О чем эта статья:
5 класс, 6 класс, 7 класс
- Понятие дроби
- Основные свойства дробей
- Понятие уравнения
- Понятие дробного уравнения
- Как решать уравнения с дробями
- 1. Метод пропорции
- 2. Метод избавления от дробей
- Что еще важно учитывать при решении
- Универсальный алгоритм решения
- Примеры решения дробных уравнений
- Решение уравнений со смешанными числами.
- Краткое описание документа:
- Математика: теория и методика преподавания в образовательной организации
- Дистанционное обучение как современный формат преподавания
- Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Дистанционные курсы для педагогов
- Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
- Другие материалы
- Вам будут интересны эти курсы:
- Оставьте свой комментарий
- Автор материала
- Дистанционные курсы для педагогов
- Подарочные сертификаты
- Уравнения со смешанными дробями
- 📺 Видео
Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Видео:МАТЕМАТИКА 5 КЛАСС: РЕШЕНИЕ УРАВНЕНИЙ СО СМЕШАННЫМИ ЧИСЛАМИСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Видео:Решение уравнений с дробными числами в 6 классеСкачать
Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:
Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:
На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Видео:СМЕШАННЫЕ ДРОБИ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Видео:Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать
Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
- Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
Видео:Решение уравнений, 6 классСкачать
Решение уравнений со смешанными числами.
Обращаем Ваше внимание, что в соответствии с Федеральным законом N 273-ФЗ «Об образовании в Российской Федерации» в организациях, осуществляющих образовательную деятельность, организовывается обучение и воспитание обучающихся с ОВЗ как совместно с другими обучающимися, так и в отдельных классах или группах.
Рабочие листы и материалы для учителей и воспитателей
Более 300 дидактических материалов для школьного и домашнего обучения
Математика 5 класс.
Тема: Решение уравнений со смешанными числами.
= 2;
= 3;
Х + = 2 ;
Х — 2 = 7
3 — 2 + х = 2 .
= 15;
= 5;
1 + х = 7 ;
7 – х = 2 ;
3 — 2 + х = 4 .
= 5;
7 = ;
4 — х = 1 ;
2 + х = 5 ;
+ х — = .
= 3;
5 = ;
Х + 7 = 11 ;
Х — 2 = 3 ;
6 — 3 — х = 1 .
Краткое описание документа:
Математика 5 класс.
Тема: Решение уравнений со смешанными числами.
= 2;
= 3;
Х + = 2 ;
Х — 2 = 7
3 — 2 + х = 2 .
= 15;
= 5;
1 + х = 7 ;
7 – х = 2 ;
3 — 2 + х = 4 .
= 5;
7 = ;
4 — х = 1 ;
2 + х = 5 ;
+ х — = .
= 3;
5 = ;
Х + 7 = 11 ;
Х — 2 = 3 ;
6 — 3 — х = 1 .
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
- Сейчас обучается 693 человека из 75 регионов
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
- Сейчас обучается 864 человека из 78 регионов
Курс повышения квалификации
Педагогическая деятельность в контексте профессионального стандарта педагога и ФГОС
- Сейчас обучается 48 человек из 23 регионов
«Профессиональный имидж педагога: стереотипы и методы их преодоления»
Свидетельство и скидка на обучение каждому участнику
«Мотивация здорового образа жизни. Организация секций»
Свидетельство и скидка на обучение каждому участнику
- Для всех учеников 1-11 классов
и дошкольников - Интересные задания
по 16 предметам
Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать
Дистанционные курсы для педагогов
Самые массовые международные дистанционные
Школьные Инфоконкурсы 2022
33 конкурса для учеников 1–11 классов и дошкольников от проекта «Инфоурок»
Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:
5 839 352 материала в базе
Ищем педагогов в команду «Инфоурок»
Другие материалы
- 17.02.2016
- 714
- 0
- 17.02.2016
- 473
- 2
- 17.02.2016
- 5494
- 160
- 17.02.2016
- 654
- 0
- 17.02.2016
- 3109
- 11
- 17.02.2016
- 8978
- 11
- 17.02.2016
- 473
- 0
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
Добавить в избранное
- 17.02.2016 9208
- DOCX 14.3 кбайт
- 47 скачиваний
- Оцените материал:
Настоящий материал опубликован пользователем Горшкова Ирина Давыдовна. Инфоурок является информационным посредником и предоставляет пользователям возможность размещать на сайте методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт
Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с сайта, Вы можете оставить жалобу на материал.
Автор материала
- На сайте: 6 лет и 2 месяца
- Подписчики: 14
- Всего просмотров: 68201
- Всего материалов: 47
Московский институт профессиональной
переподготовки и повышения
квалификации педагогов
Видео:Решить уравнение с дробями - Математика - 6 классСкачать
Дистанционные курсы
для педагогов
663 курса от 690 рублей
Выбрать курс со скидкой
Выдаём документы
установленного образца!
Учителя о ЕГЭ: секреты успешной подготовки
Время чтения: 11 минут
С 1 сентября в российских школах будут исполнять гимн России
Время чтения: 1 минута
Инфофорум о буллинге в школе: итоги и ключевые идеи
Время чтения: 6 минут
«Единая Россия» внесла в Госдуму проект о снятии излишней нагрузки с учителей
Время чтения: 2 минуты
Минпросвещения рекомендует школьникам сдавать телефоны перед входом в школу
Время чтения: 1 минута
Онлайн-конференция о профессиональном имидже педагога
Время чтения: 2 минуты
Российские школьники начнут изучать историю с первого класса
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать
Уравнения со смешанными дробями
Уравнения со смешанными дробями можно решать двумя способами. Рассмотрим каждый из них на примере.
Решить уравнение со смешанными дробями:
1 способ: Это — линейное уравнение . Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Обе части уравнения делим на число, стоящее перед иксом:
Смешанные числа переведем в неправильные дроби:
Теперь обе части уравнения умножаем на наименьший общий знаменатель всех входящих в него дробей:
Таким образом, уравнение со смешанными дробями заменили на уравнение с целыми числами:
Это — линейные уравнения. Неизвестные — в одну сторону, известные — в другую, изменив при этом их знаки:
Обе части уравнения делим на число, стоящее перед иксом:
Ответ записываем в виде обыкновенной дроби:
Решать уравнения со смешанными числами можно обоими способами. На мой взгляд, второй способ удобнее. Еще два уравнения со смешанными дробями, решенные с помощью умножения на наименьший общий знаменатель.
Переводим смешанные числа в неправильные дроби:
Обе части уравнения умножаем на наименьший общий знаменатель всех дробей:
От уравнения со смешанными числами переходим к уравнению с целыми числами:
неизвестные слагаемые переносим в одну сторону, известные — в другую, изменяя при переносе знаки:
Обе части уравнения делим на число, стоящее перед иксом:
📺 Видео
дробное уравнение как решать для 6 классаСкачать
Уравнение. 5 класс.Скачать
УРАВНЕНИЯ СО СМЕШАННЫМИ ЧИСЛАМИ. Примеры | МАТЕМАТИКА 6 классСкачать
Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать
Как решать уравнения с дробью? #shortsСкачать
Сложение дробей и смешанных чисел. Практическая часть. 5 класс.Скачать
Математика 6 класс (Урок№54 - Смешанные дроби. Уравнения. Занимательные задачи.)Скачать
КАК РЕШАТЬ УРАВНЕНИЯ СО СМЕШАННЫМИ ЧИСЛАМИ, ДРОБЯМИ И СКОБКАМИ? Примеры | МАТЕМАТИКА 5 классСкачать
380 математика 6 класс. Решим уравнение. Сложение и вычитание Смешанных чисел.Скачать