Как считать уравнения с ln

Содержание
  1. Логарифмическое уравнение: решение на примерах
  2. Как решать уравнения с логарифмами: 2 способа с примерами
  3. Пример решения логарифмического уравнения с разными основаниями
  4. Пример решения логарифмического уравнения с переменными основаниями
  5. Как сделать проверку
  6. Натуральный логарифм, функция ln x
  7. Определение
  8. График натурального логарифма ln x
  9. Свойства натурального логарифма
  10. Область определения, множество значений, экстремумы, возрастание, убывание
  11. Значения ln x
  12. Основные формулы натуральных логарифмов
  13. Основное свойство логарифмов и его следствия
  14. Формула замены основания
  15. Обратная функция
  16. Производная ln x
  17. Интеграл
  18. Выражения через комплексные числа
  19. Разложение в степенной ряд
  20. Как решать логарифмические уравнения подробный разбор примеров
  21. Сложение и вычитание логарифмов.
  22. Что такое логарифм и как его посчитать
  23. Два очевидных следствия определения логарифма
  24. Свойства логарифмов
  25. Степень можно выносить за знак логарифма
  26. Логарифм произведения и логарифм частного
  27. Формула перехода к новому основанию
  28. Сумма логарифмов. Разница логарифмов
  29. Логарифмический ноль и логарифмическая единица
  30. Как решать уравнения с логарифмами: 2 способа с примерами
  31. Сравнение логарифмов
  32. Пример Найдите корень уравнения.
  33. Логарифмы со специальным обозначением
  34. Десятичный логарифм
  35. Натуральный логарифм
  36. Пример решения логарифмического уравнения с разными основаниями
  37. Пример решения логарифмического уравнения с переменными основаниями
  38. Использование свойств логарифмов при решении логарифмических уравнений и неравенств

Видео:Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 классСкачать

Десятичные и натуральные логарифмы. Видеоурок 16. Алгебра 10 класс

Логарифмическое уравнение: решение на примерах

Как считать уравнения с ln

Как решить логарифмическое уравнение? Этим вопросом задаются многие школьники, особенно в преддверии сдачи ЕГЭ по математике. Ведь в задании С1 профильного ЕГЭ могут встретиться именно логарифмические уравнения.

Уравнение, в котором неизвестное находится внутри логарифмов, называется логарифмическим. Причем неизвестное может находится как в аргументе логарифма, так и в его основании.

Способов решения таких уравнений существует несколько. В этой статье мы разберем способ, который легко понять и запомнить.

Видео:Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.Скачать

Логарифмы с нуля за 20 МИНУТ! Introduction to logarithms.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида:Как считать уравнения с lnВспоминаем определение логарифма и получаем следующее:Как считать уравнения с lnТаким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Как считать уравнения с ln

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Как считать уравнения с lnТак как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Как считать уравнения с ln

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом:Как считать уравнения с lnВ левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его:Как считать уравнения с lnТо есть в нашем случае:Как считать уравнения с lnВозьмем правую часть нашего уравнения и начнем ее преобразовывать:Как считать уравнения с lnТеперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Как считать уравнения с ln

Воспользуемся этим свойством в нашем случае, получим:Как считать уравнения с lnМы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Как считать уравнения с lnТеперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример:Как считать уравнения с lnИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом:Как считать уравнения с lnПосле преобразования правой части наше уравнение принимает следующий вид:Как считать уравнения с lnТеперь можно зачеркнуть логарифмы и тогда получим:Как считать уравнения с lnВспоминаем свойства степеней:

Теперь делаем проверку:Как считать уравнения с lnто последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения:Как считать уравнения с lnПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим:Как считать уравнения с lnТеперь преобразуем правую часть уравнения:Как считать уравнения с lnВыполнив преобразования правой и левой частей уравнения, мы получили:Как считать уравнения с lnТеперь мы можем зачеркнуть логарифмы:

Как считать уравнения с lnРешим данное квадратное уравнение, найдем дискриминант:

Как считать уравнения с lnСделаем проверку, подставим х1 = 1 в исходное уравнение:Как считать уравнения с lnКак считать уравнения с lnВерно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Как считать уравнения с lnТак как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Видео:Решение логарифмических уравнений #shortsСкачать

Решение логарифмических уравнений #shorts

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Как считать уравнения с lnПравильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Как считать уравнения с lnПреобразуем правую часть нашего уравнения:

Как считать уравнения с ln

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма:Как считать уравнения с lnПрименяем эти знания и получаем:Как считать уравнения с lnНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:Как считать уравнения с ln

Тогда получим:Как считать уравнения с lnВот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть:Как считать уравнения с lnДелаем проверку:Как считать уравнения с lnЕсли мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Как считать уравнения с lnВерно, следовательно, х = 4 является корнем уравнения.

Видео:Производная логарифмической функции. 11 класс.Скачать

Производная логарифмической функции. 11 класс.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием.Как считать уравнения с lnПреобразуем правую часть уравнения:Как считать уравнения с lnТеперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части:Как считать уравнения с lnТеперь мы можем зачеркнуть логарифмы:Как считать уравнения с lnНо данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

Как считать уравнения с ln

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Как считать уравнения с ln

Сведем все требования в систему:Как считать уравнения с ln

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему:Как считать уравнения с lnПерепишем нашу систему:Как считать уравнения с lnСледовательно, наша система примет следующий вид:Как считать уравнения с lnТеперь решаем наше уравнение:Как считать уравнения с lnСправа у нас квадрат суммы:Как считать уравнения с lnДанный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Как считать уравнения с ln

Т.к. 3 2 =9, то последнее выражение верно.

Видео:Производная 5 Экспонента и натуральный логарифм.Скачать

Производная 5 Экспонента и натуральный логарифм.

Как сделать проверку

Еще раз обращаем ваше внимание, что при решении логарифмических уравнений необходимо учитывать область допустимых значений. Так, основание логарифма должно быть больше ноля и не должно равняться единице. А его аргумент должен быть положительным, т.е. больше ноля.

Если наше уравнение имеет вид loga (f(x)) = loga (g(x)), то должны выполняться следующие ограничения:Как считать уравнения с ln

После решения логарифмического уравнения нужно обязательно сделать проверку. Для этого вам необходимо подставить получившееся значения в исходное уравнение и посчитать его. Времени это займет немного, зато позволит не записать в ответ посторонние корни. Ведь так обидно правильно решить уравнение и при этом неправильно записать ответ!

Итак, теперь вы знаете, как решить логарифмическое уравнение с помощью определения логарифма и с помощью преобразования уравнения, когда в обеих его частях стоят логарифмы с одинаковыми основаниями, которые мы можем «зачеркнуть». Отличное знание свойств логарифма, учет области определения, выполнение проверки – залог успеха при решении логарифмических уравнений.

Видео:Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.Скачать

Уравнение касательной в точке. Практическая часть. 1ч. 10 класс.

Натуральный логарифм, функция ln x

Как считать уравнения с ln

Видео:Десятичный логарифмСкачать

Десятичный логарифм

Определение

Натуральный логарифм широко используется в математике, поскольку его производная имеет наиболее простой вид: (ln x )′ = 1/ x .

Исходя из определения, основанием натурального логарифма является число е:
е ≅ 2,718281828459045. ;
.

Видео:Как решать логарифмы? Что такое ln и lg #егэпрофиль #профиль #егэ #умскул #аделияадамова #умскулегэСкачать

Как решать логарифмы? Что такое ln и lg #егэпрофиль #профиль #егэ #умскул #аделияадамова #умскулегэ

График натурального логарифма ln x

График натурального логарифма (функции y = ln x ) получается из графика экспоненты зеркальным отражением относительно прямой y = x .

Натуральный логарифм определен при положительных значениях переменной x . Он монотонно возрастает на своей области определения.

При x → 0 пределом натурального логарифма является минус бесконечность ( – ∞ ).

При x → + ∞ пределом натурального логарифма является плюс бесконечность ( + ∞ ). При больших x логарифм возрастает довольно медленно. Любая степенная функция x a с положительным показателем степени a растет быстрее логарифма.

Видео:Логарифмы в ЕГЭ⚡️что получилось?!Скачать

Логарифмы в ЕГЭ⚡️что получилось?!

Свойства натурального логарифма

Область определения, множество значений, экстремумы, возрастание, убывание

Натуральный логарифм является монотонно возрастающей функцией, поэтому экстремумов не имеет. Основные свойства натурального логарифма представлены в таблице.

Область определения0
Область значений– ∞
Монотонностьмонотонно возрастает
Нули, y = 0x = 1
Точки пересечения с осью ординат, x = 0нет
+ ∞
– ∞

Значения ln x

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

Основные формулы натуральных логарифмов

Формулы, вытекающие из определения обратной функции:

Основное свойство логарифмов и его следствия

Формула замены основания

Любой логарифм можно выразить через натуральные логарифмы с помощью формулы замены основания:

Доказательства этих формул представлены в разделе «Логарифм».

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Обратная функция

Обратной для натурального логарифма является экспонента.

Если 0)» style=»width:132px;height:20px;vertical-align:-11px;background-position:-296px -320px»> , то

Видео:Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnlineСкачать

Производная: секретные методы решения. Готовимся к ЕГЭ | Математика TutorOnline

Производная ln x

Производная натурального логарифма:
.
Производная натурального логарифма от модуля x :
.
Производная n-го порядка:
.
Вывод формул > > >

Видео:Натуральные логарифмы. Функция у=ln х | Алгебра 11 класс #17 | ИнфоурокСкачать

Натуральные логарифмы. Функция у=ln х | Алгебра 11 класс #17 | Инфоурок

Интеграл

Видео:Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | УмскулСкачать

Логарифмы с нуля за 30 минут. Логарифмы 10 класс ЕГЭ профиль математика | Умскул

Выражения через комплексные числа

Рассмотрим функцию комплексной переменной z :
.
Выразим комплексную переменную z через модуль r и аргумент φ:
.
Используя свойства логарифма, имеем:
.
Или
.
Аргумент φ определен не однозначно. Если положить
, где n – целое,
то будет одним и тем же числом при различных n .

Поэтому натуральный логарифм, как функция от комплексного переменного, является не однозначной функцией.

Видео:Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭСкачать

Логарифм с нуля до уровня про. Уравнения, неравенства и параметр. Профильный ЕГЭ

Разложение в степенной ряд

При имеет место разложение:

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Автор: Олег Одинцов . Опубликовано: 05-04-2014 Изменено: 20-03-2017

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Как решать логарифмические уравнения подробный разбор примеров

Видео:Что такое Логарифмы? для ЧайниковСкачать

Что такое Логарифмы? для Чайников

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: loga x и loga y. Тогда сними возможно выполнять операции сложения и вычитания:

Как видим, сумма логарифмов равняется логарифму произведения, а разность логарифмов – логарифму частного. Причем это верно если числа а, х и у положительны и а ≠ 1.

Важно обращать внимание, что основным аспектом в данных формулах выступают одни и те же основания. Если основания отличаются друг от друга, эти правила не применимы!

Правила сложения и вычитания логарифмов с одинаковыми основаниями читаются не только с лева на право, но и на оборот. В результате мы имеем теоремы логарифма произведения и логарифма частного.

Логарифм произведения двух положительных чисел равен сумме их логарифмов; перефразируя данную теорему получим следующее, если числа а, x и у положительны и а ≠ 1, то:

Логарифм частного двух положительных чисел равен разности логарифмов делимого и делителя. Говоря по другому, если числа а, х и у положительны и а ≠ 1, то:

Применим вышеизложенные теоремы для решения примеров:

Если числа x и у отрицательны, то формула логарифма произведения становится бессмысленной. Так, запрещено писать:

так как выражения log2(-8) и log2(-4) вообще не определены (логарифмическая функция у = log2х определена лишь для положительных значений аргументах).

Теорема произведения применима не только для двух, но и для неограниченного числа сомножителей. Это означает, что для всякого натурального k и любых положительных чисел x1, x2, . . . ,xn существует тождество :

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что loga1= 0, следовательно,

А значит имеет место равенство:

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Видео:Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Что такое логарифм и как его посчитать

Логарифм имеет следующий вид:

Как считать уравнения с lnгде a – это основание логарифма,

b – это аргумент логарифма

Чтобы узнать значение логарифма приравняем его к X. Как считать уравнения с lnи преобразовываем в Как считать уравнения с lnи преобразовываем в Запомните, что именно основание (оно выделено красным) возводится в степень.

Чтобы было легче, можно запоминать так – основание всегда остается внизу (и в первом, и во втором выражении a внизу)!

Как считать уравнения с ln

Чтобы вычислить данный логарифм, необходимо приравнять его к X и воспользоваться правилом, описанным выше:Как считать уравнения с lnА в какую степень нужно возвести 2, чтобы получилось 8? Конечно же в третью степень, таким образом:

Как считать уравнения с lnЕще раз обращаю ваше внимание, что основание (в нашем случае это – 2) всегда находится внизу и именно оно возводится в степень.

Как считать уравнения с ln

Видео:МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Два очевидных следствия определения логарифма

log a 1 = 0 ( a > 0, a ≠ 1 )

Действительно, при возведении числа a в первую степень мы получим то же самое число, а при возведении в нулевую степень – единицу.

Видео:Интересная задача на логарифмы в ЕГЭСкачать

Интересная задача на логарифмы в ЕГЭ

Свойства логарифмов

Перечисленные ниже свойства логарифмов вытекают из основного логарифмического тождества:

Как считать уравнения с ln

Как считать уравнения с ln

( основное свойство логарифмов ),

Как считать уравнения с ln

Как считать уравнения с ln

( основное свойство логарифмов ),

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Проверь удачу, набери 60+

Математика – это систематицация и результат, а общественные науки и история – процесс осмысления результата.

Пример Найдите корень уравнения.

Как считать уравнения с ln

Используя определение логарифма, получим:

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Проверим: Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Ответ: Как считать уравнения с ln.

Таким образом, теперь вы можете составить четкую инструкцию, как решать логарифмические уравнения. Она заключается в следующих шагах:

  1. Сделать справа и слева от знака равенства (=) логарифмы по одному основанию, избавившись от коэффициентов перед логарифмами, используя свойства логарифмов.
  2. Избавляемся от логарифмов, используя правило потенцирования. Остаются только числа, которые были под знаком логарифма.
  3. Решаем получившееся обычное уравнение — как найти корень уравнения смотрите здесь .
  4. Делаем проверку
  5. Записываем ответ.

Логарифмы со специальным обозначением

Для некоторых логарифмов в математике введены специальные обозначения. Это связано с тем, что такие логарифмы встречаются особенно часто. К таким логарифмам относятся десятичный логарифм и натуральный логарифм. Для этих логарифмов справедливы все правила, что и для обычных логарифмов.

Десятичный логарифм

Десятичный логарифм обозначается lg и имеет основание 10, т.е.

Как считать уравнения с lnЧтобы вычислить десятичный логарифм, нужно 10 возвести в степень X.

Например, вычислим lg100Как считать уравнения с ln

Натуральный логарифм

Натуральный логарифм обозначается ln и имеет основание e, то есть

Как считать уравнения с ln

Чтобы вычислить данный логарифм нужно число е возвести в степень x. Некоторые из вас спросят, что это за число такое е? Число е – это иррациональное число, т.е. точное его значение вычислить невозможно. е = 2,718281…

Сейчас не будем подробно разбирать, зачем это число нужно, просто запомним, что

Как считать уравнения с ln

И вычислить его можно таким образом:Как считать уравнения с ln

Пример решения логарифмического уравнения с разными основаниями

Выше мы решали логарифмические уравнения, в которых участвовали логарифмы с одинаковыми основаниями. А что же делать, если основания у логарифмов разные? Например,

Как считать уравнения с lnПравильно, нужно привести логарифмы в правой и левой части к одному основанию!

Итак, разберем наш пример:Как считать уравнения с lnПреобразуем правую часть нашего уравнения:

Как считать уравнения с ln

Мы знаем, что 1/3 = 3 -1 . Еще мы знаем свойство логарифма, а именно вынесение показателя степени из логарифма: Как считать уравнения с lnПрименяем эти знания и получаем: Как считать уравнения с lnНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма: Как считать уравнения с lnНо пока у нас есть знак «-» перед логарифмом в правой части уравнения, зачеркивать мы их не имеем права. Необходимо внести знак «-» в логарифмическое выражение. Для этого воспользуемся еще одним свойством логарифма:

Тогда получим: Как считать уравнения с lnВот теперь в правой и левой части уравнения у нас стоят логарифмы с одинаковыми основаниями и мы можем их зачеркнуть: Как считать уравнения с lnДелаем проверку: Как считать уравнения с lnДелаем проверку: Если мы преобразуем правую часть, воспользовавшись свойствами логарифма, то получим:Как считать уравнения с lnВерно, следовательно, х = 4 является корнем уравнения.

Пример решения логарифмического уравнения с переменными основаниями

Выше мы разобрали примеры решения логарифмических уравнений, основания которых были постоянными, т.е. определенным значением – 2, 3, ½ … Но в основании логарифма может содержаться Х, тогда такое основание будет называться переменным. Например, logx+1(х 2 +5х-5) = 2. Мы видим, что основание логарифма в данном уравнении – х+1. Как же решать уравнение такого вида? Решать мы его будем по тому же принципу, что и предыдущие. Т.е. мы будем преобразовывать наше уравнение таким образом, чтобы слева и справа были логарифмы с одинаковым основанием. Как считать уравнения с lnПреобразуем правую часть уравнения: Как считать уравнения с lnПреобразуем правую часть уравнения: Теперь логарифм в правой части уравнения имеет такое же основание, как и логарифм в левой части: Как считать уравнения с lnТеперь мы можем зачеркнуть логарифмы: Как считать уравнения с lnТеперь мы можем зачеркнуть логарифмы: Но данное уравнение неравносильно исходному уравнению, так как не учтена область определения. Запишем все требования, относящиеся к логарифму:

1. Аргумент логарифма должен быть больше ноля, следовательно:

Как считать уравнения с ln

2. Основание логарифма должно быть больше 0 и не должно равняться единице, следовательно:

Как считать уравнения с ln

Сведем все требования в систему:Как считать уравнения с ln

Данную систему требований мы можем упростить. Смотрите х 2 +5х-5 больше ноля, при этом оно приравнивается к (х + 1) 2 , которую в свою очередь так же больше ноля. Следовательно, требование х 2 +5х-5 > 0 выполняется автоматически и мы можем его не решать. Тогда наша система будет сведена к следующему: Как считать уравнения с lnПерепишем нашу систему: Как считать уравнения с lnПерепишем нашу систему: Следовательно, наша система примет следующий вид: Как считать уравнения с lnТеперь решаем наше уравнение: Как считать уравнения с lnТеперь решаем наше уравнение: Справа у нас квадрат суммы:Как считать уравнения с lnДанный корень удовлетворяет наши требования, так как 2 больше -1 и не равно 0. Следовательно, х = 2 – корень нашего уравнения.

Для полной уверенности можем выполнить проверку, подставим х = 2 в исходное уравнение:

Как считать уравнения с ln

Т.к. 3 2 =9, то последнее выражение верно.

Использование свойств логарифмов при решении логарифмических уравнений и неравенств

Для того, чтобы не ошибаться при решении логарифмических уравнений и неравенств, свойства логарифмов, перечисленные в предыдущем разделе, следует применять внимательно и аккуратно.

Например, если при решении уравнения или неравенства требуется преобразовать выражение

Поделиться или сохранить к себе:
Как считать уравнения с lnКак считать уравнения с ln
Как считать уравнения с lnКак считать уравнения с ln
Как считать уравнения с lnКак считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

( формула перехода к новому основанию логарифмов ),

Как считать уравнения с ln
Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln

Как считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln
( основное свойство логарифмов ),
Как считать уравнения с ln
( основное свойство логарифмов ),
Как считать уравнения с ln
Как считать уравнения с ln
Как считать уравнения с ln
( формула перехода к новому основанию логарифмов ),
Как считать уравнения с ln
Как считать уравнения с ln

Степень можно выносить за знак логарифма

И вновь хотелось бы призвать к аккуратности. Рассмотрим следующий пример:

log a ( f ( x ) 2 = 2 log a f ( x )

Левая часть равенства определена, очевидно, при всех значениях f(х), кроме нуля. Правая часть – только при f(x)>0! Вынося степень из логарифма, мы вновь сужаем ОДЗ. Обратная процедура приводит к расширению области допустимых значений. Все эти замечания относятся не только к степени 2, но и к любой четной степени.

Логарифм произведения и логарифм частного

log a b c = log a b − log a c ( a > 0, a ≠ 1, b > 0, c > 0 )

Хотелось бы предостеречь школьников от бездумного применения данных формул при решении логарифмических уравнений и неравенств. При их использовании “слева направо” происходит сужение ОДЗ, а при переходе от суммы или разности логарифмов к логарифму произведения или частного – расширение ОДЗ.

log a ( f ( x ) g ( x ) )

определено в двух случаях: когда обе функции строго положительны либо когда f(x) и g(x) обе меньше нуля.

Преобразуя данное выражение в сумму

log a f ( x ) + log a g ( x )

, мы вынуждены ограничиваться только случаем, когда f(x)>0 и g(x)>0. Налицо сужение области допустимых значений, а это категорически недопустимо, т. к. может привести к потере решений. Аналогичная проблема существует и для формулы (6).

Формула перехода к новому основанию

Тот редкий случай, когда ОДЗ не изменяется при преобразовании. Если вы разумно выбрали основание с (положительное и не равное 1), формула перехода к новому основанию является абсолютно безопасной.

Если в качестве нового основания с выбрать число b, получим важный частный случай формулы (8):

log a b = 1 log b a ( a > 0, a ≠ 1, b > 0, b ≠ 1 )

Сумма логарифмов. Разница логарифмов

Логарифмы с одинаковыми основаниями можно складывать: Как считать уравнения с ln Как считать уравнения с lnЛогарифмы с одинаковыми основаниями можно вычитать: Как считать уравнения с ln Как считать уравнения с lnМы видим, что исходные выражения состояли из логарифмов, которые по отдельности не вычисляются, а при применении свойств логарифмов у нас получились нормальные числа. Поэтому повторим, что основные свойства логарифмов нужно знать обязательно!

Обратите внимание, что формулы суммы и разности логарифмов верны только для логарифмов с одинаковыми основаниями! Если основания разные, то данные свойства применять нельзя!

Логарифмический ноль и логарифмическая единица

Как считать уравнения с ln

Это следствия из определения логарифма. И их нужно обязательно запомнить. Эти простейшие свойства нередко вводят учеников в ступор.

Запомните, что логарифм от a по основанию а всегда равен единице:

loga a = 1 – это логарифмическая единица.

Если же в аргументе стоит единица, то такой логарифм всегда равен нулю независимо от основания, так как a 0 = 1:

loga 1 = 0 – логарифмический ноль.

Как решать уравнения с логарифмами: 2 способа с примерами

Решить логарифмическое уравнение можно разными способами. Чаще всего в школе учат решать логарифмическое уравнение с помощью определения логарифма. То есть мы имеем уравнение вида: Как считать уравнения с lnВспоминаем определение логарифма и получаем следующее: Как считать уравнения с lnВспоминаем определение логарифма и получаем следующее: Таким образом мы получаем простое уравнение, которое сможем легко решить.

При решении логарифмических уравнений важно помнить об области определения логарифма, т.к. аргумент f(x) должен быть больше ноля. Поэтому после решения логарифмического уравнения мы всегда делаем проверку!

Давайте посмотрим, как это работает на примере:

Как считать уравнения с ln

Воспользуемся определением логарифма и получим:

Теперь перед нами простейшее уравнение, решить которое не составит труда:

Сделаем проверку. Подставим найденный Х в исходное уравнение:Как считать уравнения с lnТак как 3 2 = 9, то последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Основной минус данного метода решения логарифмических уравнений в том, что многие ребята путают, что именно нужно возводить в степень. То есть при преобразовании logaf(x) = b, многие возводят не a в степень b, а наоборот b в степень a. Такая досадная ошибка может лишить вас драгоценных баллов на ЕГЭ.

Поэтому мы покажем еще один способ решения логарифмических уравнений.

Чтобы решить логарифмическое уравнение, нам нужно привести его к такому виду, когда и в правой, и в левой части уравнения будут стоять логарифмы с одинаковыми основаниями. Это выглядит вот так:

Как считать уравнения с ln

Когда уравнение приведено к такому виду, то мы можем «зачеркнуть» логарифмы и решить простое уравнение. Давайте разбираться на примере.

Решим еще раз то же самое уравнение, но теперь этим способом: Как считать уравнения с lnВ левой части у нас логарифм с основанием 2. Следовательно, правую часть логарифма нам нужно преобразовать так, чтобы она тоже содержала логарифм с основанием 2.

Для этого вспоминаем свойства логарифмов. Первое свойство, которое нам здесь понадобится – это логарифмическая единица. Напомним его: Как считать уравнения с lnТо есть в нашем случае: Как считать уравнения с lnТо есть в нашем случае: Возьмем правую часть нашего уравнения и начнем ее преобразовывать:Как считать уравнения с lnТеперь нам нужно 2 тоже внести в логарифмическое выражение. Для этого вспоминаем еще одно свойство логарифма:

Как считать уравнения с ln

Воспользуемся этим свойством в нашем случае, получим: Как считать уравнения с lnМы преобразовали правую часть нашего уравнения в тот вид, который нам был нужен и получили:Как считать уравнения с lnТеперь в левой и в правой частях уравнения у нас стоят логарифмы с одинаковыми основаниями, поэтому мы можем их зачеркнуть. В результате, получим такое уравнение:

Да, действий в этом способе больше, чем при решении с помощью определения логарифма. Но все действия логичны и последовательны, в результате чего шансов ошибиться меньше. К тому же данный способ дает больше возможностей для решения более сложных логарифмических уравнений.

Разберем другой пример: Как считать уравнения с lnИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: Как считать уравнения с lnИтак, как и в предыдущем примере применяем свойства логарифмов и преобразовываем правую часть уравнения следующим образом: После преобразования правой части наше уравнение принимает следующий вид: Как считать уравнения с lnТеперь можно зачеркнуть логарифмы и тогда получим: Как считать уравнения с lnТеперь можно зачеркнуть логарифмы и тогда получим: Вспоминаем свойства степеней:

Теперь делаем проверку:Как считать уравнения с lnто последнее выражение верно. Следовательно, х = 3 является корнем уравнения.

Еще один пример решения логарифмического уравнения: Как считать уравнения с lnПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Как считать уравнения с lnПреобразуем сначала левую часть нашего уравнения. Здесь мы видим сумму логарифмов с одинаковыми основаниями. Воспользуемся свойством суммы логарифмов и получим: Теперь преобразуем правую часть уравнения: Как считать уравнения с lnВыполнив преобразования правой и левой частей уравнения, мы получили: Как считать уравнения с lnВыполнив преобразования правой и левой частей уравнения, мы получили: Теперь мы можем зачеркнуть логарифмы:

Как считать уравнения с lnРешим данное квадратное уравнение, найдем дискриминант:

Как считать уравнения с lnСделаем проверку, подставим х1 = 1 в исходное уравнение: Как считать уравнения с lnСделаем проверку, подставим х1 = 1 в исходное уравнение: Как считать уравнения с lnВерно, следовательно, х1 = 1 является корнем уравнения.

Теперь подставим х2 = -5 в исходное уравнение:Как считать уравнения с lnТак как аргумент логарифма должен быть положительным, выражение не является верным. Следовательно, х2 = -5 – посторонний корень.

Сравнение логарифмов

Если 012, то
logax1> logax2– знак неравенства меняется
Если a > 1 и 012, то
logax1ax2– знак неравенства не меняется
Если 1 1, то logax> logbx
Если 0 1, то logax> logbx
Если 1axbx
Если 0axbx