Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Гипербола: формулы, примеры решения задач

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как Как составить уравнение гиперболы зная фокусы и расстояние между директрисамии Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

На чертеже ветви гиперболы — бордового цвета.

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки Как составить уравнение гиперболы зная фокусы и расстояние между директрисамии Как составить уравнение гиперболы зная фокусы и расстояние между директрисами, где

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Результат — каноническое уравнение гиперболы:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Если Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— произвольная точка левой ветви гиперболы (Как составить уравнение гиперболы зная фокусы и расстояние между директрисами) и Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— расстояния до этой точки от фокусов Как составить уравнение гиперболы зная фокусы и расстояние между директрисами, то формулы для расстояний — следующие:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Если Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— произвольная точка правой ветви гиперболы (Как составить уравнение гиперболы зная фокусы и расстояние между директрисами) и Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— расстояния до этой точки от фокусов Как составить уравнение гиперболы зная фокусы и расстояние между директрисами, то формулы для расстояний — следующие:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами,

где Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— расстояние от левого фокуса до точки любой ветви гиперболы, Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— расстояние от правого фокуса до точки любой ветви гиперболы и Как составить уравнение гиперболы зная фокусы и расстояние между директрисамии Как составить уравнение гиперболы зная фокусы и расстояние между директрисами— расстояния этой точки до директрис Как составить уравнение гиперболы зная фокусы и расстояние между директрисамии Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Пример 4. Дана гипербола Как составить уравнение гиперболы зная фокусы и расстояние между директрисами. Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. Как составить уравнение гиперболы зная фокусы и расстояние между директрисами. Вычисляем:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Получаем уравнение директрис гиперболы:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами, где Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы Как составить уравнение гиперболы зная фокусы и расстояние между директрисамии координаты точки Как составить уравнение гиперболы зная фокусы и расстояние между директрисами, лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения Как составить уравнение гиперболы зная фокусы и расстояние между директрисами. Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Написать каноническое уравнение гиперболы.  Дан эксцентриситет

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Что такое гипербола

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:§21 Каноническое уравнение гиперболыСкачать

§21 Каноническое уравнение гиперболы

Понятие гиперболы

Гипербола — это множество точек на плоскости, для которых модуль разности расстояний от двух точек (они же — «фокусы») — величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы в алгебре выглядит так:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

, где a и b — положительные действительные числа.

Кстати, канонический значит принятый за образец.

В отличие от эллипса, здесь не соблюдается условие a > b, значит а может быть меньше b. А если a = b, то гипербола будет равносторонней.

Мы помним, что гипербола в математике выглядит так y = 1/x, что значительно отличается от канонической записи.

Вспомним особенности математической гиперболы:

  • Две симметричные ветви.
  • Две асимптоты. Асимптота — это прямая, которая обладает таким свойством, что расстояние от точки кривой до этой прямой стремится к нулю при удалении точки вдоль ветви в бесконечность. Их значение помогает найти специальное уравнение асимптот гиперболы.

Если гипербола задана каноническим уравнением, то асимптоты можно найти так:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

Пример 1. Построить гиперболу, которая задана уравнением 5(x^2) — 4(y^2) = 20.



    Приведем данное уравнение к каноническому виду (x^2)/(a^2) — (y^2)/(b^2) = 1.

Чтобы получить «единицу» в правой части, обе части исходного уравнения делим на 20:

Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

  • Сокращаем обе дроби в уме или при помощи трехэтажной дроби:
    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами
  • Выделяем квадраты в знаменателях:
    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами
  • Готово. Можно начертить гиперболу.
  • Можно было сделать проще и дроби левой части 5(x^2)/20 — 4(y^2)/20 = 1 сразу сократить и получить (x^2)/4 — (y^2)/5 = 1. Нам повезло с примером, потому что число 20 делится и на 4 и на 5. Рассмотрим пример посложнее.

    Пример 2. Построить гиперболу, которая задана уравнением 3(x^2)/20 — 8(y^2)/20 = 1.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами
    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    1. Произведем сокращение при помощи трехэтажной дроби:
    2. Воспользуемся каноническим уравнением
      Как составить уравнение гиперболы зная фокусы и расстояние между директрисами
      • Найдем асимптоты гиперболы. Вот так: Как составить уравнение гиперболы зная фокусы и расстояние между директрисами
        Важно! Без этого шага ветви гиперболы «вылезут» за асимптоты.
      • Найдем две вершины гиперболы, которые расположены на оси абсцисс в точках A1(a; 0), A2(-a; 0).

    Если y = 0, то каноническое уравнение (x^2)/(a^2) — (y^2)/(b^2) = 1 превращается в (x^2)/(a^2) = 1, из чего следует, что x^2 = a^2 -> x = a, x = -a.

    Данная гипербола имеет вершины A1(2; 0), A2(-2; 0).

    Найдем дополнительные точки — хватит двух-трех.

    В каноническом положении гипербола симметрична относительно начала координат и обеих координатных осей, поэтому вычисления достаточно провести для одной координатной четверти.

    Способ такой же, как при построении эллипса. Из полученного канонического уравнения

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    на черновике выражаем:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Уравнение распадается на две функции:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    — определяет верхние дуги гиперболы (то, что ищем);

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    — определяет нижние дуги гиперболы.

    Далее найдем точки с абсциссами x = 3, x = 4:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

  • Изобразим на чертеже полученные асимптоты y = (√5/2)x, y = -(√5/2)x, вершины A1(2; 0), A2(-2; 0), дополнительные C1, C2 и симметричные им точки в других координатных четвертях. Аккуратно соединяем соответствующие точки у каждой ветви гиперболы.
  • Может возникнуть техническая трудность с иррациональным угловым коэффициентом √5/2 ≈ 1,12, но это вполне преодолимая проблема.

    Действительная ось гиперболы — отрезок А1А2.

    Расстояние между вершинами — длина |A1A2| = 2a.

    Действительная полуось гиперболы — число a = |OA1| = |OA2|.

    Мнимая полуось гиперболы — число b.

    В нашем примере: а = 2, b = √5, |А1А2| = 4. И если такую гиперболу повернуть вокруг центра симметрии или переместить, то значения не изменятся.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Видео:213. Фокус и директриса параболы.Скачать

    213. Фокус и директриса параболы.

    Форма гиперболы

    Повторим основные термины и узнаем, какие у гиперболы бывают формы.

    Гипербола симметрична относительно точки О — середины отрезка F’F. Она также симметрична относительно прямой F’F и прямой Y’Y, проведенной через О перпендикулярно F’F. Точка О — это центр гиперболы.

    Прямая F’F пересекает гиперболу в двух точках: A (a; 0) и A’ (-a; 0). Эти точки — вершины гиперболы. Отрезок А’А = 2a — это действительная ось гиперболы.

    Несмотря на то, что прямая Y’Y не пересекает гиперболу, на ней принято откладывать отрезки B’O = OB = b. Такой отрезок B’B = 2b (также и прямую Y’Y) можно назвать мнимой осью гиперболы.

    Так как AB^2 = OA^2 + OB^2 = a^2 + b^2, то из равенства следует: AB = c, то есть расстояние от вершины гиперболы до конца мнимой оси равно полуфокусному расстоянию.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Мнимая ось 2b может быть больше, меньше или равна действительной оси 2а. Если действительная и мнимая оси равны (a = b) — это равносторонняя гипербола.

    Отношение F’F/А’А фокусного расстояния к действительной оси называется эксцентриситетом гиперболы и обозначается e. Эксцентриситет равносторонней гиперболы равен √2.

    Гипербола лежит целиком вне полосы, ограниченной прямыми PQ и RS, параллельными Y’Y и отстоящими от Y’Y на расстояние OA =A’O = a. Вправо и влево от этой полосы гипербола продолжается неограниченно.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курсы по профильной математике.

    Видео:Фокус и директриса параболы 1Скачать

    Фокус и директриса параболы 1

    Фокальное свойство гиперболы

    Точки F1 и F2 называют фокусами гиперболы, расстояние 2c = F1F2 между ними — фокусным расстоянием, середина O отрезка F1F2 — центром гиперболы, число 2а — длиной действительной оси гиперболы (соответственно, а — действительной полуосью гиперболы).

    Отрезки F1M и F2M, которые соединяют произвольную точку M гиперболы с ее фокусами, называются фокальными радиусами точки M. Отрезок, соединяющий две точки гиперболы, называется хордой гиперболы.

    Отношение e = a/c, где c = √(a^2 + b^2), называется эксцентриситетом гиперболы. Из определения (2a 1 .

    Геометрическое определение гиперболы, которое выражает ее фокальное свойство, аналогично ее аналитическому определению — линии, которая задана каноническим уравнением гиперболы:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Рассмотрим, как это выглядит на прямоугольной системе координат:

    • пусть центр O гиперболы будет началом системы координат;
    • прямую, которая проходит через фокусы (фокальную ось), примем за ось абсцисс (положительное направление на ней от точки F1 к точке F2);
    • прямую, перпендикулярную оси абсцисс и проходящую через центр гиперболы, примем за ось ординат (направление на оси ординат выбирается так, чтобы прямоугольная система координат Oxy оказалась правой).

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Воспользуемся геометрическим определением и составим уравнение гиперболы, которое выразит фокальное свойство. В выбранной системе координат определяем координаты фокусов F1(-c, 0) и F2(c, 0). Для произвольной точки M(x, y), принадлежащей параболе, имеем:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Запишем это уравнение в координатной форме:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Избавимся от иррациональности и придем к каноническому уравнению гиперболы:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    , т.е. выбранная система координат является канонической.

    Если рассуждать в обратном порядке, можно убедиться, что все точки, координаты которых удовлетворяют уравнению (x^2)/(a^2) — (y^2)/(b^2) = 1, и только они, принадлежат геометрическому месту точек, называемому гиперболой. Именно поэтому аналитическое определение гиперболы эквивалентно его геометрическому определению.

    Видео:Фокусы гиперболыСкачать

    Фокусы гиперболы

    Директориальное свойство гиперболы

    Директрисы гиперболы — это две прямые, которые проходят параллельно оси.

    ординат канонической системы координат на одинаковом расстоянии (a^2)/c от нее. Если а = 0, гипербола вырождается в пару пересекающихся прямых, и директрисы совпадают.

    Директориальное свойство гиперболы звучит так:

    Гиперболу с эксцентриситетом e = 1 можно определить, как геометрическое место точек плоскости, для каждой из которых отношение расстояния до заданной точки F (фокуса) к расстоянию до заданной прямой d (директрисы), не проходящей через заданную точку, постоянно и равно эксцентриситету e.

    Здесь F и d — один из фокусов гиперболы и одна из ее директрис, расположенные по одну сторону от оси ординат канонической системы координат.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    На самом деле для фокуса F2 и директрисы d2 условие

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    можно записать в координатной форме так:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Избавляясь от иррациональности и заменяя e = a/c, c^2 — a^2 = b^2, мы придем к каноническому уравнению гиперболы. Аналогичные рассуждения можно провести для фокуса F1 и директрисы d1:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Видео:§29 Эксцентриситет гиперболыСкачать

    §29 Эксцентриситет гиперболы

    Построение гиперболы

    Чтобы запомнить алгоритм построения гиперболы, рассмотрим чертёж и комментарии к нему.

    Построим основной прямоугольник гиперболы и проведем его диагонали. Если продолжим диагонали прямоугольника за его пределы, получим асимптоты гиперболы.

    В силу симметрии достаточно построить гиперболу в первой четверти, где она является графиком функции:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Важно учесть, что данная функция возрастает на промежутке [a; ∞], при x = a, y = 0 и ее график приближается снизу к асимптоте y = (b/a) * x. Рисуем график:

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Далее построенный в первой четверти график симметрично отображаем относительно оси Ох и получаем правую ветвь гиперболы. Теперь отобразим правую ветвь гиперболы относительно оси Оу.

    По определению эксцентриситет гиперболы равен Как составить уравнение гиперболы зная фокусы и расстояние между директрисами

    Зафиксируем действительную ось 2а и начнем изменять фокусное расстояние 2с.

    Так как b^2 = c^2 — a^2, то величина b изменится.

    При этом ε -> 1, b -> 0 и мнимые вершины B1, B2 стремятся к началу координат, асимптоты приближаются к оси Ох. Основной прямоугольник гиперболы выражается в пределе в отрезок A1A2, а сама гипербола выражается в два луча на оси абсцисс: (-∞; -a] и [a; ∞).

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    При этом ε -> ∞, b -> ∞ и мнимые вершины B1B2 стремятся к бесконечности, асимптоты приближаются к оси Оу. Основной прямоугольник гиперболы вытягивается вдоль оси ординат и ветви гиперболы приближаются к прямым x = +-a и в пределе сливаются с ними. Гипербола выражается в две прямые x = +-a, которые параллельны оси Оу.

    Равносторонняя гипербола это такая гипербола, у которой эксцентриситет равен √2. Ее еще называют равнобочной.

    Из определения следует, что в равносторонняя гиперболе a = b, поэтому ее каноническое уравнение выглядит так: x^2 — y^2 = a^2

    Действительно, ε = c/a = √2, откуда c^2 = 2a^2 и b^2 = c^2 — a^2 = a^2. И так как а и b положительные числа, получаем a = b.

    Видео:Видеоурок "Парабола"Скачать

    Видеоурок "Парабола"

    Гипербола и её свойства

    Видео:Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

    Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

    Гипербола и её форма.

    Гиперболой мы назвали линию, которая в некоторой декартовой прямоугольной системе координат определяется каноническим уравнением
    $$
    frac<x^><a^>-frac<y^><b^>=1.label
    $$

    Из этого уравнения видно, что для всех точек гиперболы (|x| geq a), то есть все точки гиперболы лежат вне вертикальной полосы ширины (2a) (рис. 8.6). Ось абсцисс канонической системы координат пересекает гиперболу в точках с координатами ((a, 0)) и ((-a, 0)), называемых вершинами гиперболы. Ось ординат не пересекает гиперболу. Таким образом, гипербола состоит из двух не связанных между собой частей. Они называются ее ветвями. Числа (a) и (b) называются соответственно вещественной и мнимой полуосями гиперболы.

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисамиРис. 8.6. Гипербола.

    Для гиперболы оси канонической системы координат являются осями симметрии, а начало канонической системы — центром симметрии.

    Доказательство аналогично доказательству соответствующего утверждения для эллипса.

    Для исследования формы гиперболы найдем ее пересечение с произвольной прямой, проходящей через начало координат. Уравнение прямой возьмем в виде (y=kx), поскольку мы уже знаем, что прямая (x=0) не пересекает гиперболу. Абсциссы точек перечения находятся из уравнения
    $$
    frac<x^><a^>-frac<k^x^><b^>=1.
    $$
    Поэтому, если (b^-a^k^ > 0), то
    $$
    x=pm frac<sqrt<b^-a^k^>>.
    $$
    Это позволяет указать координаты точек пересечения ((ab/v, abk/v)) и ((-ab/v, -abk/v)), где обозначено (v=(b^-a^k^)^). В силу симметрии достаточно проследить за движением первой из точек при изменении (k) (рис. 8.7).

    Как составить уравнение гиперболы зная фокусы и расстояние между директрисамиРис. 8.7. Пересечение прямой и гиперболы.

    Числитель дроби (ab/v) постоянен, а знаменатель принимает наибольшее значение при (k=0). Следовательно, наименьшую абсциссу имеет вершина ((a, 0)). С ростом (k) знаменатель убывает, и (x) растет, стремясь к бесконечности, когда (k) приближается к числу (b/a). Прямая (y=bx/a) с угловым коэффициентом (b/a) не пересекает гиперболу, и прямые с большими угловыми коэффициентами ее тем более не пересекают. Любая прямая с меньшим положительным угловым коэффициентом пересекает гиперболу.

    Если мы будем поворачивать прямую от горизонтального положения по часовой стрелке, то (k) будет убывать, (k^) расти, и прямая будет пересекать гиперболу во все удаляющихся точках, пока не займет положения с угловым коэффициентом (-b/a).

    К прямой (y=-bx/a) относится все, что было сказано о (y=bx/a): она не пересекает гиперболу и отделяет прямые, пересекающие ее, от не пересекающих. Из приведенных рассуждений вытекает, что гипербола имеет вид, изображенный на рис. 8.7.

    Прямые с уравнениями (y=bx/a) и (y=-bx/a) в канонической системе координат называются асимптотами гиперболы.

    🎬 Видео

    Лекция 31.2. Кривые второго порядка. Гипербола.Скачать

    Лекция 31.2. Кривые второго порядка. Гипербола.

    §23 Построение гиперболыСкачать

    §23 Построение гиперболы

    §28 Эксцентриситет эллипсаСкачать

    §28 Эксцентриситет эллипса

    Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

    Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

    Эллипс (часть 8). Решение задач. Высшая математика.Скачать

    Эллипс (часть 8). Решение задач. Высшая математика.

    §24 Каноническое уравнение параболыСкачать

    §24 Каноническое уравнение параболы

    ЭллипсСкачать

    Эллипс

    Аналитическая геометрия, 7 урок, Линии второго порядкаСкачать

    Аналитическая геометрия, 7 урок, Линии второго порядка

    Как легко составить уравнение параболы из графикаСкачать

    Как легко составить уравнение параболы из графика

    165. Найти фокусы и эксцентриситет эллипса.Скачать

    165. Найти фокусы и эксцентриситет эллипса.
    Поделиться или сохранить к себе: