3 с центром D, лежащим на отрезке ВС, причём BD = 1/3
983. Окружность с центром в точке О радиуса , если k 2 > 2а 2 , и точка О, если k 2 = 2а 2 , где О — середина отрезка АВ и Если k 2 2 , то точек, удовлетворяющих условию задачи, не существует.
985. Серединный перпендикуляр к отрезку АВ’, где В’ и В — точки, симметричные относительно точки А.
986. Прямая ВС. Указание. Выбрать прямоугольную систему координат так, чтобы точки А и В лежали на оси Ох и были симметричны относительно оси Оу.
987. Прямая, проходящая через точку пересечения диагоналей ромба и перпендикулярная к стороне ромба.
Видео:начертить окружность. Привести уравнение окружности к стандартному виду. Координаты центра и радиус.Скачать
Геометрия. 9 класс
Две окружности могут пересекаться, не пересекаться либо касаться друг друга.
Перейдем к анализу возможных случаев расположения двух окружностей.
Рассмотрим окружность с центром О1 и окружность с центром О2. Тогда расстояние между их центрами равно О1О2.
I. Пересекающиеся окружности имеют две общие точки.
Расстояние между центрами двух пересекающихся окружностей больше разности, но меньше суммы их радиусов:
II. Не пересекающиеся окружности не имеет общих точек.
Если одна окружность лежит внутри другой, то расстояние между центрами меньше разности их радиусов:
Если одна окружность находится вне другой, расстояние между центрами больше суммы их радиусов:
III. Касающиеся окружности имеют одну общую точку – точку касания.
При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:
При внутреннем касании расстояние между центрами равно разности радиусов:
Если центры окружностей совпадают, то такие окружности называются концентрическими.
Концентрические окружности разного радиуса не пересекаются: О1О2 = 0
В случае равенства радиусов они совпадают.
Если же радиусы этих окружностей не равны, то одна из них лежит внутри другой – образуется кольцо.
Кольцом называют фигуру, заключенную между концентрическими окружностями.
Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать
НАШИ ПАРТНЁРЫ
© Государственная образовательная платформа «Российская электронная школа»
Видео:Как составить уравнение прямой, проходящей через две точки на плоскости | МатематикаСкачать
Уравнение окружности.
Аналитическая геометрия дает единообразные приемы решения геометрических задач. Для этого все заданные и искомые точки и линии относят к одной системе координат.
В системе координат можно каждую точку охарактеризовать ее координатами, а каждую линию – уравнением с двумя неизвестными, графиком которого эта линия является. Таким образом геометрическая задача сводится к алгебраической, где хорошо отработаны все приемы вычислений.
Окружность есть геометрическое место точек с одним определенным свойством (каждая точка окружности равноудалена от одной точки, называется центром). Уравнение окружности должно отражать это свойство, удовлетворять этому условию.
Геометрическая интерпретация уравнения окружности – это линия окружности.
Если поместить окружность в систему координат, то все точки окружности удовлетворяют одному условию – расстояние от них до центра окружности должно быть одинаковым и равным окружности.
Окружность с центром в точке А и радиусом R поместим в координатную плоскость.
Если координаты центра (а;b), а координаты любой точки окружности (х; у), то уравнение окружности имеет вид:
Если квадрат радиуса окружности равен сумме квадратов разностей соответствующих координат любой точки окружности и ее центра, то это уравнение является уравнением окружности в плоской системе координат.
Если центр окружности совпадает с точкой начала координат, то квадрат радиуса окружности равен сумме квадратов координат любой точки окружности. В этом случае уравнение окружности принимает вид:
Следовательно, любая геометрическая фигура как геометрическое место точек определяется уравнением, связывающим координаты ее точек. И наоборот, уравнение, связывающее координаты х и у, определяют линию как геометрическое место точек плоскости, координаты которых удовлетворяют данному уравнению.
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Примеры решения задач про уравнение окружности
Задача. Составить уравнение заданной окружности
Составьте уравнение окружности с центром в точке O (2;-3) и радиусом 4.
Решение.
Обратимся к формуле уравнения окружности:
R 2 = (x- a ) 2 + (y- b ) 2
Подставим значения в формулу.
Радиус окружности R = 4
Координаты центра окружности (в соответствии с условием)
a = 2
b = -3
Получаем:
(x — 2 ) 2 + (y — ( -3 )) 2 = 4 2
или
(x — 2 ) 2 + (y + 3 ) 2 = 16 .
Задача. Принадлежит ли точка уравнению окружности
Проверить, принадлежит ли точка A(2;3) уравнению окружности (x — 2) 2 + (y + 3) 2 = 16.
Решение.
Если точка принадлежит окружности, то ее координаты удовлетворяют уравнению окружности.
Чтобы проверить, принадлежит ли окружности точка с заданными координатами, подставим координаты точки в уравнение заданной окружности.
В уравнение ( x — 2) 2 + ( y + 3) 2 = 16
подставим, согласно условию, координаты точки А(2;3), то есть
x = 2
y = 3
Проверим истинность полученного равенства
( x — 2) 2 + ( y + 3) 2 = 16
( 2 — 2) 2 + ( 3 + 3) 2 = 16
0 + 36 = 16 равенство неверно
Таким образом, заданная точка не принадлежит заданному уравнению окружности.
📸 Видео
№967. Напишите уравнение окружности с центром в начале координат, проходящей через точку В (-1; 3).Скачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать
№971. Напишите уравнение окружности, проходящей через точки А (-3; 0) и B (0; 9), если известноСкачать
Уравнение окружности | Геометрия 7-9 класс #90| ИнфоурокСкачать
Уравнение окружности и формула расстояния между точками на плоскостиСкачать
Уравнение окружностиСкачать
Математика | 5 ЗАДАЧ НА ТЕМУ ОКРУЖНОСТИ. Касательная к окружности задачиСкачать