Как составить каноническое уравнение гиперболы зная директрису

Видео:Математика без Ху!ни. Кривые второго порядка. Эллипс.Скачать

Математика без Ху!ни. Кривые второго порядка. Эллипс.

Гипербола: формулы, примеры решения задач

Видео:Написать каноническое уравнение гиперболы. Дан эксцентриситетСкачать

Написать каноническое уравнение гиперболы.  Дан эксцентриситет

Определение гиперболы, решаем задачи вместе

Определение гиперболы. Гиперболой называется множество всех точек плоскости, таких, для которых модуль разности расстояний от двух точек, называемых фокусами, есть величина постоянная и меньшая, чем расстояние между фокусами.

Каноническое уравнение гиперболы имеет вид:

Как составить каноническое уравнение гиперболы зная директрису,

где a и b — длины полуосей, действительной и мнимой.

На чертеже ниже фокусы обозначены как Как составить каноническое уравнение гиперболы зная директрисуи Как составить каноническое уравнение гиперболы зная директрису.

На чертеже ветви гиперболы — бордового цвета.

Как составить каноническое уравнение гиперболы зная директрису

При a = b гипербола называется равносторонней.

Пример 1. Составить каноническое уравнение гиперболы, если его действительная полуось a = 5 и мнимая = 3.

Решение. Подставляем значения полуосей в формулу канонического уравения гиперболы и получаем:

Как составить каноническое уравнение гиперболы зная директрису.

Точки пересечения гиперболы с её действительной осью (т. е. с осью Ox) называются вершинами. Это точки (a, 0) (- a, 0), они обозначены и надписаны на рисунке чёрным.

Точки Как составить каноническое уравнение гиперболы зная директрисуи Как составить каноническое уравнение гиперболы зная директрису, где

Как составить каноническое уравнение гиперболы зная директрису,

называются фокусами гиперболы (на чертеже обозначены зелёным, слева и справа от ветвей гиперболы).

Как составить каноническое уравнение гиперболы зная директрису

называется эксцентриситетом гиперболы.

Гипербола состоит из двух ветвей, лежащих в разных полуплоскостях относительно оси ординат.

Пример 2. Составить каноническое уравнение гиперболы, если расстояние между фокусами равно 10 и действительная ось равна 8.

Если действительная полуось равна 8, то её половина, т. е. полуось a = 4 ,

Если расстояние между фокусами равно 10, то число c из координат фокусов равно 5.

То есть, для того, чтобы составить уравнение гиперболы, потребуется вычислить квадрат мнимой полуоси b.

Подставляем и вычисляем:

Как составить каноническое уравнение гиперболы зная директрису

Получаем требуемое в условии задачи каноническое уравнение гиперболы:

Как составить каноническое уравнение гиперболы зная директрису.

Пример 3. Составить каноническое уравнение гиперболы, если её действительная ось равна 48 и эксцентриситет Как составить каноническое уравнение гиперболы зная директрису.

Решение. Как следует из условия, действительная полуось a = 24 . А эксцентриситет — это пропорция и так как a = 24 , то коэффициент пропорциональности отношения с и a равен 2. Следовательно, c = 26 . Из формулы числа c выражаем квадрат мнимой полуоси и вычисляем:

Как составить каноническое уравнение гиперболы зная директрису.

Результат — каноническое уравнение гиперболы:

Как составить каноническое уравнение гиперболы зная директрису

Если Как составить каноническое уравнение гиперболы зная директрису— произвольная точка левой ветви гиперболы (Как составить каноническое уравнение гиперболы зная директрису) и Как составить каноническое уравнение гиперболы зная директрису— расстояния до этой точки от фокусов Как составить каноническое уравнение гиперболы зная директрису, то формулы для расстояний — следующие:

Как составить каноническое уравнение гиперболы зная директрису.

Если Как составить каноническое уравнение гиперболы зная директрису— произвольная точка правой ветви гиперболы (Как составить каноническое уравнение гиперболы зная директрису) и Как составить каноническое уравнение гиперболы зная директрису— расстояния до этой точки от фокусов Как составить каноническое уравнение гиперболы зная директрису, то формулы для расстояний — следующие:

Как составить каноническое уравнение гиперболы зная директрису.

На чертеже расстояния обозначены оранжевыми линиями.

Для каждой точки, находящейся на гиперболе, сумма расстояний от фокусов есть величина постоянная, равная 2a.

Прямые, определяемые уравнениями

Как составить каноническое уравнение гиперболы зная директрису,

называются директрисами гиперболы (на чертеже — прямые ярко-красного цвета).

Из трёх вышеприведённых уравнений следует, что для любой точки гиперболы

Как составить каноническое уравнение гиперболы зная директрису,

где Как составить каноническое уравнение гиперболы зная директрису— расстояние от левого фокуса до точки любой ветви гиперболы, Как составить каноническое уравнение гиперболы зная директрису— расстояние от правого фокуса до точки любой ветви гиперболы и Как составить каноническое уравнение гиперболы зная директрисуи Как составить каноническое уравнение гиперболы зная директрису— расстояния этой точки до директрис Как составить каноническое уравнение гиперболы зная директрисуи Как составить каноническое уравнение гиперболы зная директрису.

Пример 4. Дана гипербола Как составить каноническое уравнение гиперболы зная директрису. Составить уравнение её директрис.

Решение. Смотрим в уравнение директрис и обнаруживаем, что требуется найти эксцентриситет гиперболы, т. е. Как составить каноническое уравнение гиперболы зная директрису. Вычисляем:

Как составить каноническое уравнение гиперболы зная директрису.

Получаем уравнение директрис гиперболы:

Как составить каноническое уравнение гиперболы зная директрису

Многие задачи на директрисы гиперболы аналогичны задачам на директрисы эллипса. В уроке «Эллипс» это пример 7.

Характерной особенностью гиперболы является наличие асимптот — прямых, к которым приближаются точки гиперболы при удалении от центра.

Асимптоты гиперболы определяются уравнениями

Как составить каноническое уравнение гиперболы зная директрису.

На чертеже асимптоты — прямые серого цвета, проходящие через начало координат O.

Уравнение гиперболы, отнесённой к асимптотам, имеет вид:

Как составить каноническое уравнение гиперболы зная директрису, где Как составить каноническое уравнение гиперболы зная директрису.

В том случае, когда угол между асимптотами — прямой, гипербола называется равнобочной, и если асимптоты равнобочной гиперболы выбрать за оси координат, то её уравнение запишется в виде y = k/x , то есть в виде уравения обратной пропорциональной зависимости.

Пример 5. Даны уравнения асимптот гиперболы Как составить каноническое уравнение гиперболы зная директрисуи координаты точки Как составить каноническое уравнение гиперболы зная директрису, лежащей на гиперболе. Составить уравнение гиперболы.

Решение. Дробь в уравнении асимптот гиперболы — это пропорция, следовательно, нужно сначала найти коэффициент пропорциональности отношения Как составить каноническое уравнение гиперболы зная директрису. Для этого подставляем в формулу канонического уравнения гиперболы координаты точки M x и y и значения числителя и знаменателя из уравнения асимптоты, кроме того, умножаем каждую дробь в левой части на коэффициент пропорциональности k.

Как составить каноническое уравнение гиперболы зная директрису.

Теперь имеем все данные, чтобы получить каноническое уравнение гиперболы. Получаем:

Как составить каноническое уравнение гиперболы зная директрису

Гипербола обладает оптическим свойством, которое описывается следующим образом: луч, исходящий из источника света, находящегося в одном из фокусов гиперболы, после отражения движется так, как будто он исходит из другого фокуса.

Видео:Видеоурок "Гипербола"Скачать

Видеоурок "Гипербола"

Решить задачи на гиперболу самостоятельно, а затем посмотреть решения

Пример 6. Фокусы эллипса расположены на оси Ox симметрично относительно начала координат. Составить каноническое уравнение эллипса, если:

1) b = 4 , а один из фокусов в точке (5; 0)

2) действительная ось 6, расстояние между фокусами 8

3) один из фокусов в точке (-10; 0), уравнения асимптот гиперболы Как составить каноническое уравнение гиперболы зная директрису

Видео:Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.Скачать

Математика без Ху!ни. Уравнения прямой. Часть 2. Каноническое, общее и в отрезках.

Как составить каноническое уравнение гиперболы зная директрису

Эллипсом называется геометрическое место точек плоскости, сумма расстояний от каждой из которых до двух данных точек этой плоскости, называемых фокусами, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а сумму расстояний от произвольной точки эллипса до фокусов – через 2 a . По определению 2 a > 2 c , то есть a > c .

Выберем систему координат так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпадало с серединой отрезка F 1 F 2 . Тогда фокусы имют координаты: F 1 (– c ;0) и F 2 ( c ;0) . Пусть M ( x ; y ) – произвольная точка эллипса (текущая точка). Тогда по определению эллипса можно записать

Как составить каноническое уравнение гиперболы зная директрису

По сути, мы получили уравнение эллипса. Упростим его с помощью ряда несложных математических преобразований:

Как составить каноническое уравнение гиперболы зная директрису

Как составить каноническое уравнение гиперболы зная директрису

Это уравнение равносильно первоначальному. Оно называется каноническим уравнением эллипса – кривой второго порядка .

Установим форму эллипса, пользуясь его каноническим уравнением.

1. Уравнение (2.17) содержит x и y только в четных степенях, поэтому если точка ( x ; y ) принадлежит эллипсу, то ему также принадлежат точки (– x ; y ), ( x ;– y ), (– x ;– y ) . Отсюда: эллипс симметричен относительно осей 0 x и 0 y , а также относительно точки O (0;0), которую называют центром эллипса.

2. Найдем точки пересечения эллипса с осями координат. Положив y = 0, найдем точки A 1 ( a ; 0) и A 2 (– a ; 0), в которых ось 0 x пересекает эллипс. Положив в уравнении (2.17) x = 0, находим точки пересечения эллипса с осью 0 y : B 1 (0; b ) и B 2 (0;– b ). Точки A 1 , A 2 , B 1 , B 2 называются вершинами эллипса. Отрезки А1А2, В1В2, а также их длины 2 a и 2 b – соответственно большая и малая оси эллипса (рис. 2.4).

3. Из уравнения (2.17) следует, что каждое слагаемое в левой части не превосходит единицы, т.е.:

Следовательно, все точки эллипса лежат внутри прямоугольника, ограниченного прямыми x = ± a и y = ± b .

4. В уравнении (2.17) левая часть – сумма неотрицательных слагаемых, т.е. при возрастании одного слагаемого другое будет уменьшаться, если | x | возрастает, | y | уменьшается и наоборот.

Из сказанного следует, что эллипс имеет форму овальной замкнутой кривой. Форма эллипса зависит от отношения Как составить каноническое уравнение гиперболы зная директрису . При a = b эллипс превращается в окружность, уравнение эллипса (2.17) принимает вид : x 2 + y 2 = a 2 . Отношение Как составить каноническое уравнение гиперболы зная директрису половины расстояния между фокусами к большой полуоси эллипса – эксцентриситет эллипса Как составить каноническое уравнение гиперболы зная директрису . Причем 0 ε 1, так как 0 c a .

Как составить каноническое уравнение гиперболы зная директрису

Отсюда видно, что чем меньше эксцентриситет эллипса, тем будет менее эллипс сплющенным; при ε = 0 эллипс превращается в окружность.

Прямые Как составить каноническое уравнение гиперболы зная директрисудиректрисы эллипса.

Если r – расстояние от произвольной точки до какого–нибудь фокуса, d – расстояние от этой же точки до соответствующей этому фокусу директрисы (рис. 2.5), то отношение Как составить каноническое уравнение гиперболы зная директрису есть величина постоянная, равная эксцентриситету эллипса: Как составить каноническое уравнение гиперболы зная директрису .

Из равенства a 2 c 2 = b 2 следует, что a > b . Если же наоборот, то уравнение (2.17) определяет эллипс, большая ось которого 2 b лежит на оси 0 y , а малая ось 2 a – на оси 0 x . Фокусы такого эллипса находятся в точках F 1 (0; c ) и F 2 (0;– c ) , где Как составить каноническое уравнение гиперболы зная директрису . Данный эллипс будет растянут вдоль оси 0 y .

Пример 2.5. Составить уравнение линии, для каждой точки которой отношение расстояний от нее до точки A (3;0) и до прямой x = 12, равно числу ε =0,5 . Полученное уравнение привести к простейшему виду .

Решение . Пусть M ( x ; y ) – текущая (произвольная) точка искомого геометрического множества точек. Опустим перпендикуляр MB на прямую . Тогда точка B( 12;y) . По условию задачи Как составить каноническое уравнение гиперболы зная директрису .

По формуле расстояния Как составить каноническое уравнение гиперболы зная директрису между двумя точками получаем:

Как составить каноническое уравнение гиперболы зная директрису

Как составить каноническое уравнение гиперболы зная директрису

Эксцентриситет эллипса Как составить каноническое уравнение гиперболы зная директрису

Примечание. Если эллипс (окружность) вращать вокруг одной из его осей, то описываемая им поверхность будет эллипсоидом вращения (сферой) Как составить каноническое уравнение гиперболы зная директрису

Пример 2.6. В геодезии используется система географических координат, основанная на понятии геоида. Геоид – поверхность Земли, ограниченная уровенной поверхностью, продолженной под континенты. Поверхность геоида отличается от физической поверхности Земли, на которой резко выражены горы и океанические впадины.

Тело, поверхность которого более всего соответствует поверхности геоида, имеет определенные размеры и ориентирована соответственно в теле Земли, называется референц–эллипсоидом. В нашей стране с 1946 года для всех геодезических работ принят референц–эллипсоид Красовского с параметрами a = 6 378 245 м, b = 6 356 863 м, α = 1: 298,3.

Линия, проходящая вертикально через центр эллипсоида является полярной осью. Линия, проходящая через центр эллипсоида, перпендикулярно к полярной оси, – экваториальной осью. При пересечении поверхности эллипсоида плоскостью, проходящей через его центр, перпендикулярно к полярной оси, образуется окружность, называемая экватором. Окружность, полученная от пересечения поверхности эллипсоида плоскостью, параллельной плоскости экватора, называется параллелью. Линия пересечения поверхности эллипсоида с плоскостью, проходящей через заданную точку и полярную ось, называется меридианом данной точки. Положение точки на земной поверхности определяется пересечением параллели и меридиана, проходящих через нее. Угол φ между плоскостью экватора и отвесной линией называется географической широтой. Для определения долгот точек один из меридианов (Гринвичский) принимают за начальный или нулевой. Угол λ, составленный плоскостью меридиана, проходящего через данную точку, и плоскостью начального меридиана, называется географической долготой Как составить каноническое уравнение гиперболы зная директрису

Гипербола – геометрическое место точек плоскости, модуль разности расстояний от каждой из которых до двух данных точек этой плоскости – фокусов, есть величина постоянная, равная 2 a .

Обозначим фокусы через F 1 и F 2 , расстояние между ними через 2 c , а модуль разности расстояний от каждой точки гиперболы до фокусов через 2 a . По определению 2 a 2 c , то есть a c .

Выберем систему координат x 0 y так, чтобы фокусы F 1 и F 2 лежали на оси 0 x , а начало координат совпало с серединой отрезка F 1 F 2 . Тогда фокусы будут иметь координаты F 1( c ;0 ) и F 2 (– c ;0 ). На этой основе выведем уравнение гиперболы. Пусть M ( x ; y ) – ее произвольная точка . Тогда по определению | MF 1 MF 2 |= 2 a , то есть Как составить каноническое уравнение гиперболы зная директрису . Проведя преобразования, аналогичные упрощениям уравнения эллипса, получим каноническое уравнение гиперболы:

где b 2 = a 2 – c 2 . Гипербола линия 2–го порядка.

Установим форму гиперболы, исходя из ее канонического уравнения.

1. Уравнение (2.18) содержит x и y только в четных степенях. Следовательно, гипербола симметрична относительно осей координат 0 x и 0 y , и относительно точки O (0;0) – центра гиперболы.

2. Найдем точки пересечения гиперболы с осями координат. Положив в уравнении (2.18) y =0 , находим две точки пересечения гиперболы с осью 0 x : A 1 ( a ; 0) и A 2 (– a ; 0).

Положив в (2.18) x = 0, получаем y 2 = – b 2 , чего быть не может. Т.е. гипербола ось 0 y не пересекает.

3. Из уравнения (2.18) следует, что уменьшаемое Как составить каноническое уравнение гиперболы зная директрису . Это означает, что точки гиперболы расположены справа от прямой x = a (правая ветвь гиперболы) и слева от прямой x =– a (левая ветвь) (рис. 2.6).

Как составить каноническое уравнение гиперболы зная директрису

4. Из уравнения (2.18) гиперболы видно, что когда | x | возрастает, то | y | также возрастает . Это следует из того, что разность Как составить каноническое уравнение гиперболы зная директрису – сохраняет значение, равно e единице. Следовательно, гипербола имеет форму, состоящую из двух неограниченных ветвей.

Прямая L называется асимптотой некоторой неограниченной кривой , если расстояние d от точки M этой кривой до прямой L стремится к нулю при неограниченном удалении т очки M вдоль кривой от начала координат.

Покажем, что гипербола Как составить каноническое уравнение гиперболы зная директрису имеет две асимптоты: Как составить каноническое уравнение гиперболы зная директрису . Так как данные прямые и гипербола (2.18) симметричны относительно координатных осей, то достаточно рассмотреть только точки, расположенные в первой четверти.

Возьмем на прямой Как составить каноническое уравнение гиперболы зная директрису точку N , имеющую ту же абсциссу, что и точка M ( x ; y ) на гиперболе Как составить каноническое уравнение гиперболы зная директрису . Найдем разность | MN | :

Как составить каноническое уравнение гиперболы зная директрису

Очевидно: так как числитель есть величина постоянная, а знаменатель дроби увеличивается с возравстанием переменной х, то длина отрезка | MN | стремится к нулю. Так как | MN | больше расстояния d от точки M до прямой L, то d стремится к нулю тем более ( и подавно) . Следовательно, прямые Как составить каноническое уравнение гиперболы зная директрису – есть асимптоты гиперболы (рис. 2.7).

Построение гиперболы начинают с нанесения ее основного прямоугольника на координатную плоскость. Далее проводят диагонали этого прямоугольника, которые являются асимптотами гиперболы, затем отмечают ее вершины, фокусы и строят ветви гиперболы .

Как составить каноническое уравнение гиперболы зная директрису

Эксцентриситет гиперболы отношение расстояния между фокусами к величине её действительной оси, обозначается ε : Как составить каноническое уравнение гиперболы зная директрису . Так как у гиперболы c > a , то эксцентриситет ее больше единицы. Эксцентриситет характеризует форму гиперболы. Так как Как составить каноническое уравнение гиперболы зная директрису . Видно, что чем меньше эксцентриситет гиперболы, тем меньше отношение Как составить каноническое уравнение гиперболы зная директрису ее полуосей, а значит, тем более вытянут ее основной прямоугольник.

Эксцентриситет равносторонней гиперболы равен Как составить каноническое уравнение гиперболы зная директрису . Действительно, Как составить каноническое уравнение гиперболы зная директрису . Фокальные радиусы , для точек правой ветви гиперболы имеют вид: r 1 = εx + a , r 2 = εx – a ; для точек левой ветви: r 1 =–( εx + a ), r 2 =–( εx – a ) .

Прямые Как составить каноническое уравнение гиперболы зная директрису называются директрисами гиперболы. Тот факт, что для гиперболы ε > 1, то Как составить каноническое уравнение гиперболы зная директрисуозначает : правая директриса расположена между центром и правой вершиной гиперболы, левая – между центром и левой вершиной. Директрисы гиперболы имеют тоже свойство Как составить каноническое уравнение гиперболы зная директрису , что и директрисы эллипса.

Уравнение Как составить каноническое уравнение гиперболы зная директрису определяет гиперболу с действительной осью 2 b , расположенной на оси 0 y , и мнимой осью 2 a, расположенной на оси абсцисс (подобная гипербола изображена на рисунке 2.7 пунктиром).

Значит , гиперболы Как составить каноническое уравнение гиперболы зная директрису и имеют общие асимптоты. Такие гиперболы называются сопряженными.

Примечание. Если у кривой 2–го порядка смещен центр в некоторую точку O ( x 0 ; y 0 ) , то она называется нецентральной кривой. Уравнение такой кривой имеет вид:

Как составить каноническое уравнение гиперболы зная директрису

Примечание. При вращении гиперболы вокруг ее действительной оси образуется двуполостный гиперболоид, вокруг ее мнимой оси – однополостный гиперболоид

Подробно данные уравнения рассмотрены в теме: «Исследование общего уравнения 2–ой степени» (смотри схему 10), частными случаями которого являются данные формулы.

Видео:213. Фокус и директриса параболы.Скачать

213. Фокус и директриса параболы.

Каноническое уравнение гиперболы

Вы будете перенаправлены на Автор24

Каноническое уравнение гиперболы имеет следующий вид: $frac — frac = 1$, где $a, b$ — положительные действительные числа.

Для того чтобы составить каноническое уравнение гиперболы, нужно привести квадратное уравнение к каноническому виду.

Вывод канонического уравнения гиперболы

Рисунок 1. Рис. 1.Вывод канонического уравнения гиперболы

Рассмотрим гиперболу с фокусами $F_1$ и $F_2$, находящимися на оси $OX$, причём точка $O$ лежит в центе между фокусами.

Следовательно координаты $F_1(-c; 0)$, а $F_2(c; 0)$, где $c$ — расстояние до фокуса гиперболы.

Рассмотрим произвольную точку $M$, принадлежащую гиперболе.

Отрезки $r_1 =|F_1M|$ и $r_2 =|F_2M|$ называются фокальными радиусами точки $M$ гиперболы.

Из определения гиперболы следует, что $|r_1 -r_2| =2a$, следовательно $r_1 – r_2=±2a$, причём $r_1 = sqrt$, а $r_2 = sqrt$.

Соответственно, уравнение $r_1 – r_2=±2a$ иначе можно записать как $sqrt — sqrt = ±2a$ (1).

Умножим выражение (1) на $frac <$sqrt+ sqrt>$, получается:, получается:

Сложим уравнения (1) и (2), получим:

Возведём (3) в квадрат:

$frac + 2xc + a^2 = (x^2 +2x c + c^2 + y^2)$

$frac cdot x^2 – y^2 = c^2 – a^2$

Пусть $b^2 = c^2 – a^2$, так как $c > 0$ и, следовательно $fracx^2 – y^2 = b^2$

Готовые работы на аналогичную тему

Получаем уравнение: $frac — frac = 1$ (4), являющееся каноническим уравнением гиперболы с центром в начале координат.

Каноническое уравнение параболы и гиперболы немного похожи между собой.

Уравнение параболы выглядит следующим образом:

$y^2 = px$, где число $p$ должно быть больше нуля; это число называется фокальным параметром.

Каноническое уравнение гиперболы примеры решения

Ниже небольшая инструкция о том, как найти каноническое уравнение гиперболы.

Приведём уравнение $5x^2 — 4y^2 = 20$ к каноническому виду гиперболического уравнения, для этого разделим всё уравнение на $20$:

Запишем знаменатели в виде степеней:

Теперь вы знаете, как написать каноническое уравнение гиперболы. Дальше мы расскажем о том, как строить гиперболу по каноническому уравнению.

Видео:Кривые второго порядка. Парабола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Парабола. Приведение к каноническому виду и чертеж

Построение гиперболы по каноническому уравнению

Теперь давайте рассмотрим, как построить гиперболу по каноническому уравнению.

Рисунок 2. Рис. 2. Построение гиперболы по каноническому уравнению

Для начала необходимо построить асимптоты для данной гиперболы, их формулы определяются из уравнения $y = ±frac$. Для нашего канонического уравнения гиперболы они будут выглядеть так: $y = ±frac<sqrt> cdot x$

Теперь найдём вершины гиперболы, они расположены на оси абсисс в точках $(0; a)$ и $(0; -a)$, назовём их точками $A_1, A_2$. Вершины нашей гиперболы находятся в точках $(2; 0)$ и $(-2; 0)$.

Далее необходимо найти две-три точки, принадлежащие любой из двух ветвей гиперболы, если гипербола без смещения – точки на второй ветви будут симметричны им относительно осей гиперболы. Выразим $y$ из канонического уравнения нашей гиперболы:

Найдём точки для положительной части гиперболы:

при $x = 3, y =2.5$, а при $x = 3, y ≈3,87$.

Теперь можно отложить все эти точки и построить график гиперболы.

Получи деньги за свои студенческие работы

Курсовые, рефераты или другие работы

Автор этой статьи Дата последнего обновления статьи: 30 11 2021

📺 Видео

Гипербола (часть 7). Директрисы гиперболы. Высшая математика.Скачать

Гипербола (часть 7). Директрисы гиперболы. Высшая математика.

§31.1 Приведение уравнения кривой к каноническому видуСкачать

§31.1 Приведение уравнения кривой к каноническому виду

Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Гипербола. Приведение к каноническому виду и чертеж

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математикаСкачать

Аналитическая геометрия: Эллипс, Парабола, Гипербола. Высшая математика

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертежСкачать

Кривые второго порядка. Эллипс. Приведение к каноническому виду и чертеж

§29 Эксцентриситет гиперболыСкачать

§29 Эксцентриситет гиперболы

§23 Построение гиперболыСкачать

§23 Построение гиперболы

§24 Каноническое уравнение параболыСкачать

§24 Каноническое уравнение параболы

Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.Скачать

Парабола (часть 1). Каноническое уравнение параболы. Высшая математика.

§22 Исследование канонического уравнения гиперболыСкачать

§22 Исследование канонического уравнения гиперболы

Видеоурок "Канонические уравнения прямой"Скачать

Видеоурок "Канонические уравнения прямой"

§18 Каноническое уравнение эллипсаСкачать

§18 Каноническое уравнение эллипса
Поделиться или сохранить к себе: