Как складывать уравнения со степенями

Сложение, вычитание, умножение, и деление степеней
Содержание
  1. Сложение и вычитание степеней
  2. Умножение степеней
  3. Деление степеней
  4. Примеры решения примеров с дробями, содержащими числа со степенями
  5. Урок№15. Свойства степени с натуральным показателем. (2 часть)
  6. Сложение и вычитание степеней
  7. Сложение степеней с разными показателями
  8. Сложение степеней с разными основаниями
  9. Как складывать числа с одинаковыми степенями
  10. Вычитание степеней с одинаковым основанием
  11. Вычитание степеней с разными основаниями
  12. Вычитание степеней с одинаковыми показателями
  13. Умножение и деление степеней
  14. Умножение степеней с одинаковыми показателями
  15. Умножение степеней с одинаковыми основаниями
  16. Умножение степеней с разными основаниями и показателями
  17. Деление степеней с одинаковыми основаниями и одинаковыми показателями
  18. Деление чисел с одинаковыми показателями степени
  19. Деление степеней с разными основаниями и показателями
  20. Степень с отрицательным показателем и её свойства
  21. Умножение отрицательных степеней
  22. Деление отрицательных степеней
  23. Возведение дроби в отрицательную степень
  24. Возведение произведения в отрицательную степень
  25. Как представить число в виде степени
  26. Сложение и вычитание степеней
  27. Что такое степень числа
  28. Таблица степеней
  29. Свойства степеней: когда складывать, а когда вычитать
  30. Свойство 1: произведение степеней
  31. Свойство 2: частное степеней
  32. Свойство 3: возведение степени в квадрат
  33. Свойство 4: степень возведения
  34. Свойство 5: степень частного
  35. Сложение и вычитание степеней
  36. Сложение степеней с разными показателями
  37. Сложение степеней с разными основаниями
  38. Как складывать числа с одинаковыми степенями
  39. Вычитание степеней с одинаковым основанием
  40. Вычитание степеней с разными основаниями
  41. Вычитание чисел с одинаковыми степенями

Сложение и вычитание степеней

Очевидно, что числа со степенями могут слагаться, как другие величины , путем их сложения одно за другим со своими знаками.

Так, сумма a 3 и b 2 есть a 3 + b 2 .
Сумма a 3 — b n и h 5 -d 4 есть a 3 — b n + h 5 — d 4 .

Коэффициенты одинаковых степеней одинаковых переменных могут слагаться или вычитаться.

Так, сумма 2a 2 и 3a 2 равна 5a 2 .

Это так же очевидно, что если взять два квадрата а, или три квадрата а, или пять квадратов а.

Но степени различных переменных и различные степени одинаковых переменных, должны слагаться их сложением с их знаками.

Так, сумма a 2 и a 3 есть сумма a 2 + a 3 .

Это очевидно, что квадрат числа a, и куб числа a, не равно ни удвоенному квадрату a, но удвоенному кубу a.

Сумма a 3 b n и 3a 5 b 6 есть a 3 b n + 3a 5 b 6 .

Вычитание степеней проводится таким же образом, что и сложение, за исключением того, что знаки вычитаемых должны соответственно быть изменены.

Из2a 43h 2 b 65(a — h) 6
Вычитаем-6a 44h 2 b 62(a — h) 6
Результат8a 4-h 2 b 63(a — h) 6

Или:
2a 4 — (-6a 4 ) = 8a 4
3h 2 b 6 — 4h 2 b 6 = -h 2 b 6
5(a — h) 6 — 2(a — h) 6 = 3(a — h) 6

Умножение степеней

Числа со степенями могут быть умножены, как и другие величины, путем написания их одно за другим, со знаком умножения или без него между ними.

Так, результат умножения a 3 на b 2 равен a 3 b 2 или aaabb.

Первый множительx -33a 6 y 2a 2 b 3 y 2
Второй множительa m-2xa 3 b 2 y
Результатa m x -3-6a 6 xy 2a 2 b 3 y 2 a 3 b 2 y

Или:
x -3 ⋅ a m = a m x -3
3a 6 y 2 ⋅ (-2x) = -6a 6 xy 2
a 2 b 3 y 2 ⋅ a 3 b 2 y = a 2 b 3 y 2 a 3 b 2 y

Результат в последнем примере может быть упорядочен путём сложения одинаковых переменных.
Выражение примет вид: a 5 b 5 y 3 .

Сравнивая несколько чисел(переменных) со степенями, мы можем увидеть, что если любые два из них умножаются, то результат — это число (переменная) со степенью, равной сумме степеней слагаемых.

Так, a 2 .a 3 = aa.aaa = aaaaa = a 5 .

Здесь 5 — это степень результата умножения, равная 2 + 3, сумме степеней слагаемых.

Так, a n .a m = a m+n .

Для a n , a берётся как множитель столько раз, сколько равна степень n;

И a m , берётся как множитель столько раз, сколько равна степень m;

Поэтому, степени с одинаковыми основами могут быть умножены путём сложения показателей степеней.

Так, a 2 .a 6 = a 2+6 = a 8 . И x 3 .x 2 .x = x 3+2+1 = x 6 .

Первый множитель4a nb 2 y 3(b + h — y) n
Второй множитель2a nb 4 y(b + h — y)
Результат8a 2nb 6 y 4(b + h — y) n+1

Или:
4a n ⋅ 2a n = 8a 2n
b 2 y 3 ⋅ b 4 y = b 6 y 4
(b + h — y) n ⋅ (b + h — y) = (b + h — y) n+1

Умножьте (x 3 + x 2 y + xy 2 + y 3 ) ⋅ (x — y).
Ответ: x 4 — y 4 .
Умножьте (x 3 + x — 5) ⋅ (2x 3 + x + 1).

Это правило справедливо и для чисел, показатели степени которых — отрицательные.

1. Так, a -2 .a -3 = a -5 . Это можно записать в виде (1/aa).(1/aaa) = 1/aaaaa.

2. y -n .y -m = y -n-m .

3. a -n .a m = a m-n .

Если a + b умножаются на a — b, результат будет равен a 2 — b 2 : то есть

Результат умножения суммы или разницы двух чисел равен сумме или разнице их квадратов.

Если умножается сумма и разница двух чисел, возведённых в квадрат, результат будет равен сумме или разнице этих чисел в четвёртой степени.

Так, (a — y).(a + y) = a 2 — y 2 .
(a 2 — y 2 )⋅(a 2 + y 2 ) = a 4 — y 4 .
(a 4 — y 4 )⋅(a 4 + y 4 ) = a 8 — y 8 .

Деление степеней

Числа со степенями могут быть поделены, как и другие числа, путем отнимая от делимого делителя, или размещением их в форме дроби.

Таким образом a 3 b 2 делённое на b 2 , равно a 3 .

Делимое9a 3 y 4a 2 b + 3a 2d⋅(a — h + y) 3
Делитель-3a 3a 2(a — h + y) 3
Результат-3y 4b + 3d

Запись a 5 , делённого на a 3 , выглядит как $frac$. Но это равно a 2 . В ряде чисел
a +4 , a +3 , a +2 , a +1 , a 0 , a -1 , a -2 , a -3 , a -4 .
любое число может быть поделено на другое, а показатель степени будет равен разнице показателей делимых чисел.

При делении степеней с одинаковым основанием их показатели вычитаются..

Так, y 3 :y 2 = y 3-2 = y 1 . То есть, $frac = y$.

И a n+1 :a = a n+1-1 = a n . То есть $frac = a^n$.

Делимоеy 2m8a n+m12(b + y) n
Делительy m4a m3(b + y) 3
Результатy m2a n4(b +y) n-3

Или:
y 2m : y m = y m
8a n+m : 4a m = 2a n
12(b + y) n : 3(b + y) 3 = 4(b +y) n-3

Правило также справедливо и для чисел с отрицательными значениями степеней.
Результат деления a -5 на a -3 , равен a -2 .
Также, $frac : frac = frac.frac = frac = frac$.

h 2 :h -1 = h 2+1 = h 3 или $h^2:frac = h^2.frac = h^3$

Необходимо очень хорошо усвоить умножение и деление степеней, так как такие операции очень широко применяются в алгебре.

Примеры решения примеров с дробями, содержащими числа со степенями

1. Уменьшите показатели степеней в $frac$ Ответ: $frac$.

2. Уменьшите показатели степеней в $frac$. Ответ: $frac$ или 2x.

3. Уменьшите показатели степеней a 2 /a 3 и a -3 /a -4 и приведите к общему знаменателю.
a 2 .a -4 есть a -2 первый числитель.
a 3 .a -3 есть a 0 = 1, второй числитель.
a 3 .a -4 есть a -1 , общий числитель.
После упрощения: a -2 /a -1 и 1/a -1 .

4. Уменьшите показатели степеней 2a 4 /5a 3 и 2 /a 4 и приведите к общему знаменателю.
Ответ: 2a 3 /5a 7 и 5a 5 /5a 7 или 2a 3 /5a 2 и 5/5a 2 .

5. Умножьте (a 3 + b)/b 4 на (a — b)/3.

6. Умножьте (a 5 + 1)/x 2 на (b 2 — 1)/(x + a).

7. Умножьте b 4 /a -2 на h -3 /x и a n /y -3 .

8. Разделите a 4 /y 3 на a 3 /y 2 . Ответ: a/y.

Урок№15. Свойства степени с натуральным показателем. (2 часть)

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Сложение и вычитание степеней

Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания.

2 3 + 3 4 = 8 + 81= 89

6 3 — 3 3 = 216 — 27 = 189

И еще парочка правил
  • Если есть скобки — начинать вычисления нужно внутри них
  • Только потом возводим этот результат из скобок в степень
  • Затем выполняем остальные действия: сначала умножение и деление по порядку (слева направо), а в конце — сложение и вычитание по порядку (слева направо)

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Сложение степеней с разными показателями

В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 2 3 + 2 4 = 8 + 16= 24

Видео:Показательные и логарифмические уравнения | Подготовка к ЕГЭ по математике 2024Скачать

Показательные и логарифмические уравнения | Подготовка к ЕГЭ по математике 2024

Сложение степеней с разными основаниями

В целом это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые показатели. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 3 4 + 5 4 =81 + 625 = 706
  • 1 4 + 7 2 = 1+ 49 = 50

Как складывать числа с одинаковыми степенями

Точно так же, как и в предыдущем примере. Если показатели степени одинаковые, а основания разные — нельзя сложить основания и затем эту сумму возводить в степень.

  • 6 3 + 3 3 = 216 + 27 = 243

В уравнениях с этим все проще. Если показатель и основание степени одинаковые (тогда это называется переменная, a2, например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a2.

2,3, 5 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Видео:СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ | алгебра 7 | ПОКАЗАТЕЛЬ СТЕПЕНИ | свойства степенейСкачать

СТЕПЕНЬ С ЦЕЛЫМ ПОКАЗАТЕЛЕМ | алгебра 7 | ПОКАЗАТЕЛЬ СТЕПЕНИ | свойства степеней

Вычитание степеней с одинаковым основанием

Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.

  • 6 3 — 3 3 = 216 — 27 = 189

Вычитание степеней с разными основаниями

Могут быть разные основания, но одинаковые показатели степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим вычитание.

  • 5 4 — 4 4 = 625 — 256 = 369
  • 7 4 — 3 2 = 2401 — 9 = 2392

Вычитание степеней с одинаковыми показателями

Все точно так же, как и со сложением. Если показатели степени одинаковые, а основания разные — нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.

  • 6 3 — 3 3 = 216 — 27 = 189

И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a 2 ) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a 2 .

5, 3, 2 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Видео:Сокращаем дроби со степенями №2. Алгебра 8 класс.Скачать

Сокращаем дроби со степенями №2. Алгебра 8 класс.

Умножение и деление степеней

Здесь всё не так однозначно, как со сложением и вычитанием — общие правила для всех случаев выделить не получится. Все зависит от оснований и показателей степеней, с которыми нужно выполнить манипуляции.

Например, действия со степенями с разными основаниями будут отличаться от действий с числами, у которых основания одинаковые. Работа с показателями — одинаковыми и разными — тоже отличается. Давайте разбираться.

Умножение степеней с одинаковыми показателями

Чтобы произвести умножение степеней с одинаковыми показателями, нужно перемножить основания, а показатель степени оставить неизменным:

  • a n · b n = (a · b) n , где

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

  • a 5 · b 5 = (a·a·a·a·a) ·(b·b·b·b·b) = (ab)·(ab)·(ab)·(ab)·(ab) = (ab) 5
  • 3 5 · 4 5 = (3·4) 5 = 12 5 = 248 832
  • 16a 2 = 4 2 ·a 2 = (4a) 2

Умножение степеней с одинаковыми основаниями

Степени с одинаковыми основаниями умножаются путём сложения показателей степеней:

a m · a n = a m+n , где

a — основание степени

m, n — показатели степени, любые натуральные числа

  • 3 5 · 3 2 = 3 5 + 2 = 3 7 = 2 187
  • 2 8 · 8 1 = 2 8 · 2 3 = 2 8 + 3 = 2 11 = 2048

Умножение степеней с разными основаниями и показателями

Если разные и показатели, и основания, и одна из степеней не преобразуется в число с тем же основанием, как у другой степени (как здесь: 2 8 · 8 1 = 2 8 · 2 3 = 2 11 = 2048), то производим возведение в степень каждого числа и лишь затем умножаем:

Видео:Вспоминаем схему Горнера и уравнения высших степенейСкачать

Вспоминаем схему Горнера и уравнения высших степеней

Деление степеней с одинаковыми основаниями и одинаковыми показателями

Деление степеней с одинаковыми основаниями, но разными показателями осуществляется по следующей формуле: показатели отнимаются, а основание остается неизменным.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

  • Как складывать уравнения со степенями

Деление чисел с одинаковыми показателями степени

При делении степеней с одинаковыми показателями результат частного этих чисел возводится в степень:

  • a n : b n = (a : b) n , где

a, b — основание степени, любые числа, b ≠ 0,

n — показатель степени, натуральное число

Пример:

Деление степеней с разными основаниями и показателями

Если разные и показатели, и основания, то возводим в степень каждое число и только потом делим:

Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Степень с отрицательным показателем и её свойства

Число в минусовой степени равно дроби, числителем которой является единица, а знаменателем данное число с положительным показателем:

Примеры

Как складывать уравнения со степенями

Чтобы разобраться, как возводить число в отрицательную степень, вспомним правило деления степеней с одинаковыми основаниями.

Деление степеней с одинаковыми основаниями, но разными показателями осуществляется по следующей формуле: показатели отнимаются, а основание остается неизменным.

Поэтому если степень делимого будет меньше степени делителя, то в результате получится число с отрицательной степенью:

Если записать деление в виде дроби, то при сокращении в числителе останется 1, а в знаменателе число будет иметь положительную степень:

Видео:11 класс, 3 урок, Уравнения высших степенейСкачать

11 класс, 3 урок, Уравнения высших степеней

Умножение отрицательных степеней

При умножении отрицательных степеней с одинаковыми основаниями показатели степеней складываются, так же как и при умножении положительных степеней:

Примеры

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Деление отрицательных степеней

При делении отрицательных степеней с одинаковыми основаниями из показателя степени делимого вычитается показатель делителя, так же как и при делении положительных степеней:

Примеры

Как складывать уравнения со степенями

Видео:8 класс, 35 урок, Уравнения высших степенейСкачать

8 класс, 35 урок, Уравнения высших степеней

Возведение дроби в отрицательную степень

Чтобы возвести дробь в отрицательную степень, надо возвести в эту степень отдельно числитель и знаменатель:

Как складывать уравнения со степенями

Возведение произведения в отрицательную степень

Чтобы возвести произведение в отрицательную степень, необходимо возвести в эту степень каждый множитель произведения отдельно:

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Как представить число в виде степени

Чтобы представить число в виде степени, нужно разложить его на простые множители. Если в произведении встречаются несколько одинаковых сомножителей, то это произведение записывается в виде степени.

Например, представим в виде степени число 243:

Видео:КАК РЕШАТЬ УРАВНЕНИЯ СО СТЕПЕНЯМИ? Примеры | АЛГЕБРА 7 классСкачать

КАК РЕШАТЬ УРАВНЕНИЯ СО СТЕПЕНЯМИ? Примеры | АЛГЕБРА 7 класс

Сложение и вычитание степеней

Как складывать уравнения со степенями

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Видео:ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравненийСкачать

ПОКАЗАТЕЛЬНЫЕ УРАВНЕНИЯ 10 класс решение показательных уравнений

Что такое степень числа

В учебниках по математике можно встретить такое определение:

«Степенью n числа а является произведение множителей величиной а n-раз подряд»

  • a n — степень,

a — основание степени

n — показатель степени

Соответственно, a n = a·a·a·a. ·a

Читается такое выражение, как a в степени n.

Если говорить проще то, степень, а точнее показатель степени (n), говорит нам о том, сколько раз следует умножить данное число (основание степени) на само себя. А значит, если у нас есть задачка, где спрашивают, как возвести число в степень, например число 2, то решается она довольно просто:

  • 2 3 = 2·2·2, где

2 — основание степени

3 — показатель степени

Действия, конечно, можно выполнять и в онлайн калькуляторе — вот несколько подходящих:

Видео:Умножение и деление степеней. Алгебра, 7 классСкачать

Умножение и деление степеней. Алгебра, 7 класс

Таблица степеней

Здесь мы приведем результаты возведения в степень натуральных чисел от 1 до 10 в квадрат (показатель степени два) и куб (показатель степени 3).

Число

Вторая степень

Третья степень

Видео:Уравнения высших степеней. Решение уравнений с помощью деления в столбикСкачать

Уравнения высших степеней. Решение уравнений с помощью деления в столбик

Свойства степеней: когда складывать, а когда вычитать

Степень в математике с натуральным показателем имеет несколько важных свойств, которые позволяют упрощать вычисления. Всего их пять штук — давайте их рассмотрим.

Свойство 1: произведение степеней

При умножении степеней с одинаковыми основаниями, основание мы оставляем без изменений, а показатели степеней складываем:

  • a m· a n = a m+n

a — основание степени

m, n — показатели степени, любые натуральные числа.

Свойство 2: частное степеней

Когда мы делим степени с одинаковыми основаниями, то основание остается без изменений, а из показателя степени делимого вычитают показатель степени делителя.

a — любое число, не равное нулю

m, n — любые натуральные числа такие, что m > n

Свойство 3: возведение степени в квадрат

Когда возводим степень в степень, то основание степени остается неизмененным, а показатели степеней умножаются друг на друга.

  • (a n ) m = a n · m

a — основание степени (не равное нулю)

m, n — показатели степени, натуральное число

Свойство 4: степень возведения

При возведении в степень произведения каждый из множителей возводится в степень. Затем полученные результаты перемножаются.

  • (a · b) n = a n · b n

a, b — основание степени (не равное нулю)

n — показатели степени, натуральное число

Записывайтесь на курсы обучения математике для школьников с 1 по 11 классы!

Свойство 5: степень частного

Чтобы возвести в степень частное, можно возвести в эту степень отдельно делимое и делитель, и первый результат разделить на второй.

  • (a : b) n = a n : b n

a, b — основание степени (не равное нулю), любые рациональные числа, b ≠ 0,

n — показатель степени, натуральное число

Видео:Показательные уравнения. 11 класс.Скачать

Показательные уравнения. 11 класс.

Сложение и вычитание степеней

Как складывать числа со степенями и как вычитать степени — очень просто. Основной принцип такой: выполняется сначала возведение в степень, а уже потом действия сложения и вычитания. Примеры:

  • 2 3 + 3 4 = 8 + 81= 89
  • 6 3 — 3 3 = 216 — 27 = 189

И еще несколько правил:

  • при наличии скобок — начинать вычисления нужно внутри них
  • только потом возведение производим в степень
  • затем выполняем остальные действия: сначала умножение и деление
  • после — сложение и вычитание

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Сложение степеней с разными показателями

В таком случае действуем согласно общему правилу: сначала выполняем возведение в степень каждого числа, затем — производим сложение.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Сложение степеней с разными основаниями

В целом, это ничем не отличается от предыдущего пункта. Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим сложение.

  • 3 4 + 5 4 =81 + 625 = 706
  • 1 4 + 7 2 = 1+ 49 = 50

Видео:Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

Как складывать числа с одинаковыми степенями

Точно также, как и в предыдущем примере. Если степени одинаковые, а основания разные, то нельзя сложить основания и затем эту сумму возводить в степень.
Сначала возводим каждое число в степень и затем выполняем сложение.

  • 6 3 +3 3 = 216 + 27 = 243

В уравнениях это будет происходить немного иначе. Если показатель и основание степени одинаковые (тогда это называется переменная, a 2 , например) — их коэффициенты можно складывать. Коэффициент — это число перед переменной a 2 .

2, 3, 5 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Вычитание степеней с одинаковым основанием

Здесь принцип тот же, что и со сложением: возводим в степень числа и только потом вычитаем их.

  • 6 3 — 3 3 = 216 — 27 = 189

Вычитание степеней с разными основаниями

Могут быть разные основания, но одинаковые степени. А могут быть и разные основания, и разные показатели. Поэтому сначала выполняем возведение в степень каждого числа, затем — производим вычитание.

  • 5 4 — 4 4 = 625 — 256 = 369
  • 7 4 — 3 2 = 2401 — 9 = 2392

Вычитание чисел с одинаковыми степенями

Все точно также, как и со сложением. Если степени одинаковые, а основания разные, то нельзя вычесть основания и затем эту разницу возводить в степень. Сначала возводим каждое число в степень и затем выполняем вычитание.

  • 6 3 — 3 3 = 216 — 27 = 189

И та же история с коэффициентами: если показатель степени и основание степени одинаковые (тогда это называется переменная, a 2 ) — их коэффициенты можно вычитать. Коэффициент — это число перед переменной a 2 .

6 и 3 — коэффициенты

a 2 — переменная

Если перед переменной в уравнении нет коэффициента, это значит, что он равен 1.

Поделиться или сохранить к себе: