Как решить уравнение с тремя числами и одним неизвестным

Математика

62. Одно уравнение с тремя неизвестными . Пусть имеем уравнение

На это уравнение можно смотреть, как на запись задачи: найти числовые значения для x, y и z, чтобы трехчлен 3x + 4y – 2z оказался равен числу 11. Таким образом это уравнение является уравнением с тремя неизвестными. Так как мы можем решить одно уравнение с одним неизвестным, то уже с первого взгляда возникает мысль, что 2 неизвестных здесь являются как бы лишними, и им можно давать произвольные значения. И действительно, если, например, взять для y число 3 и для z число 5, то получим уравнение с одним неизвестным:

Возьмем другие числа для y и z. Например, пусть

Тогда получим уравнение:

Продолжая эту работу дальше, мы придем к заключению:

Одно уравнение с тремя неизвестными имеет бесконечно много решений, и для получения их надо двум неизвестным давать произвольные значения.

Результаты этой работы можно записать в таблице (мы, кроме двух уже найденных решений, записали в ней еще одно, которое получится, если положить y = –1 и z = –2):

Как решить уравнение с тремя числами и одним неизвестным

Так как для y и для z мы берем произвольные значения, то они являются независимыми переменными, а x является зависимым (от них) переменным. Другими словами: x является функциею от y и z.

Чтобы удобнее получать решения этого уравнения, можно определить из него x через y и z. Получим:

3x + 4y – 2z = 11; 3x = 11 – 4y + 2z;
x = (11 – 4y + 2z) / 3.

Дадим, напр., значения: y = 5 и z = 1; получим: x = (11 – 20 + 2) / 3 = –2(1/3) и т. д.

Возьмем еще уравнение

Примем x и y за независимые переменные, а z — за зависимое и определим z через x и y

–2z = 7 – 3x + 5y; 2z = 3x – 5y – 7; z = (3x – 5y – 7) / 2

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Как решить уравнение с тремя числами и одним неизвестным

Объект исследования.

Исследования касаются одного из наиболее интересных разделов теории чисел — решения уравнений в целых числах.

Предмет исследования.

Решение в целых числах алгебраических уравнений с целыми коэффициентами более чем с одним неизвестным представляет собой одну из труднейших и древнейших математических задач и не достаточно глубоко представлена в школьном курсе математики. В своей работе я представлю достаточно полный анализ уравнений в целых числах, классификацию данных уравнений по способам их решения, описание алгоритмов их решения, а также практические примеры применения каждого способа для решения уравнений в целых числах.

Цель.

Познакомиться со способами решения уравнений в целых числах.

Задачи:

Изучить учебную и справочную литературу;

Собрать теоретический материал по способам решения уравнений;

Разобрать алгоритмы решения уравнений данного вида;

Описать способы решения;

Рассмотреть примеры решения уравнений с применением данных способов.

Гипотеза:

Столкнувшись с уравнениями в целых числах в олимпиадных заданиях, я предположила, что трудности в их решении обусловлены тем, что далеко не все способы их решения мне известны.

Актуальность:

Решая примерные варианты заданий ЕГЭ, я заметила, что часто встречаются задания на решение уравнений первой и второй степени в целых числах. Кроме того олимпиадные задания различных уровней также содержат уравнения в целых числах или задачи, которые решаются с применением умений решать уравнения в целых числах. Важность знания способов решения уравнений в целых числах и определяет актуальность моих исследований.

Методы исследования

Теоретический анализ и обобщение сведений научной литературы об уравнениях в целых числах.

Классификация уравнений в целых числах по методам их решения.

Анализ и обобщение методов решения уравнений в целых числах.

Результаты исследования

В работе описаны способы решений уравнений, рассмотрен теоретический материал теоремы Ферма, теорема Пифагора, алгоритма Евклида, представлены примеры решений задач и уравнений различных уровней сложности.

2.История уравнений в целых числах

Диофант – ученый – алгебраист Древней Греции, по некоторым данным он жил до 364 года н. э. Он специализировался на решении задач в целых числах. Отсюда и пошло название Диофантовы уравнения. Наиболее известной, решенной Диофантом, является задача «о разложении на два квадрата». Ее эквивалентом является известная всем теорема Пифагора. Жизнь и деятельность Диофанта протекала в Александрии, он собирал и решал известные и придумывал новые задачи. Позднее он объединил их в большом труде под названием «Арифметика». Из тринадцати книг, входивших в состав «Арифметики», только шесть сохранились до Средних веков и стали источником вдохновения для математиков эпохи Возрождения.«Арифметика» Диофанта — это сборник задач, каждая включает в себя решение и необходимое пояснение. В собрание входят разнообразные задачи, а их решение часто в высшей степени остроумно. Диофанта интересуют только положительные целые и рациональные решения. Иррациональные решения он называет «невозможными» и тщательно подбирает коэффициенты так, чтобы получились искомые положительные, рациональные решения.

Для решения уравнений в целых числах применяется теорема Ферма. История доказательства которой достаточно интересная. Над полным доказательством Великой теоремы работало немало выдающихся математиков, и эти усилия привели к получению многих результатов современной теории чисел. Считается, что теорема стоит на первом месте по количеству неверных доказательств.

Замечательный французский математик Пьер Ферма высказал утверждение, что уравнение при целом n ≥ 3 не имеет решений в целых положительных числах x, y, z ( xyz = 0 исключается положительностью x, y, z.Для случая n = 3 эту теорему в X веке пытался доказать среднеазиатский математик ал-Ходжанди, но его доказательство не сохранилось. Несколько позже сам Ферма опубликовал доказательство частного случая для n = 4.

Эйлер в 1770 доказал теорему для случая n = 3, Дирихле и Лежандр в 1825 — для n = 5,Ламе — для n = 7. Куммер показал, что теорема верна для всех простых n, меньших 100, за возможным исключением 37, 59, 67.

В 1980-х годах появился новый подход к решению проблемы. Из гипотезы Морделла, доказанной Фальтингсом в 1983 году, следует, что уравнение

при n > 3 может иметь лишь конечное число взаимно простых решений.

Последний, но самый важный, шаг в доказательстве теоремы был сделан в сентябре 1994 года Уайлсом. Его 130-страничное доказательство было опубликовано в журнале «AnnalsofMathematics». Доказательство основано на предположении немецкого математика Герхарда Фрая о том, что Великая теорема Ферма является следствием гипотезы Таниямы — Симуры (это предположение было доказано Кеном Рибетом при участии Ж.‑П.Серра. ).Первый вариант своего доказательства Уайлс опубликовал в 1993 году (после 7 лет напряжённой работы), но в нём вскоре обнаружился серьёзный пробел; с помощью Ричарда Лоуренса Тейлора пробел удалось достаточно быстро ликвидировать. В 1995 году был опубликован завершающий вариант. 15 марта 2016 года Эндрю Уайлз получает премию Абеля. В настоящее время премия составляет 6 миллионов норвежских крон, то есть примерно 50 миллионов рублей. По словам Уайлса, присуждение премии стало для него «полной неожиданностью».

3.Линейные уравнения в целых числах

Линейные уравнения – самые простые из всех диофантовых уравнений .

Уравнение вида ах=b, где a и b – некоторые числа, а х- неизвестная переменная, называется линейным уравнением с одной неизвестной. Здесь требуется найти только целые решения уравнения. Можно заметить, что если а ≠ 0, то целочисленное решение уравнение будет иметь только в том случае, когда b нацело делится на а и это решение х= b/ф. Если же а=0, то целочисленное решение уравнение будет иметь тогда, когда b=0 и в этом случае х любое число.

т.к. 12 нацело делится на 4, то

Т.к. а=о и b=0, то х любое число

Т.к. 7 нацело не делится на 10, то решений нет.

4. Способ перебора вариантов.

В способе перебора вариантов необходимо учитывать признаки делимости чисел, рассмотреть все возможные варианты равенства конечного перебора. Этот способ можно применить решая данные задачи:

1 Найти множество всех пар натуральных чисел, которые являются решением уравнения 49x+69y=602

Выражаем из уравнения х =,

Т.к. x и y натуральные числа, то х = ≥ 1, умножаем все уравнение на 49, чтобы избавиться от знаменателя:

Переносим 602 в левую сторону:

51y ≤ 553, выражаем y, y= 10

Полный перебор вариантов показывает, что натуральными решениями уравнения являются x=5, y=7.

2 Решить задачу

Из цифр 2, 4, 7 следует составить трёхзначное число, в котором ни одна цифра не может повторяться более двух раз.

Найдем количество всех трехзначных чисел, которые начинаются с цифры 2: (224, 242, 227, 272, 247, 274, 244, 277) – их 8.

Аналогично находим все трехзначные цифры начинающиеся с цифр 4 и 7: (442, 424, 422, 447, 474, 427, 472, 477).

(772, 774, 727, 747, 722, 744, 724, 742) – их тоже по 8 чисел. Следует всего 24 числа.

5. Цепная дробь и алгоритм Евклида

Цепной дробью называется выражение обыкновенной дроби в виде

где q1 – целое число, а q2, … ,qn – натуральные числа. Такое выражение называется цепной (конечной непрерывной) дробью. Различают конечные и бесконечные цепные дроби.

Для рациональных чисел цепная дробь имеет конечный вид. Кроме того, последовательность ai— это ровно та последовательность частных, которая получается при применении алгоритма Евклида к числителю и знаменателю дроби.

Решая уравнения цепной дробью, я составила общий алгоритм действий для данного способа решения уравнений в целых числах.

Алгоритм

1) Составить отношение коэффициентов при неизвестных в виде дроби

2) Преобразовать выражение в неправильную дробь

3) Выделить целую часть неправильной дроби

4) Правильную дробь заменить равной ей дробью

5) Проделать 3,4 с полученной в знаменателе неправильной дробью

6) Повторять 5 до конечного результата

7) У полученного выражения отбросить последнее звено цепной дроби, превратить получающуюся при этом новую цепную дробь в простую и вычесть ее из исходной дробь.

Пример №1 Решить в целых числах уравнение 127x- 52y+ 1 = 0

Преобразуем отношение коэффициентов при неизвестных.

Прежде всего, выделим целую часть неправильной дроби ; = 2 +

Правильную дробь заменим равной ей дробью .

Проделаем такие же преобразования с полученной в знаменателе неправильной дробью.

Теперь исходная дробь примет вид: .Повторяя те же рассуждения для дроби получим Выделяя целую часть неправильной дроби, придем к окончательному результату:

Мы получили выражение, которое называется конечной цепной или непрерывной дробью. Отбросив последнее звено этой цепной дроби — одну пятую, превратим получающуюся при этом новую цепную дробь в простую и вычтем ее из исходной дроби :

Приведем полученное выражение к общему знаменателю и отбросим его.

Откуда 127∙9–52∙22+1=0. Из сопоставления полученного равенства с уравнением 127x- 52y+1 = 0 следует, что тогда x= 9, y= 22 — решение исходного уравнения, и согласно теореме все его решения будут содержаться в прогрессиях x= 9+ 52t, y= 22+ 127t, где t=( 0; ±1; ±2…..).Полученный результат наводит на мысль о том, что и в общем случае для нахождения решения уравнения ax+by+c=0 надо разложить отношение коэффициентов при неизвестных в цепную дробь, отбросить ее последнее звено и проделать выкладки, подобные тем, которые были приведены выше.

Для доказательства этого предположения будут нужны некоторые свойства цепных дробей.

Рассмотрим несократимую дробь . Обозначим через q1 частное и через r2 остаток от деления a на b. Тогда получим:

Пусть, далее, q2 – частное и r3 – остаток от деления b на r2.

Величины q1, q2,… называются неполными частными. Приведенный выше процесс образования неполных частных называется алгоритмом Евклида. Остатки от деления r2, r3,…удовлетворяют неравенствам

т.е. образуют ряд убывающих неотрицательных чисел.

Пример№2 Решить уравнение170х+190у=3000 в целых числах

После сокращения на 10 уравнение выглядит так,

Для нахождения частного решения воспользуемся разложением дроби в цепную дробь

Свернув предпоследнюю подходящую к ней дробь в обыкновенную

Частное решение данного уравнения имеет вид

а общее задается формулой

х=2700-19k, y= -2400+17k.

откуда получаем условие на параметр k

6. Метод разложения на множители

Метод перебора вариантов неудобный способ, так как бывают случаи когда найти перебором всецелые решения, невозможно, так как таких решений бесконечное множество. Метод разложения на множители очень интересный прием и встречается он как и в элементарной математике так и в высшей.

Суть состоит в тождественном преобразовании. Смысл любого тождественного преобразования — это запись выражения в другом виде с сохранением его сути. Рассмотрим примеры применения данного метода.

1 Решить уравнение в целых числах y 3 — x 3 = 91.

Используя формулы сокращенного умножения, разложим правую часть уравнения на множители:

(y — x)(y 2 + xy + x 2 ) = 91

Выписываем все делители числа 91: ± 1; ± 7; ± 13; ± 91

Замечаем, что для любых целых x и y число

y 2 + yx + x 2 ≥ y 2 — 2|y||x| + x 2 = (|y| — |x|) 2 ≥ 0,

следовательно, оба сомножителя в левой части уравнения должны быть положительными. Тогда исходное уравнение равносильно совокупности систем уравнений:

Решив системы, отбираем те корни, которые являются целыми числами.

Получаем решения исходного уравнения: (5; 6), (-6; -5); (-3; 4),(-4;3).

2 Найти все пары натуральных чисел, удовлетворяющих уравнению х 2 –у 2 = 69

Разложим левую часть уравнения на множители и запишем уравнение в виде

Т.к. делителями числа 69 являются числа 1, 3, 23 и 69, то 69 можно получить двумя способами: 69=1·69 и 69=3·23. Учитывая, что х-у > 0, получим две системы уравнений, решив которые мы сможем найти искомые числа:

Выразив одну переменную и подставив ее в второе уравнение находим корни уравнений.Первая система имеет решение x=35;y=34 , а вторая система имеет решение x=13, y=10.

Ответ: (35; 34), (13; 10).

3 Решить уравнение х+у =ху в целых числах:

Запишем уравнение в виде

Разложим левую часть уравнения на множители. Получим

Произведение двух целых чисел может равняться 1 только в двух случаях: если оба они равны 1 или -1. Получим две системы:

Первая система имеет решение х=2, у=2, а вторая система имеет решение х=0, у=0.Ответ: (2; 2), (0; 0).

4 Доказать, что уравнение (x — y) 3 + (y — z) 3 + (z — x) 3 = 30 не имеет решений в целых числах.

Разложим левую часть уравнения на множители и обе части уравнения разделим на 3, в результате получим уравнение:

( x — y)(y — z)(z — x) = 10

Делителями 10 являются числа ±1, ±2, ±5, ±10. Заметим также, что сумма сомножителей левой части уравнения равна 0. Нетрудно проверить, что сумма любых трех чисел из множества делителей числа 10, дающих в произведении 10, не будет равняться 0. Следовательно, исходное уравнение не имеет решений в целых числах.

7. Метод остатков

Основная задача метода — находить остаток от деления обоих частей уравнения на целое число, на основе полученных результатов. Часто полученная информация уменьшает возможности множеств решений уравнения. Рассмотрим примеры:

1 Доказать, что уравнение x 2 = 3y + 2 не имеет решений в целых числах.

Рассмотрим случай, когда x, y ∈ N. Рассмотрим остатки от деления обоих частей на 3. Правая часть уравнения дает остаток 2 при делении на 3 при любом значении y. Левая же часть, которая является квадратом натурального числа, при делении на 3 всегда дает остаток 0 или 1. Исходя из этого получаем, что решения данного уравнения в натуральных числах нет.

Рассмотрим случай, когда одно из чисел равно 0. Тогда очевидно, решений в целых числах нет.

Случай, когда y — целое отрицательное не имеет решений, т.к. правая часть будет отрицательна, а левая — положительна.

Случай, когда x — целое отрицательное, также не имеет решений, т.к. попадает под один из рассмотренных ранее случаев ввиду того, что (-x) 2 = (x) 2 .

Получается, что указанное уравнение не имеет решений в целых числах, что и требовалось доказать.

2 Решите в целых числах 3 х = 1 + y 2 .

Не сложно заметить, что (0; 0) — решение данного уравнения. Остаётся доказать, что других целых корней уравнение не имеет.

1) Если x∈N, y∈N, то З делится на три без остатка, а 1 + y 2 при делении на 3 дает

остаток либо 1, либо 2. Следовательно, равенство при натуральных

значениях х, у невозможно.

2) Если х— целое отрицательное число,y∈Z , тогда 0 х 2 ≥ 0 и

равенство также невозможно. Следовательно, (0; 0) — единственное

3 Решить уравнение 2х 2 -2ху+9х+у=2 в целых числах:

Выразим из уравнения то неизвестное, которое входит в него только в первой степени, то есть переменную у:

2х 2 +9х-2=2ху-у, откуда

Выделим у дроби целую часть с помощью правила деления многочлена на многочлен «углом». Получим:

Очевидно, разность 2х-1 может принимать только значения -3, -1, 1 и 3.

Осталось перебрать эти четыре случая, в результате чего получаем решения: (1;9), (2;8), (0;2), (-1;3)

8.Пример решения уравнений с двумя переменными в целых числах как квадратных относительно одной из переменных

1 Решить в целых числах уравнение 5х 2 +5у 2 + 8ху+2у-2х +2=0

Данное уравнение можно решить методом разложения на множители, однако этот способ применительно к данному уравнению достаточно трудоёмкий. Рассмотрим более рациональный способ.

Запишем уравнение в виде квадратного относительно переменной х:

5x 2 +(8y-2)x+5y 2 +2y+2=0

Находим его корни.

Данное уравнение имеет решение тогда и только тогда, когда дискриминант

этого уравнения равен нулю, т.е. — 9(у+1) 2 =0, отсюда у= — 1.

9.Пример решения задач с помощью уравнений в целых числах.

1. Решить в натуральных числах уравнение: где n>m

Выразим переменную n через переменную m:

Найдем делители числа 625: это 1; 5; 25; 125; 625

1) если m-25 =1, то m=26, n=25+625=650

2) m-25 =5, то m=30, n=150

3) m-25 =25, то m=50, n=50

4) m-25 =125, то m=150, n=30

5) m-25 =625, то m=650, n=26

2. Решить уравнение в натуральных числах: mn +25 = 4m

Решение: mn +25 = 4m

1) выразим переменную 4m через n:

2) найдем натуральные делители числа 25: это 1; 5; 25

если 4-n =1, то n=3, m=25

4-n=5, то n=-1, m=5; 4-n =25, то n=-21, m=1 (посторонние корни)

Помимо заданий решить уравнение в целых числах, встречаются задания на доказательство того факта, что уравнение не имеет целых корней.

При решении таких задач, необходимо помнить следующие свойства делимости:

1) Если n Z; n делится на 2, то n = 2k, k ∈ Z.

2) Если n ∈ Z; n не делится на 2, то n = 2k+1, k ∈ Z.

3) Если n ∈ Z; n делится на 3, то n = 3k, k ∈ Z.

4) Если n ∈ Z; n не делится на 3, то n = 3k±1, k ∈ Z.

5) Если n ∈ Z; n не делится на 4, то n = 4k+1; n = 4k+2; n = 4k+3. k ∈ Z.

6) Если n ∈ Z; n(n+1) делится на 2, то n (n+1)(n+2) делится на 2;3;6.

7) n; n+1 – взаимно простые.

3 Доказать, что уравнение x 2 – 3у = 17 не имеет целых решений.

Пусть x; y – решения уравнения

x 2 = 3(у+6)-1 Т.к. y ∈ Z то y+6 ∈ Z , значит 3(y+6) делится на 3, следовательно, 3(y+6)-1 не делится на 3, следовательно, x 2 не делится на 3, следовательно, x не делится на 3, значит x = 3k±1, k ∈ Z.

Подставим это в исходное уравнение.

Получили противоречие. Значит у уравнения нет целых решений, что и требовалось доказать.

10.Формула Пика

Формула Пика была открыта австрийским математиком Георгом Пиком в 1899 году. Формула связанна с уравнениями в целых числах тем, что из многоугольников берут только целые узлы, как и целые числа в уравнениях.

При помощи этой формулы можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник).

В этой формуле будем находить целые точки внутри многоугольника и на его границе.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри треугольника.

*Под «узлами» имеется ввиду пересечение линий. Найдём площадь треугольника:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Найдём площадь многоугольника: Отметим узлы:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

12.Метод спуска

Один из методов решений уравнений в целых числах – метод спуска — опирается на теорему Ферма.

Методом спуска называется метод, который заключается в построении одного решения бесчисленной последовательности решений с неограниченно убывающим положительным z.

Алгоритм этого метода рассмотрим на примере решения конкретного уравнения.

Пример 1. Решить уравнение в целых числах 5x + 8y = 39.

1) Выберем неизвестное, имеющее наименьший коэффициент (в нашем случае это х), и выразим его через другое неизвестное:

2) Выделим целую часть: Очевидно, что х будет целым, если выражение окажется целым, что, в свою очередь, будет иметь место тогда, когда число 4 – 3y без остатка делится на 5.

3) Введем дополнительную целочисленную переменную z следующим образом: 4 –3y = 5z. В результате получим уравнение такого же типа, как и первоначальное, но уже с меньшими коэффициентами.

4) Решаем его уже относительно переменной y, рассуждая точно также как в п.1, 2: Выделяя целую часть, получим:

5) Рассуждая аналогично предыдущему, вводим новую переменную u: 3u = 1 – 2z.

6) Выразим неизвестную с наименьшим коэффициентом, в этом случае переменную z: . Требуя, чтобы было целым, получим: 1 – u = 2v, откуда u = 1 – 2v. Дробей больше нет, спуск закончен (процесс продолжаем до тез пор, пока в выражении для очередной переменной не останется дробей).

7) Теперь необходимо «подняться вверх». Выразим через переменную v сначала z, потом y и затем x:

8) Формулы x = 3+8v и y = 3 – 5v, где v – произвольное целое число, представляют общее решение исходного уравнения в целых числах.

Таким образом, метод спуска предполагает сначала последовательное выражение одной переменой чрез другую, пока в представлении переменной не останется дробей, а затем, последовательное «восхождение» по цепочке равенств для получения общего решения уравнения.

12.Заключение

В результате исследования подтвердилась гипотеза о том, что трудности при решении уравнений в целых числах обусловлены тем, что далеко не все способы их решения были мне известны. В ходе исследований мне удалось отыскать и описать малоизвестные способы решения уравнений в целых числах, проиллюстрировать их примерами. Результаты моих исследований могут быть полезны всем ученикам, интересующимся математикой.

13.Библиография

Книжные ресурсы:

1. Н. Я. Виленкин и др., Алгебра и математический анализ/10класс, 11 класс// М., «Просвещение», 1998 год;

2. А. Ф. Иванов и др., Математика. Учебно-тренировочные материалы для подготовки к экзамену// Воронеж, ГОУВПО ВГТУ, 2007 год

3. А. О. Гельфонд, Математика, теория чисел// Решение уравнений в целых числах// Книжный дом «ЛИБРОКОМ»

Ресурсы сети интернет:

Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Система линейных уравнений с тремя переменными

Линейное уравнение с тремя переменными и его решение

Уравнение вида ax+by+cz = d , где a, b, c, d — данные числа, называется линейным уравнением с тремя переменными x, y и z.

Например: $2x+5y+z = 8; -x+1, 5y+2z = 0; frac x-8y-5z = 7$

Уравнение с тремя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x,y и z.

Например: $2x^2+xz+y^2+yz^2 = 3,x-5y^2+z^3 = 1, 7x^3+y+xyz = 7$

Решением уравнения с тремя переменными называется упорядоченная тройка значений переменных (x,y,z), обращающая это уравнение в тождество.

О тождествах – см. §3 данного справочника

Например: для уравнения 2x+5y+z=8 решениями являются тройки x = -2, y = 1, z = 7; x = -1, y = 1, 6 , z = 2; x = -3, y = 2, 4, z = 2 и т.д. Уравнение имеет бесконечное множество решений.

Геометрическим представлением линейного уравнения с тремя переменными является плоскость в трёхмерном координатном пространстве .

Как решить уравнение с тремя числами и одним неизвестным

Решение системы линейных уравнений с тремя переменными методом подстановки

Алгоритм метода подстановки для системы уравнений с тремя переменными аналогичен алгоритму для двух переменных (см.§45 данного справочника)

Например: решить систему

$$ <left< begin 3x+2y-z = 8 \ x-y+z = -2 \ 2x-3y-5z = 1 end right.> Rightarrow <left< begin 3(y-z-2)+2y-z = 8 \ x = y-z-2 \ 2(y-z-2)-3y-5z = 1 end right.> Rightarrow $$

$$ Rightarrow <left< begin x = y-z-2 \ 5y-4z = 14 \ -y-7z = 5 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ 5(-7z-5)-4z = 14 end right.> Rightarrow <left< begin x = y-z-2 \ y = -7z-5 \ -39z = 39 end right.> Rightarrow $$

$$ Rightarrow <left< begin x = 2-(-1)-2 = 1 \ y = -7cdot(-1)-5 = 2 \ z = -1 end right.> Rightarrow <left< begin x = 1 \ y = 2 \ z = -1 end right.> $$

Решение системы линейных уравнений с тремя переменными методом Крамера

Для системы с 3-мя переменными действуем по аналогии.

Дана система 3-х линейных уравнений с 3-мя переменными:

$$ <left< begin a_1 x+b_1 y+c_1 z = d_1 \ a_2 x+b_2 y+c_2 z = d_2 \ a_3 x+b_3 y+c_3 z = d_3 end right.> $$

Определим главный определитель системы:

$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end $$

и вспомогательные определители :

$$ Delta_x = begin d_1 & b_1 & c_1 \ d_2 & b_2 & c_2 \ d_3 & b_3 & c_3 end, Delta_y = begin a_1 & d_1 & c_1 \ a_2 & d_2 & c_2 \ a_3 & d_3 & c_3 end, Delta_z = begin a_1 & b_1 & d_1 \ a_2 & b_2 & d_2 \ a_3 & b_3 & d_3 end $$

Тогда решение системы:

Соотношение значений определителей, расположения плоскостей и количества решений:

Три плоскости пересекаются в одной точке

Три плоскости параллельны

Две или три плоскости совпадают или пересекаются по прямой

Бесконечное множество решений

Осталось определить правило вычисления определителя 3-го порядка.

Таких правил несколько, приведём одно из них (так называемое «раскрытие определителя по первой строке»):

$$ Delta = begin a_1 & b_1 & c_1 \ a_2 & b_2 & c_2 \ a_3 & b_3 & c_3 end = a_1 = begin b_2 & c_2 \ b_3 & c_3 end — b_1 = begin a_2 & c_2 \ a_3 & c_3 end + c_1 = begin a_2 & b_2 \ a_3 & b_3 end = $$

$$ = a_1 (b_2 c_3-b_3 c_2 )-b_1 (a_2 c_3-a_3 c_2 )+c_1 (a_2 b_3-a_3 b_2 )$$

Примеры

Пример 1. Найдите решение системы уравнений методом подстановки:

$$<left< begin z = 3x+2y-13 \ 2x-y+3(3x+2y-13) = -2 \ x+2y-(3x+2y-13) = 9 end right.> Rightarrow <left< begin z = 3x+2y-13 \ 11x+5y = 37 \ -2x = -4 end right.> Rightarrow $$

$$Rightarrow <left< begin z = 3cdot2+2cdot3-13 = -1 \ y = frac = 3 \ x = 2 end right.> Rightarrow <left< begin x = 2 \ y = 3 \ z = -1 end right.> $$

$$ <left< begin x = -y-3z+6 \ 2(-y-3z+6)-5y-z = 5\ (-y-3z+6)+2y-5z = -11 end right.> Rightarrow <left< begin x = -y-3z+6 \ -7y-7z = -7 |:(-7) \ y-8z = -17 end right.> Rightarrow $$

$$ Rightarrow <left< begin x = -y-3z+6 \ y+z = 1 \ y-8z = -17 end right.> Rightarrow <left< begin x = -y-3z+6 \ 9z = 18 \ y = 1-z end right.> Rightarrow <left< begin x = 1-6+6 = 1 \ z = 2 \ y = 1-2 = -1 end right.> Rightarrow$$

Пример 2. Найдите решение системы уравнений методом Крамера:

$$ Delta = begin 3 & 2 & -1 \ 2 & -1 & 3\ 1 & 2 & -1 end = 3 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -1 \ 1 & 2 \ end = $$

$$ Delta_x = begin 13 & 2 & -1 \ -2 & -1 & 3 \ 9 & 2 & -1 \ end = 13 = begin -1 & 3 \ 2 & -1 \ end — 2 = begin -2 & 3 \ 9 & -1 \ end — 1 = begin -2 & -1 \ 9 & 2 \ end = $$

$$ Delta_y = begin 3 & 13 & -1 \ 2 & -2 & 3 \ 1 & 9 & -1 \ end = 3 = begin -2 & 3 \ 9 & -1 \ end — 13 = begin 2 & 3 \ 1 & -1 \ end — 1 = begin 2 & -2 \ 1 & 9 \ end = $$

$$ Delta_z = begin 3 & 2 & 13 \ 2 & -1 & -2 \ 1 & 2 & 9 \ end = 3 = begin -1 & -2 \ 2 & 9 \ end — 2 = begin 2 & -2 \ 1 & 9 \ end + 13 = begin 2 & -1 \ 1 & 2 \ end = $$

$$ Delta = begin 1 & 1 & 3 \ 2 & -5 & -1\ 1 & 2 & -5 end = 1 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & -5 \ 1 & 2 \ end = $$

$$ Delta_x = begin 6 & 1 & 3 \ 5 & -5 & -1 \ -11 & 2 & -5 \ end = 6 = begin -5 & -1 \ 2 & -5 \ end — 1 = begin 5 & -1 \ -11 & -5 \ end + 3 = begin 5 & -5 \ -11 & 2 \ end = $$

$$ = 6(25+2)—(-25-11)+3(10-55) = 162+36-135 = 63 $$

$$ Delta_y = begin 1 & 16 & 3 \ 2 & 5 & -1 \ 1 & -11 & -5 \ end = 1 = begin 5 & -1 \ -11 & -5 \ end — 6 = begin 2 & -1 \ 1 & -5 \ end + 3 = begin 2 & 5 \ 1 & -11 \ end = $$

$$ Delta_z = begin 1 & 1 & 6 \ 2 & -5 & 5 \ 1 & 2 & -11 \ end = 1 = begin -5 & 5 \ 2 & -11 \ end — 1 = begin 2 & 5 \ 1 & -11 \ end + 6 = begin 2 & -5 \ 1 & 2 \ end = $$

Пример 3*. Решите систему уравнений относительно x,y,и z:

$$ a neq b, b neq c, a neq c $$

Решаем методом замены:

$$ <left< begin z = -(a^3+a^2 x+ay)\ b^3+b^2 x+by-(a^3+a^2 x+ay) = 0 \ c^3+c^2 x+cy-(a^3+a^2 x+ay) = 0 end right.> Rightarrow <left< beginz = -(a^3+a^2 x+ay)\ (b^2-a^2 )x+(b-a)y = a^3-b^3 \ (c^2-a^2 )x+(c-a)y = a^3-c^3 end right.> $$

Т.к. $ a neq b$ второе уравнение можно сократить на $(a-b) neq 0$

Т.к.$ a neq c$ третье уравнение можно сократить на $(a-с) neq 0 $. В третьем уравнении после сокращения поменяем знаки:

Из второго уравнения получаем:

Т.к. $b neq c$ можно сократить на $(b-c) neq 0$:

$$ z = -(a^3+a^2 x+ay) = -a^3+a^2 (a+b+c)-a(ab+ac+bc) = $$

$$ = -a^3+a^3+a^2 b+a^2 c-a^2 b-a^2 c-abc = -abc $$

🎦 Видео

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

Математика 3 класс (Урок№3 - Решение уравнений с неизвестным уменьшаемым, с неизвестным вычитаемым.)Скачать

Математика 3 класс (Урок№3 - Решение уравнений с неизвестным уменьшаемым, с неизвестным вычитаемым.)

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Линейное уравнение с одной переменной. 6 класс.Скачать

Линейное уравнение с одной переменной. 6 класс.

Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать

УРАВНЕНИЕ  4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ  РЕШАЕМ УРАВНЕНИЯ #уравнение

Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Линейное уравнение с двумя переменными. 7 класс.Скачать

Линейное уравнение с двумя переменными. 7 класс.

Простые уравнения. Как решать простые уравнения?Скачать

Простые уравнения. Как решать простые уравнения?

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)Скачать

Математика 2 класс (Урок№26 - Уравнение. Решение уравнений подбором неизвестного числа.)

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числахСкачать

Как решать Диофантовы уравнения ★ 9x+13y=-1 ★ Решите уравнение в целых числах

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Уравнение. 5 класс.Скачать

Уравнение. 5 класс.

Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.Скачать

Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.

Как решать неравенства? Часть 1| МатематикаСкачать

Как решать неравенства? Часть 1| Математика
Поделиться или сохранить к себе: