Как составить блок схему для квадратного уравнения

Алгоритмы

История появления алгоритмов

Появление алгоритмов связывают с зарождением математики. Более 1000 лет назад (в 825 году) ученый из города Хорезма Абдулла (или Абу Джафар) Мухаммед бен Муса аль-Хорезми создал книгу по математике, в которой описал способы выполнения арифметических действий над многозначными числами. Само слово алгоритм возникло в Европе после перевода на латынь книги этого математика.

Видео:0.Блок схема. 8 классСкачать

0.Блок схема. 8 класс

Понятие алгоритма. Изображение алгоритма в виде блок-схемы.

Видео:Блок-схемы для начинающих (Блок схемы алгоритмов)Скачать

Блок-схемы для начинающих (Блок схемы алгоритмов)

Алгоритмы линейной и разветвляющейся структуры

1.1. Понятие алгоритма

Алгоритм — четкое описание последовательности действий, которые необходимо выполнить при решении задачи. Можно сказать, что алгоритм описывает процесс преобразования исходных данных в результаты, т.к. для решения любой задачи необходимо:

  1. Ввести исходные данные.
  2. Преобразовать исходные данные в результаты (выходные данные).
  3. Вывести результаты.

Разработка алгоритма решения задачи — это разбиение задачи на последовательно выполняемые этапы, причем результаты выполнения предыдущих этапов могут использоваться при выполнении последующих. При этом должны быть четко указаны как содержание каждого этапа, так и порядок выполнения этапов. Отдельный этап алгоритма представляет собой либо другую, более простую задачу, алгоритм решения которой известен (разработан заранее), либо должен быть достаточно простым и понятным без пояснений. Разработанный алгоритм можно записать несколькими способами:

  • на естественном языке;
  • в виде блок-схемы;
  • в виде R-схемы.

Рассмотрим пример алгоритма на естественном языке:

  1. Ввести в компьютер числовые значения переменных а, b и с.
  2. Вычислить d по формуле d = b 2 — 4ас.
  3. Если d 1 и x 2.
  4. Прекратить вычисления.

1.2. Изображение алгоритма в виде блок-схемы

Блок-схемой называется наглядное графическое изображение алгоритма, когда отдельные его этапы изображаются при помощи различных геометрических фигур — блоков, а связи между этапами (последовательность выполнения этапов) указываются при помощи стрелок, соединяющих эти фигуры. Блоки сопровождаются надписями. Типичные действия алгоритма изображаются следующими геометрическими фигурами:
Блок начала-конца алгоритма (рис. 1.1). Надпись на блоке: «начало» («конец»).
Блок ввода-вывода данных (рис. 1.2). Надпись на блоке: слово «ввод» («вывод» или «печать») и список вводимых (выводимых) переменных.

Как составить блок схему для квадратного уравненияКак составить блок схему для квадратного уравнения
Рис. 1.1. Блок начала-конца алгоритмаРис. 1.2. Блок ввода-вывода данных

Блок решения или арифметический (рис. 1.3). Надпись на блоке: операция или группа операций.
Условный блок (рис. 1.4). Надпись на блоке: условие. В результате проверки условия осуществляется выбор одного из возможных путей (ветвей) вычислительного процесса. Если условие выполняется, то следующим выполняется этап по ветви «+», если условие не выполняется, то выполняется этап по ветви «–».

Как составить блок схему для квадратного уравненияКак составить блок схему для квадратного уравнения
Рис. 1.3. Арифметический блокРис. 1.4. Условный блок

В качестве примера рассмотрим блок-схему алгоритма решения уравнения (рис. 1.5), описанного в предыдущем подразделе.

Как составить блок схему для квадратного уравнения
Рис. 1.5. Блок-схема алгоритма решения квадратного уравнения

1.3. Алгоритмы линейной структуры

Линейный алгоритм — это такой, в котором все операции выполняются последовательно одна за другой (рис. 1.6).

Как составить блок схему для квадратного уравнения
Рис. 1.6 Размещение блоков в линейном алгоритме

Рассмотрим несколько примеров линейных алгоритмов.

ПРИМЕР 1.1. Зная длины трех сторон треугольника, вычислить площадь и периметр треугольника.

Пусть a, b, c — длины сторон треугольника. Необходимо найти S — площадь треугольника, P — периметр.

Для нахождения площади можно воспользоваться формулой Герона:Как составить блок схему для квадратного уравнениягде r — полупериметр.

Входные данные: a, b, c.
Выходные данные: S, P.

Блок-схема алгоритма представлена на рис. 1.7.

Как составить блок схему для квадратного уравнения
Рис. 1.7. Алгоритм примера 1.1

Внимание. В этих блоках знак «=» означает не математическое равенство, а операцию присваивания. Переменной, стоящей слева от оператора, присваивается значение, указанное справа. Причем это значение может быть уже определено или его необходимо вычислить с помощью выражения. Например, операция r = (a+b+c)/2 — имеет смысл (переменной r присвоить значение r=(a+b+c)/2), а выражение (a+b+c)/2=r — бессмыслица.

ПРИМЕР 1.2. Известны плотность и геометрические размеры цилиндрического слитка, полученного в металлургической лаборатории. Найти объем, массу и площадь основания слитка.

Входные данные: R — радиус основания цилиндра, h — высота цилиндра, ? — плотность материала слитка.
Выходные данные: m — масса слитка, V — объем, S — площадь основания.

Блок-схема представлена на рис. 1.8.

Как составить блок схему для квадратного уравнения

Рис. 1.8. Алгоритм примера 1.2

ПРИМЕР 1.3. Заданы длины двух катетов в прямоугольном треугольнике. Найти длину гипотенузы, площадь треугольника и величину его углов.

Входные данные: a, b — длины катетов.
Выходные данные: с — длина гипотенузы, S — площадь треугольника, ?, ? — углы.

Блок-схема представлена на рис.1.9.

Как составить блок схему для квадратного уравнения
Рис. 1.9 Алгоритм примера 1.3

1.4. Алгоритмы разветвленной структуры

Алгоритмы разветвленной структуры применяются, когда в зависимости от некоторого условия необходимо выполнить либо одно, либо другое действие. В блок-схемах разветвленные алгоритмы изображаются так, как показано на рис. 1.10 — 1.11.

Как составить блок схему для квадратного уравненияКак составить блок схему для квадратного уравнения
Рис. 1.10 Фрагмент алгоритмаРис. 1.11 Пример разветвления

Рассмотрим несколько примеров построения алгоритмов разветвленной структуры.

ПРИМЕР 1.4. Известны коэффициенты и с квадратного уравнения. Вычислить корни квадратного уравнения.

Входные данные: a, b, c.
Выходные данные: x 1 , x 2 .

Блок-схема представлена на рис. 1.5.

ПРИМЕР 1.5. Составить программу нахождения действительных и комплексных корней квадратного уравнения. Можно выделить следующие этапы решения задачи:

  1. Ввод коэффициентов квадратного уравнения a, b и c.
  2. Вычисление дискриминанта d по формуле d = b 2 — 4ас.
  3. Проверка знака дискриминанта. Если d >= 0, то вычисление действительных корней по формуле 1.1 и вывод их на экран.
    Как составить блок схему для квадратного уравнения(1.1)

При отрицательном дискриминанте выводится сообщение о том, что действительных корней нет, и вычисляются комплексные корни.Комплексные числа записываются в виде a + ib

a — действительная часть комплексного числа, b — мнимая часть комплексного числа.У обоих комплексных корней действительные части одинаковые, а мнимые отличаются знаком. Поэтому можно в переменной x 1 хранить действительную часть числа -b/2a, в переменной x 2 — модуль мнимой части Как составить блок схему для квадратного уравнения, а в качестве корней вывести x 1 +ix 2 и x 1 -ix 2.

На рис. 1.12 изображена блок-схема решения задачи. Блок 1 предназначен для ввода коэффициентов квадратного уравнения. В блоке 2 осуществляется вычисление дискриминанта. Блок 3 осуществляет проверку знака дискриминанта, если дискриминант отрицателен, то корни комплексные, их расчет происходит в блоке 4 (действительная часть корня записывается в переменную x 1 , модуль мнимой — в переменную x 2 ), а вывод — в блоке 5 (первый корень x 1 + i x 2 , второй — x 1 — i x 2 ). Если дискриминант положителен, то вычисляются действительные корни уравнения (блок 6) и выводятся на экран (блок 7).

Видео:Самый подробный урок про Блок-схемы, Понимание, Чтение и Создание блок-схемСкачать

Самый подробный урок про Блок-схемы, Понимание, Чтение и Создание блок-схем

Один из методов решения квадратных уравнений

Алгоритм решения данной задачи сначала должен быть представлен в виде словесного описания или графически в виде блок-схемы. Алгоритм вычисления корней квадратного уравнения может быть представлен в виде блок-схем, изображенных на рисунках, отображающих основные элементы блок-схем и алгоритм вычисления корней квадратного уравнения:

Как составить блок схему для квадратного уравнения

Как составить блок схему для квадратного уравнения

Изображение алгоритма в виде блок-схемы позволяет наглядно представить последовательность действий, необходимых для решения поставленной задачи, убедиться самому программисту в правильности понимания поставленной задачи.

После разработки алгоритма решения задачи и представления его в виде блок-схемы можно перейти к написанию программы – последовательности инструкций на выбранном языке программирования, соответствующей разработанному алгоритму. Например, ниже приведен фрагмент программы решения квадратного уравнения, соответствующий приведенному выше алгоритму, составленному на языке Visual Basic.

procedure SqRoot(Editi,Edit2,Edit3:tEdit;Label2:tLabel);
var
a,b,c:real;
d:real;
xl,x2:real;
begin
a:=StrToFloat(Editl.text);
b:=StrToFloat(Edit2.text);
с:=StrToFloat(Edj.t3.text);
d:=Sqr(b)-4*a*c;
if d=0 then begin
Label2.color:=clRed;
Label2.font.color:=clRed;
Label2.caption:=’Дискриминант меньше нуля.’+#13+
‘Уравнение не имеет корней.’ end else
begin

х1:=(-b+Sqrt(d))/(2*a);
x2:=(-b-Sqrt(d))/(2*а);

Label2.font.color:=clBlack;
Label 2.caption=’Корни уравнения:’ +#13+’xl=1+FloatToStr(xl)
+#13+’x2=’+FloatToStr(x2);
end;
end.

Но программа, написанная на языке программирования, состоит из инструкций, понятных человеку, но не понятных процессору компьютера. Поэтому чтобы процессор смог выполнить работу в соответствии с инструкциями исходной программы, она должна быть переведена на язык команд процессора, то есть машинный язык. Задачу преобразования исходной программы в машинный код выполняет специальная программа — компилятор. Помимо преобразования исходной программы в машинную, компилятор выполняет проверку правильности записи инструкций исходной программы, т. е. осуществляет синтаксический анализ.

Как составить блок схему для квадратного уравнения

Компилятор создает исполняемую программу только в том случае, если в тексте исходной программы нет синтаксических ошибок. Однако генерация исполняемой программы машинного кода свидетельствует только об отсутствии в тексте программы синтаксических ошибок. Убедиться в правильности работы программы можно только во время ее тестирования – пробных запусках программы и при анализе полученных результатов. Например, если в программе нахождения корней квадратного уравнения допущена ошибка в записи выражения вычисления дискриминанта, то даже если это выражение будет синтаксически верно, программа выдаст неверные значения корней.

Решение квадратных уравнений средствами Visual Basic

Задача: Дано квадратное уравнение общего вида: ax 2 +bx+c=0. Ввести в память компьютера числовые коэффициенты: a, b, c, выполнить необходимый анализ введенной информации согласно известному из курса средней школы алгоритму решения квадратного уравнения: найти дискриминант d=b 2 -4ac и, проанализировав его знак, найти все действительные корни, если знак дискриминанта положительный, или сообщить о том, что действительных корней нет, если знак дискриминанта отрицательный.

Начать составление проекта решения данной задачи необходимо с ответа на вопрос: что нужно поместить на форму Form1?

Поместим на форму две кнопки: CommandButton1 и CommandButton2.

Как составить блок схему для квадратного уравнения

Для этого нужно воспользоваться Панелью элементов (объектов) управления General, которая расположена в левой части основного окна компилятора Visual Basic.

Первая кнопка CommandButton1 предназначается для начала работы программы согласно следующему алгоритму:

  1. ввод коэффициентов исходного уравнения a, b, c;
  2. расчет дискриминанта d=b 2 — 4ac;
  3. анализ знака дискриминанта, вычисление корней уравнения и вывод их на форму, если знак дискриминанта d>0 (положительный);
  4. вывод сообщения: «Решений нет», если знак дискриминанта d 2 -5x+6=0.

Далее рассмотрим процесс решения второго квадратного уравнения: 10x 2 +5x+200=0.

В окне InputBox вводим значение первого коэффициента уравнения a=10.

Как составить блок схему для квадратного уравнения

Ввод первого коэффициента a завершается нажатием кнопки Ok.

Аналогично в окне InputBox вводим значение второго коэффициента уравнения b=5.

Как составить блок схему для квадратного уравнения

Ввод второго коэффициента b так же завершается нажатием соответствующей кнопки Ok.

Наконец, в окне InputBox вводим значение третьего коэффициента нового уравнения c=200.

Как составить блок схему для квадратного уравнения

Ввод третьего коэффициента c так же завершается нажатием соответствующей кнопки Ok.

После этого программа, проанализировав полученную информацию, должна выдать в окне формы соответствующее сообщение о том, что данное уравнение не имеет решений.

Как составить блок схему для квадратного уравнения

И, наконец, рассмотрим процесс решения третьего квадратного уравнения: x 2 -8x+16=0.

Это уравнение имеет двукратный корень, так как его дискриминант d=0. Как и в двух предыдущих случаях, вводим коэффициенты квадратного уравнения. Первым вводим коэффициент a=1.

Как составить блок схему для квадратного уравнения

Далее вводим второй коэффициент уравнения b= –8.

Как составить блок схему для квадратного уравнения

Третий коэффициент уравнения c=16 вводим в последнюю очередь.

Как составить блок схему для квадратного уравнения

В итоге мы должны увидеть правильное решение третьего квадратного уравнения. Действительно последнее уравнение имеет два одинаковых корня.

Видео:Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | МатематикаСкачать

Квадратные уравнения от «А» до «Я». Классификация, решение и теорема Виета | Математика

Составить блок схему алгоритма решения квадратного уравнения

Задача 1. Составить блок-схему и программу, находящие корни квадратного уравнения

Как составить блок схему для квадратного уравнения

ПРОГРАММА на БЕЙСИК

PRINT “Решение квадратного уравнения“

INPUT “Ввести a, b, c: “, a, b, c

d = b * b – 4 * a * c

THEN Х 1=(-b-sqr(d))/(2*a) : Х 2=(-b+sqr(d))/(2*a) : PRINT “Х1=“, Х1, “ Х2=“, Х2

ELSE PRINT “Действительных корней нет “

Запустите программу на выполнение и решите следующие квадратные уравнения:

а) 1125 х 2 – 45 х – 324 = 0

б) 502 х 2 – 38,5 х + 12,125 = 0

в) 16 х 2 – 256 х + 1024 = 0

Задача 2. Составить блок-схему и программу, определяющие количество корней квадратного уравнения

Как составить блок схему для квадратного уравнения

ПРОГРАММА на БЕЙСИК

PRINT “Количество корней квадратного уравнения“

INPUT “Ввести a, b, c: “, a, b, c

d = b * b – 4 * a * c

IF d > 0 THEN PRINT “2 разных корня“ ELSE PRINT “2 одинаковых корня“

ELSE PRINT “Действительных корней нет“

Запустите программу на выполнение и определите количество корней в следующих квадратных уравнениях:

а) 1125 х 2 – 45 х – 324 = 0

б) 502 х 2 – 38,5 х + 12,125 = 0

в) 16 х 2 – 256 х + 1024 = 0

Задача 3*. Составить блок-схему и программу, определяющие имеет ли квадратное уравнение ax 2 + bx + c = 0 хотя бы один корень, больший числа m .

Запустите программу на выполнение и определите имеется ли корень в следующих квадратных уравнениях:

а) 1125 х 2 – 45 х – 324 = 0 при m = 0

б) 502 х 2 – 38,5 х + 12,125 = 0 при m = 15

в) 16 х 2 – 256 х + 1024 = 0 при m = 7

Домашнее задание – Составить блок-схемы и программы для следующих задач:

Задача 1. Определить является ли введенное с клавиатуры число корнем квадратного уравнения ax 2 + bx + c = 0 .

  • Повторить с учащимися правила решения квадратных уравнений
  • Вспомнить алгоритмическую конструкцию IF-THEN-ELSE
  • Составить блок-схему программы и саму программу на языке Pascal
  • Проверить работоспособность программы на конкретных примерах
  • Расширить представления учащихся о применении языка Pascal
  • Воспитать у учащихся чувство аккуратности, внимательности, ответственности
  • Научить учащихся самостоятельно находить свои ошибки в программах

  • Таблички с формулами
  • Плакат с блок-схемой алгоритма КВУР
  • Листочки с индивидуальными заданиями
  • Система программирования “Turbo Pascal 7.0”

    До сих пор мы с вами говорили о каких-то отвлечённых задачах из области математики. Сегодня мы поговорим о конкретной задаче, которая встречается у вас почти на каждом уроке. Это решение квадратного уравнения. Я хочу, чтобы вы на примере этой задачи поняли, что программирование – это не просто прихоть учителя, это действительно раздел информатики, который может нам помочь, например, в решении конкретных математических задач. Нужно только уметь разбираться в этом.

    2. Математическое решение

    Давайте вспомним, что понимают под квадратным уравнением?

    Что из себя представляют числа a,b,c и как их называют?

    С чего начинают решение квадратного уравнения?

    Найдите вокруг себя формулу дискриминанта. (D=b 2 -4ac) (Приложение 3)

    Как мы решаем далее квадратное уравнение? (сравнение D с нулём)

    Какие выводы мы из этого делаем?

    (если D 0, то два корня)

    Как найти корни квадратного уравнения? Найдите формулы корней среди тех, что развешены повсюду.

    Если я случай наличия корней квадратного уравнения сведу к условию DКак составить блок схему для квадратного уравнения0, то что я получу в случае D=0?

    (Два одинаковых корня)

    Давайте ещё раз подробно разберём нашу задачу:

    Итак, у нас есть квадратное уравнение ax 2 +bx+c=0.

    Мы должны решить его, т.е. найти такие значения х, при которых правая часть уравнения =0. Мы знаем, что для этого нам надо:

    Найти дискриминант D=b 2 – 4ac.

    Сравнить его с нулём

    D=b 2 -4ac=10 2 -4*3*3=100 – 36 =64

    Х1=Как составить блок схему для квадратного уравнения,

    X2 = Как составить блок схему для квадратного уравнения

    3. Составление блок-схемы алгоритма.

    По заданному решению попробуем составить блок-схему алгоритма в тетради. Кто справится первым, прошу к доске.

    Подпишем основные элементы блок – схемы применительно к языку программирования.

    Как составить блок схему для квадратного уравнения

    4. Составление программы по блок – схеме.

    Теперь, пользуясь нашими записями, составим программу и покажем её учителю. Тот, кто до конца урока составит только программу, не проверив её на компьютере, получит три, тот, кто наберёт программу на компьютере, но не проверит её на примерах, получит три. Тот, кто выполнит всё задание, получит пять.

    А я раздам вам домашнее задание.

    Var a,b,c,d,x1,x1: real;

    Write(‘введите коэффициенты уравнения a,b,c’); readln(a,b,c);

    Else writeln(‘действительных корней нет’)

    1. Составить и набрать программу КВУР на компьютере.

    Загрузка среды Pascal- 2ЩЛКМ по значку Pascal, нажать ALT+ENTER.

    Запуск программы – ЩЛКМ по кнопке RUN выбрать RUN.

    2. Решить следующие квадратные уравнения и показать учителю их решения (если нет такой возможности, то занести их в маршрутный лист (Приложение 4)

    1,5х 2 -0,6х – 4,8 = 0

    3. Переделайте программу КВУР таким образом, чтобы в ней учитывался случай, когда D=0 и уравнение имеет один корень.

    4. Закрыть программу.

    Подсказка: Меню File – Exit или ALT+X.

    1. За простое воспроизведение (набор программы) без проверки оценка “3”

    2. За проверку работы программы на примерах, представленных учителем оценка “4”

    3. За решение всех заданий и дополнительное изменение программы для случая D=0, оценка “5”

    4. Закрыть программу.

    Подсказка: Меню File – Exit или ALT+X.

    Х1Х2
    13,2301390,1031947
    21,464102-5,464102
    31,106107-1,356107
    4Корней нет
    5Корней нет
    61,6
    72-1,6
    8Корней нет
    90,6872614-1,131706
    109,486833-9,486833

    Можно дать дополнительное задание:

    Изменить программу так, чтобы ответ был с точностью до 2-х знаков после запятой.

    1) Напишите программу проверки пароля. Пусть пароль – некоторое число, зафиксированное в программе. Программа печатает приглашение «введите пароль» и вводит число. Если введённое число совпадает с фиксированным паролем, то программа выводит приветствие, если нет – сообщает о том, что пароль не угадан.

    7. Подведение итогов урока.

    Итак, ребята, сегодня мы с вами решали конкретные задачи из математики, применяя свои умения по программированию. Вы получили следующие оценки за свои знания. (Перечисление оценок) На следующем уроке нам предстоит познакомиться с новыми алгоритмами – Циклическими.

    На сегодня наш урок закончен. До свидания.

  • И. Семакин, Л. Залогова «Информатика. Базовый курс. 9 класс», М., БИНОМ, 2005г.
  • А.А. Чернов «Конспекты уроков информатики в 9-11 классах», Волгоград: Учитель, 2006г.
  • Л.И. Белоусова, С.А. Веприк «Сборник задач по курсу информатики», М., «Экзамен», 2007.
    Как составить блок схему для квадратного уравнения

    Задача хорошо знакома из математики. Исходными данными здесь являются коэффициенты a, b, c. Решением в общем случае являются два корня x1 и x2, которые вычисляются по формулам:

    Все величины, используемые в этой программе, имеют вещественный тип.

    алг корни квадратного уравнения

    вещ a, b, c, x1, x2, d

    начввод a, b, c

    Кон

    Слабость такого алгоритма видна «невооруженным глазом». Он не обладает важнейшим свойством, предъявляемым к качественным алгоритмам: универсальностью по отношению к исходным данным. Какими бы ни были значения исходных данных, алгоритм должен приводить к определенному результату и выходить на конец. Результатом может быть числовой ответ, но может быть и сообщение о том, что при таких данных задача решения не имеет. Недопустимы остановки в середине алгоритма из-за невозможности выполнить какую-то операцию. Это же свойство в литературе по программированию называют результативностью алгоритма (в любом случае должен быть получен какой-то результат).

    Чтобы построить универсальный алгоритм, сначала требуется тщательно проанализировать математическое содержание задачи.

    Решение уравнения зависит от значений коэффициентов a, b, c. Вот анализ этой задачи (ограничиваемся только поиском вещественных корней):

    если a=0, b=0, c=0, то любое х – решение уравнения;

    если a=0, b=0, c¹0, то уравнение решений не имеет;

    если a=0, b¹0, то это линейное уравнение, которое имеет одно решение: x=–c/b;

    если a¹0 и d=b 2 -4ac³0, то уравнение имеет два вещественных корня (формулы приведены выше);

    кв

    кв

    Кон

    В этом алгоритме многократно использована структурная команда ветвления. Общий вид команды ветвления в блок-схемах и на алгоритмическом языке следующий:

    Как составить блок схему для квадратного уравнения

    еслиусловие то серия 1 иначе серия 2 кв

    Вначале проверяется «условие» (вычисляется отношение, логическое выражение). Если условие истинно, то выполняется «серия 1» – последовательность команд, на которую указывает стрелка с надписью «да» (положительная ветвь). В противном случае выполняется «серия 2» (отрицательная ветвь). В АЯ условие записывается после служебного слова «если», положительная ветвь – после слова «то», отрицательная – после слова «иначе». Буквы «кв» обозначают конец ветвления.

    Если на ветвях одного ветвления содержатся другие ветвления, то такой алгоритм имеет структуру вложенных ветвлений. Именно такую структуру имеет алгоритм «корни квадратного уравнения». В нем для краткости вместо слов «да» и «нет» использованы соответственно «+» и «–».

    Рассмотрим следующую задачу: дано целое положительное число n. Требуется вычислить n! (n-факториал). Вспомним определение факториала.

    Как составить блок схему для квадратного уравнения

    Ниже приведена блок-схема алгоритма. В нем используются три переменные целого типа: n – аргумент; i – промежуточная переменная; F – результат. Для проверки правильности алгоритма построена трассировочная таблица. В такой таблице для конкретных значений исходных данных по шагам прослеживается изменение переменных, входящих в алгоритм. Данная таблица составлена для случая n=3.

    Как составить блок схему для квадратного уравнения

    ШагnFiУсловиевывод1£3, да 2£3, да 3£3, да 4£3, нет

    Трассировка доказывает правильность алгоритма. Теперь запишем этот алгоритм на алгоритмическом языке.

    алгФакториал

    целn, i, F

    нач ввод n

    F:=1; i:=1

    пока i£n, повторять

    нц F:=F´i

    кц

    Кон

    Этот алгоритм имеет циклическую структуру. В алгоритме использована структурная команда «цикл-пока», или «цикл с предусловием». Общий вид команды «цикл-пока» в блок-схемах и в АЯ следующий:

    Как составить блок схему для квадратного уравнения

    пока условие, повторять нц серия кц

    Повторяется выполнение серии команд (тела цикла), пока условие цикла истинно. Когда условие становится ложным, цикл заканчивает выполнение. Служебные слова «нц» и «кц» обозначают соответственно начало цикла и конец цикла.

    Цикл с предусловием – это основная, но не единственная форма организации циклических алгоритмов. Другим вариантом является цикл с постусловием. Вернемся к алгоритму решения квадратного уравнения. К нему можно подойти с такой позиции: если a=0, то это уже не квадратное уравнение и его можно не рассматривать. В таком случае будем считать, что пользователь ошибся при вводе данных и следует предложить ему повторить ввод. Иначе говоря, в алгоритме будет предусмотрен контроль достоверности исходных данных с предоставлением пользователю возможности исправить ошибку. Наличие такого контроля – еще один признак хорошего качества программы.

    Как составить блок схему для квадратного уравненияалгквадратное уравнение вещa, b, c, d, x1, x2 нач повторять ввод a, b, c до a¹0 d:=b 2 –4ac если d³0 тоx1:=(–b+Öd)/(2a) x2:=(–b–Öd)/(2a) вывод x1, x2 иначе вывод “нет вещественных корней” кв кон

    В общем виде структурная команда «цикл с постусловием» или «цикл-до» представляется так:

    Как составить блок схему для квадратного уравнения

    повторять серия доусловие

    Здесь используется условие окончания цикла. Когда оно становится истинным, цикл заканчивает работу.

    Составим алгоритм решения следующей задачи: даны два натуральных числа M и N. Требуется вычислить их наибольший общий делитель – НОД(M,N).

    Эта задача решается с помощью метода, известного под названием алгоритма Евклида. Его идея основана на том свойстве, что если M>N, то НОД(M N то M:=M–N иначе N:=N–M кв кц кон

    Алгоритм имеет структуру цикла с вложенным ветвлением. Проделайте самостоятельно трассировку этого алгоритма для случая M=18, N=12. В результате получится НОД=6, что, очевидно, верно.

    🎬 Видео

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

    Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

    Решение квадратных уравнений. Дискриминант. 8 класс.

    Математика это не ИсламСкачать

    Математика это не Ислам

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Быстрый способ решения квадратного уравненияСкачать

    Быстрый способ решения квадратного уравнения

    решаем квадратные уравнения в ExcelСкачать

    решаем квадратные уравнения в Excel

    Блок-схема циклического алгоритма. Вычисление n!Скачать

    Блок-схема циклического алгоритма. Вычисление n!

    Решение задач с помощью квадратных уравнений. Алгебра, 8 классСкачать

    Решение задач с помощью квадратных уравнений. Алгебра, 8 класс

    34 Задача: Найти корни квадратного уравнения при помощи PythonСкачать

    34 Задача: Найти корни квадратного уравнения при помощи Python

    Блок схема алгоритма (часть 1)Скачать

    Блок схема алгоритма (часть 1)

    Блок схема.Работа в ворде. WordСкачать

    Блок схема.Работа в ворде. Word

    как ... нарисовать блок-схему в WORD, EXCEL, POWER POINT, VISIOСкачать

    как ... нарисовать блок-схему в WORD, EXCEL, POWER POINT, VISIO

    Алгоритм решения квадратного уравненияСкачать

    Алгоритм решения квадратного уравнения

    Решение биквадратных уравнений. 8 класс.Скачать

    Решение биквадратных уравнений. 8 класс.

    #7 Как автоматически построить блок схему из JavaScript кодаСкачать

    #7 Как автоматически построить блок схему из JavaScript кода

    Основы программирования / Урок #6 – Блок схемы и алгоритмы действийСкачать

    Основы программирования / Урок #6 – Блок схемы и алгоритмы действий
  • Поделиться или сохранить к себе: