Как снизить степень в уравнении

Решение уравнения с помощью понижения степени. Деление многочлена на многочлен столбиком

Деление многочлена на многочлен столбиком

Для решения уравнение вида Р(х)=0, где Р(х) — многочлен степени n>2, часто применяют метод понижения степени. Он основывается на таком факте: если число x=b является корнем многочлена P(x), то есть P(b)=0, то многочлен P(x) делится без остатка на двучлен x-b.

После того, как мы разделим многочлен P(x) степени n на двучлен x-b, то мы получим многочлен степени n-1, то есть на единицу меньшей исходного. И дальше процедуру можно повторить.

Если старший коэффициент многочлена P(x) равен 1, то корни многочлена P(x) мы ищем среди делителей свободного члена.

Решим уравнение Как снизить степень в уравнении

Свободный член многочлена в левой части уравнения равен 10.

Делители числа 10: 1; 2; 5; 10.

Проверим, является ли какое-либо из этих чисел корнем многочлена. Для этого последовательно подставим эти значения вместо х в многочлен.

Как снизить степень в уравнении

Как снизить степень в уравнении

Как снизить степень в уравненииявляется корнями многочлена Как снизить степень в уравнении, и он делится на двучлены Как снизить степень в уравнениии Как снизить степень в уравнениибез остатка.

Разделим многочлен Как снизить степень в уравнениина двучлен x-2 столбиком:

  • Видео:Уравнение четвертой степениСкачать

    Уравнение четвертой степени

    Решение уравнений высших степеней

    В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

    Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

    Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

    Как решать уравнения высших степеней, очень лёгкий способ!!!

    Уравнения высшей степени с целыми коэффициентами

    Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

    a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

    Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

    Видео:Теорема БезуСкачать

    Теорема Безу

    Схема решения уравнения

    Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

    Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

    Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

    Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

    У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

    Покажем на конкретном примере, как применяется такая схема решения.

    Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

    Решение

    Начнем с нахождений целых корней.

    У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

    При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

    Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

    Как снизить степень в уравнении

    Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

    Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

    1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

    У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

    Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

    Как снизить степень в уравнении

    x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

    Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

    — 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

    Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

    Оставшиеся корни будут корнями выражения x 2 + x + 3 .

    D = 1 2 — 4 · 1 · 3 = — 11 0

    Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

    Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

    x iкоэффициенты многочлена
    112— 1— 3
    111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

    В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

    После нахождения следующего корня, равного — 1 , мы получаем следующее:

    x iкоэффициенты многочлена
    1243
    112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

    Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

    Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

    Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

    Решение

    У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

    Проверяем их по порядку:

    1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

    Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

    x iкоэффициенты многочлена
    1— 1— 5012
    21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

    В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

    Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

    2 3 + 2 2 — 3 · 2 — 6 = 0

    Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

    x iкоэффициенты многочлена
    11— 3— 6
    211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

    В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

    Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

    Решим квадратное уравнение:

    x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

    Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

    Ответ: x = — 3 2 ± i 3 2 .

    Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

    Решение

    x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

    Выполняем домножение 2 3 обеих частей уравнения:

    2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

    Заменяем переменные y = 2 x :

    2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

    В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

    Ответ: x 1 = — 1 , x 2 = 3 2

    Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

    Видео:Математика | Кубические уравнения по методу СталлонеСкачать

    Математика | Кубические уравнения по методу Сталлоне

    Урок алгебры в 10-м классе (занятие элективного курса) по теме «Методы решения уравнений высших степеней»

    Презентация к уроку

    На занятии изучается методика решения уравнений высших степеней. Рассматриваются два метода: разложение на множители и замена переменной. Понижение степени уравнений с помощью деления многочленов по схеме Горнера и приведение различных уравнений к замене переменной. Дана историческая справка исследования уравнений высших степеней. Представлена презентация урока.

    Метод разложения на множители.

    Этот метод основан на применении теоремы Безу. Если число α является корнем многочлена P(x) степени n, то его можно представить в виде P(x) = (x — α)Q(x), где Q(x) — многочлен степени (n-1).Теорема Безу: “Остаток от деления многочлена Р(х) на двучлен (x — α) равен P(α), т.е. значению многочлена при x = α” Таким образом, если известен хотя бы один корень уравнения Р(х)=0 степени n, то с помощью теоремы Безу можно свести задачу к решению уравнения степени (n-1), понизить степень уравнения. Теорема. Пусть несократимая дробь p/q является корнем уравнения a0x n + a1x n-1 + . + ax-1x+ an = 0 с целыми коэффициентами, тогда число p – является делителем свободного члена an, а q – делителем старшего коэффициента a0. У многочлена с целыми коэффициентами целые корни являются делителями свободного члена. Таким образом, зная корень многочлена, его легко разложить на множители, т.е. разделить P(x) на (x — α) “углом” или по схеме Горнера.

    🔥 Видео

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

    КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

    11 класс, 3 урок, Уравнения высших степенейСкачать

    11 класс, 3 урок, Уравнения высших степеней

    Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

    Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

    Химия 9 класс — Как определять Степень Окисления?Скачать

    Химия 9 класс — Как определять Степень Окисления?

    #635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.Скачать

    #635 НАУКА Структура вакуума. Устройство Мироздания: версия Межзвездного Союза. Юмор в разных мирах.

    Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

    Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

    ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

    ПРОСТЕЙШИЙ способ решения Показательных Уравнений

    Как решать возвратные уравнения?Скачать

    Как решать возвратные уравнения?

    ✓ Бином Ньютона. Игра в слова. Числа сочетаний | Комбинаторика | Ботай со мной #057 | Борис ТрушинСкачать

    ✓ Бином Ньютона. Игра в слова. Числа сочетаний | Комбинаторика | Ботай со мной #057 | Борис Трушин

    Показательные уравнения. 11 класс.Скачать

    Показательные уравнения. 11 класс.

    #139 Урок 64. Решение уравнений методом замены. Как понизить степень уравнения заменив переменную?Скачать

    #139 Урок 64. Решение уравнений методом замены. Как понизить степень уравнения заменив переменную?

    ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать

    ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравнений

    “Законы Аллаха: Как Гравитация Становится Искусством Божьего Творения”Скачать

    “Законы Аллаха: Как Гравитация Становится Искусством Божьего Творения”

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис ТрушинСкачать

    ✓ Теорема Безу. Рациональные нули многочленов | Ботай со мной #119 | Борис Трушин

    Как решать уравнения с дробной степеньюСкачать

    Как решать уравнения с дробной степенью

    Вспоминаем схему Горнера и уравнения высших степенейСкачать

    Вспоминаем схему Горнера и уравнения высших степеней
  • Поделиться или сохранить к себе: