- Показательное уравнение – это уравнение c переменной в показателе степени.
- Как решать показательные уравнения
- При решении любое показательное уравнение мы стремимся привести к виду (a^=a^), а затем сделать переход к равенству показателей, то есть:
- Показательные уравнения, не имеющие решений
- Положительное число в любой степени останется положительным числом.
- Показательные уравнения с разными основаниями
- Показательные уравнения
- Определение показательного уравнения
- Свойства степеней
- Степенные или показательные уравнения.
- 🌟 Видео
Показательное уравнение – это уравнение c переменной в показателе степени.
Видео:8 класс, 6 урок, Степень с целым отрицательным показателемСкачать
Как решать показательные уравнения
При решении любое показательное уравнение мы стремимся привести к виду (a^=a^), а затем сделать переход к равенству показателей, то есть:
Важно! Из той же логики следуют два требования для такого перехода:
— число в основании степени слева и справа должно быть одинаковым;
— степени слева и справа должны быть «чистыми», то есть не должно быть никаких коэффициентов , умножений, делений и т.д.
В этом показательном уравнении переход к (x+2= 8-x) невозможен, так как в основаниях разные числа
Здесь переход к (x+3x=2x) также невозможен, так как слева стоит сумма.
И в этом случае перейти к (5-x=7x) нельзя, ведь справа есть минус.
Мы знаем, что (27 = 3^3). С учетом этого преобразуем уравнение.
Теперь вспомним, что: (a^=frac). Эту формулу можно использовать и в обратную сторону: (frac =a^). Тогда (frac=frac =3^).
Применив свойство ((a^b )^c=a^) к правой части, получим: ((3^ )^=3^=3^).
И вот теперь у нас основания равны и нет никаких мешающих коэффициентов и т.д. Значит, можем делать переход.
Решаем получившееся линейное уравнение и пишем ответ.
Воспользуемся свойством степени (a^b cdot a^c=a^) в обратном направлении.
(2^x cdot 2^3+2^x cdot 2^2-2^x cdot 2^1=160)
Теперь в левой части выносим за скобку общий множитель (2^x) …
…и вычисляем содержимое в скобке.
Делим на (10) обе части уравнения…
…и дорешиваем до ответа.
Иногда одних только свойств степеней оказывается недостаточно, и приходиться применять стандартные приемы для решения более сложных уравнений – замену переменной , расщепление уравнения и т.д.
Вновь пользуемся свойством степени (a^b cdot a^c=a^) в обратном направлении.
Теперь вспоминаем, что (4=2^2).
Смотрим внимательно на уравнение, и видим, что тут напрашивается замена (t=2^x).
Однако мы нашли значения (t), а нам нужны (x). Возвращаемся к иксам, делая обратную замену.
Преобразовываем второе уравнение, используя свойство отрицательной степени…
…и дорешиваем до ответа.
Остается вопрос — как понять, когда какой метод применять? Это приходит с опытом. А пока вы его не наработали, пользуйтесь общей рекомендацией для решения сложных задач – «не знаешь, что делать – делай, что можешь». То есть, ищите как вы можете преобразовать уравнение в принципе, и пробуйте это делать – вдруг чего и выйдет? Главное при этом делать только математически обоснованные преобразования.
Видео:Тайна корня НУЛЕВОЙ степени 🔮Скачать
Показательные уравнения, не имеющие решений
Разберем еще две ситуации, которые часто ставят в тупик учеников:
— положительное число в степени равно нулю, например, (2^x=0);
— положительное число в степени равно отрицательному числу, например, (2^x=-4).
Давайте попробуем решить перебором. Если икс — положительное число, то с ростом икса вся степень (2^x) будет только расти:
И так далее. Очевидно, что дальше увеличивать икс нет смысла, будет только «хуже» (т.е. мы будем удаляться от нуля и минус четверки).
Может быть нам поможет (x=0)? Проверяем:
Тоже мимо. Остаются отрицательные иксы. Вспомнив свойство (a^=frac), проверяем:
Несмотря на то, что число с каждым шагом становится меньше, до нуля оно не дойдет никогда. Так что и отрицательная степень нас не спасла. Приходим к логичному выводу:
Положительное число в любой степени останется положительным числом.
Таким образом, оба уравнения выше не имеют решений.
Видео:Почему 0 в степени 0 равно 1?Скачать
Показательные уравнения с разными основаниями
В практике порой встречаются показательные уравнения с разными основаниями, не сводимыми к друг к другу, и при этом с одинаковыми показателями степени. Выглядят они так: (a^=b^), где (a) и (b) – положительные числа.
Такие уравнения легко можно решить делением на любую из частей уравнения (обычно делят на правую часть, то есть на (b^). Так делить можно, потому что положительное число в любой степени положительно (то есть, мы не делим на ноль). Получаем:
Дальше решаем с помощью свойств степени.
Здесь у нас не получиться ни пятерку превратить в тройку, ни наоборот (по крайней мере, без использования логарифмов ). А значит мы не можем прийти к виду (a^=a^). При этом показатели одинаковы.
Давайте поделим уравнение на правую часть, то есть на (3^) (мы можем это делать, так как знаем, что тройка ни в какой степени не будет нулем).
Казалось бы, лучше не стало. Но вспомните еще одно свойство степени: (a^0=1), иначе говоря: «любое число в нулевой степени равно (1)». Верно и обратное: «единица может быть представлена как любое число в нулевой степени». Используем это, делая основание справа таким же как слева.
Вуаля! Избавляемся от оснований.
Иногда «одинаковость» показателей степени не очевидна, но умелое использование свойств степени решает этот вопрос.
Уравнение выглядит совсем печально… Мало того, что основания нельзя свести к одинаковому числу (семерка ни в какой степени не будет равна (frac)), так еще и показатели разные… Однако давайте в показателе левой степени вынесем за скобку двойку.
Аллилуйя! Показатели стали одинаковы!
Действуя по уже знакомой нам схеме, решаем до ответа.
Видео:Почему 0⁰=1. Одно из быстрых объясненийСкачать
Показательные уравнения
О чем эта статья:
6 класс, 7 класс
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать
Определение показательного уравнения
Показательными называются уравнения с показательной функцией f(x) = a х . Другими словами, неизвестная переменная в них может содержаться как в основании степени, так и в ее показателе. Простейшее уравнение такого вида: a х = b, где a > 0, a ≠ 1.
Конечно, далеко не все задачи выглядят так просто, некоторые из них включают тригонометрические, логарифмические и другие конструкции. Но для решения даже простых показательных уравнений нужно вспомнить из курса алгебры за 6–7 класс следующие темы:
Если что-то успело забыться, советуем повторить эти темы перед тем, как читать дальнейший материал.
С точки зрения геометрии показательной функцией называют такую: y = a x , где a > 0 и a ≠ 1. У нее есть одно важное для решения показательных уравнений свойство — это монотонность. При a > 1 такая функция непрерывно возрастает, а при a
Иногда в результате решения будет получаться несколько вариантов ответа, и в таком случае мы должны выбрать тот корень, при котором показательная функция больше нуля.
Свойства степеней
Мы недаром просили повторить свойства степенной функции — на них будет основано решение большей части примеров. Держите небольшую шпаргалку по формулам, которые помогут упрощать сложные показательные уравнения.
Видео:Все про уравнения для задания 9 на ОГЭ 2024 по математикеСкачать
Степенные или показательные уравнения.
Для начала вспомним основные формулы степеней и их свойства.
Произведение числа a само на себя происходит n раз, это выражение мы можем записать как a•a•…•a=a n
3. a n • a m = a n + m
5. a n b n = (ab) n
7. a n /a m = a n — m
Степенные или показательные уравнения – это уравнения в которых переменные находятся в степенях (или показателях), а основанием является число.
Примеры показательных уравнений:
В данном примере число 6 является основанием оно всегда стоит внизу, а переменная x степенью или показателем.
Приведем еще примеры показательных уравнений.
2 x *5=10
16 x — 4 x — 6=0
Теперь разберем как решаются показательные уравнения?
Возьмем простое уравнение:
Такой пример можно решить даже в уме. Видно, что x=3. Ведь чтобы левая и правая часть были равны нужно вместо x поставить число 3.
А теперь посмотрим как нужно это решение оформить:
Для того, чтобы решить такое уравнение, мы убрали одинаковые основания (то есть двойки) и записали то что осталось, это степени. Получили искомый ответ.
Теперь подведем итоги нашего решения.
Алгоритм решения показательного уравнения:
1. Нужно проверить одинаковые ли основания у уравнения справа и слева. Если основания не одинаковые ищем варианты для решения данного примера.
2. После того как основания станут одинаковыми, приравниваем степени и решаем полученное новое уравнение.
Теперь прорешаем несколько примеров:
Начнем с простого.
Основания в левой и правой части равны числу 2, значит мы можем основание отбросить и приравнять их степени.
x+2=4 Получилось простейшее уравнение.
x=4 — 2
x=2
Ответ: x=2
В следующем примере видно, что основания разные это 3 и 9.
Для начала переносим девятку в правую сторону, получаем:
Теперь нужно сделать одинаковые основания. Мы знаем что 9=3 2 . Воспользуемся формулой степеней (a n ) m = a nm .
Получим 9 х+8 =(3 2 ) х+8 =3 2х+16
3 3х = 3 2х+16 теперь видно что в левой и правой стороне основания одинаковые и равные тройке, значит мы их можем отбросить и приравнять степени.
3x=2x+16 получили простейшее уравнение
3x — 2x=16
x=16
Ответ: x=16.
Смотрим следующий пример:
2 2х+4 — 10•4 х = 2 4
В первую очередь смотрим на основания, основания разные два и четыре. А нам нужно, чтобы были — одинаковые. Преобразовываем четверку по формуле (a n ) m = a nm .
4 х = (2 2 ) х = 2 2х
И еще используем одну формулу a n • a m = a n + m :
2 2х+4 = 2 2х •2 4
Добавляем в уравнение:
2 2х •2 4 — 10•2 2х = 24
Мы привели пример к одинаковым основаниям. Но нам мешают другие числа 10 и 24. Что с ними делать? Если приглядеться видно, что в левой части у нас повторяется 2 2х ,вот и ответ — 2 2х мы можем вынести за скобки:
2 2х (2 4 — 10) = 24
Посчитаем выражение в скобках:
2 4 — 10 = 16 — 10 = 6
Все уравнение делим на 6:
Представим 4=2 2 :
2 2х = 2 2 основания одинаковые, отбрасываем их и приравниваем степени.
2х = 2 получилось простейшее уравнение. Делим его на 2 получаем
х = 1
Ответ: х = 1.
9 х – 12*3 х +27= 0
Преобразуем:
9 х = (3 2 ) х = 3 2х
Получаем уравнение:
3 2х — 12•3 х +27 = 0
Основания у нас одинаковы равны трем.В данном примере видно, что у первой тройки степень в два раза (2x) больше, чем у второй (просто x). В таком случаем можно решить методом замены. Число с наименьшей степенью заменяем:
Тогда 3 2х = (3 х ) 2 = t 2
Заменяем в уравнении все степени с иксами на t:
t 2 — 12t+27 = 0
Получаем квадратное уравнение. Решаем через дискриминант, получаем:
D=144-108=36
t1 = 9
t2 = 3
Возвращаемся к переменной x.
3 х = 9
3 х = 3 2
х1 = 2
Один корень нашли. Ищем второй, из t2:
t2 = 3 = 3 х
3 х = 3 1
х2 = 1
Ответ: х1 = 2; х2 = 1.
На сайте Вы можете в разделе ПОМОГИТЕ РЕШИТЬ задавать интересующие вопросы мы Вам обязательно ответим.
🌟 Видео
Математика| СтепениСкачать
Отрицательная степень числа - Разбор задания из ОГЭСкачать
Уравнение четвертой степениСкачать
Почему любое число в 0 степени равно 1Скачать
Решение биквадратных уравнений. 8 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
7 класс, 15 урок, Степень с нулевым показателемСкачать
Что такое число в нулевой степени?Скачать
Как решать уравнения с дробной степеньюСкачать
8 класс. Алгебра. Решение уравнений четвертой степени.Скачать
Степень с целым показателем. 7 класс.Скачать
Корень n-ой степени. Алгебра, 9 классСкачать
Математика без Ху!ни. Степени и корни. Отрицательная и нулевая степень.Скачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать