О чем эта статья:
5 класс, 6 класс, 7 класс
- Понятие дроби
- Основные свойства дробей
- Понятие уравнения
- Понятие дробного уравнения
- Как решать уравнения с дробями
- 1. Метод пропорции
- 2. Метод избавления от дробей
- Что еще важно учитывать при решении
- Универсальный алгоритм решения
- Примеры решения дробных уравнений
- Как решать смешанные числа 5 класс. Дроби 5 класс вычитание и сложение смешанных чисел
- Смешанные числа объяснение 5 класс
- Видео: «Математика 5 класс. Смешанные числа»
- Видеоурок: «Смешанные числа математика 5 класс»
- Правильные и неправильные дроби смешанные числа
- Видео: «Правильные и неправильные дроби»
- Видео: «Правильные и неправильные дроби примеры»
- Правила сложения и вычитания смешанных чисел
- Видео: «Сложение и вычитание смешанных чисел»
- Преобразование неправильной дроби в смешанное число
- Видео: «Преобразование неправильной дроби в смешанную»
- Преобразование смешанного числа в неправильную дробь
- Видео: «Перевод смешанного числа в неправильную дробь»
- Как решать уравнения с дробями по математике
- Где можно решить уравнение со смешанными дробями онлайн?
Видео:КАК РЕШИТЬ СЛОЖНОЕ УРАВНЕНИЕ СО СМЕШАННЫМИ ЧИСЛАМИ? Примеры | МАТЕМАТИКА 5 классСкачать
Понятие дроби
Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.
Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:
- обыкновенный вид — ½ или a/b,
- десятичный вид — 0,5.
Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.
Дроби бывают двух видов:
- Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
- Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.
Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.
Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.
Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать
Основные свойства дробей
Дробь не имеет значения, если делитель равен нулю.
Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.
Дроби a/b и c/d называют равными, если a × d = b × c.
Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.
Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.
Видео:КАК РЕШАТЬ УРАВНЕНИЯ СО СМЕШАННЫМИ ЧИСЛАМИ, ДРОБЯМИ И СКОБКАМИ? Примеры | МАТЕМАТИКА 5 классСкачать
Понятие уравнения
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:
- Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
- Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.
Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.
Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.
Решить уравнение значит найти все его корни или убедиться, что корней нет.
Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.
Линейное уравнение выглядит так | ах + b = 0, где a и b — действительные числа. Что поможет в решении:
|
---|---|
Квадратное уравнение выглядит так: | ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0. |
Видео:Сложение и вычитание смешанных чиселСкачать
Понятие дробного уравнения
Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:
Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.
Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:
На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.
Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.
Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать
Как решать уравнения с дробями
1. Метод пропорции
Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.
Итак, у нас есть линейное уравнение с дробями:
В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.
После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.
2. Метод избавления от дробей
Возьмем то же самое уравнение, но попробуем решить его по-другому.
В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:
- подобрать число, которое можно разделить на каждый из знаменателей без остатка;
- умножить на это число каждый член уравнения.
Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!
Вот так просто мы получили тот же ответ, что и в прошлый раз.
Что еще важно учитывать при решении
- если значение переменной обращает знаменатель в 0, значит это неверное значение;
- делить и умножать уравнение на 0 нельзя.
Универсальный алгоритм решения
Определить область допустимых значений.
Найти общий знаменатель.
Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.
Раскрыть скобки, если нужно и привести подобные слагаемые.
Решить полученное уравнение.
Сравнить полученные корни с областью допустимых значений.
Записать ответ, который прошел проверку.
Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.
Видео:МАТЕМАТИКА 5 КЛАСС: РЕШЕНИЕ УРАВНЕНИЙ СО СМЕШАННЫМИ ЧИСЛАМИСкачать
Примеры решения дробных уравнений
Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.
Пример 1. Решить дробное уравнение: 1/x + 2 = 5.
- Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
- Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Решим обычное уравнение.
Пример 2. Найти корень уравнения
- Область допустимых значений: х ≠ −2.
- Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
- Избавимся от знаменателя. Умножим каждый член уравнения на х.
Переведем новый множитель в числитель..
Сократим левую часть на (х+2), а правую на 2.
Пример 3. Решить дробное уравнение:
- Найти общий знаменатель:
Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:
Выполним возможные преобразования. Получилось квадратное уравнение:
Решим полученное квадратное уравнение:
Получили два возможных корня:
Если x = −3, то знаменатель равен нулю:
Если x = 3 — знаменатель тоже равен нулю.
Видео:Уравнение. 5 класс.Скачать
Как решать смешанные числа 5 класс. Дроби 5 класс вычитание и сложение смешанных чисел
Примеры с целой частью и дробным остатком заставляют паниковать любого ребенка. На первый взгляд они совершенно непонятные. Изучая их, следует понять какие из них будут правильными, а какие нет. Так же необходимо научиться вынимать из дробей целые числа, делать перевод смешанных чисел.
Видео:5 класс, 29 урок, Сложение и вычитание смешанных чиселСкачать
Смешанные числа объяснение 5 класс
Дробь мы получаем при делении, когда в конце остается остаток.
- Если не выделяется целое число, верхняя часть меньше нижней, значит мы получили правильную дробь.
- Если выделяется целое и остаток, значит мы получили ответ со смешанным числом.
В учебниках пятиклассник будет видеть следующие образцы смешанных чисел.
Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Видео: «Математика 5 класс. Смешанные числа»
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Видеоурок: «Смешанные числа математика 5 класс»
Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать
Правильные и неправильные дроби смешанные числа
При решение определенного задания пятикласснику следует, в первую очередь, обратить внимание на запись дробей.
Если нижние цифры под черточкой меньше верхних, значит, в данном примере мы имеем правильную дробь. Из нее нет возможности что-то выделить, так как она меньше целого числа.
Если верхние цифры больше нижних, значит, в данном примере, мы имеем неправильную дробь. Которая при чтении ответа читается как смешанное число. В этот раз мы можем получить целое число с остатком.
Видео:Математика 5 класс (Урок№73 - Вычитание смешанных дробей.)Скачать
Видео: «Правильные и неправильные дроби»
Видео:Математика 5 класс (Урок№71 - Понятие смешанной дроби.)Скачать
Видео: «Правильные и неправильные дроби примеры»
Видео:Сложение дробей и смешанных чисел. Практическая часть. 5 класс.Скачать
Правила сложения и вычитания смешанных чисел
При выполнении математических заданий, пятикласснику изначально необходимо будет из смешанного числа сделать неправильную дробь. После этого выполняется суммирование, либо вычитание.
Если в задании будут два целых числа, а в дробном остатке одинаковый цифры снизу под черточкой, перевод можно не делать. Изначально суммируют или вычитают целые числа, а затем дробную часть.
При решении заданий можно перевести число в неправильную дробь, затем суммировать. Завершающим этапом станет выделение целого числа и остатка.
Задания с вычитанием так же могут быть выполнены в двух вариантах.
Видео:Вычитание смешанных чисел. 5 класс.Скачать
Видео: «Сложение и вычитание смешанных чисел»
Видео:СМЕШАННЫЕ ДРОБИ ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэСкачать
Преобразование неправильной дроби в смешанное число
Изо всех неправильных дробей в заданиях можно выделить целые числа и остаток. Для этого проводим следующее действие:
Можно пойти другим путем, минуя столбик. Будем использовать умножение и вычитание.
Видео:Уравнение со смешанными числами и дробями. Математика 5 классСкачать
Видео: «Преобразование неправильной дроби в смешанную»
Видео:Уравнение со смешанными числами. Математика 5 классСкачать
Преобразование смешанного числа в неправильную дробь
Для того, чтобы быстро и безошибочно разобраться с заданием, нужно провести преобразование.
Имеет место более короткий вариант, без расписания многочисленных действий.
Существует формула, которую необходимо выучить пятикласснику.
Обозначение букв следующее:
- «a» целое натуральное число.
- «b» числитель.
- «c» знаменатель.
Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Видео: «Перевод смешанного числа в неправильную дробь»
PS: Разложив по полочкам последовательность раскладывания дроби и из чего она состоит, ваш школьник без особых усилий сможет разобраться с любым заданием где есть дроби.
Видео:СЛОЖЕНИЕ СМЕШАННЫХ ЧИСЕЛ вычитание смешанных чисел 5 классСкачать
Как решать уравнения с дробями по математике
В математике всегда существует несколько решений для одного уравнения. Выбор способа решения влияет только на количество математических вычислений и время получения результат. Что касается уравнений со смешанными дробями, то данного рода уравнения можно решить минимум двумя стандартными способами.
Допустим, нам дано такое уравнение, которое мы решим 2 способами:
Выполним группировку членов уравнения:
Далее выполним такие арифметические действия с дробями как складывание и вычитание:
Из полученного результата мы делаем вывод, что нам необходимо произвести деление правой части на число перед x:
Второй способ заключается в том, чтобы преобразовать смешанные числа в неправильные дроби:
Получив это, нам необходимо умножить левую и правую часть уравнения на НОЗ:
После выполнения умножения на НОЗ мы получим простое линейное уравнение, которое решается с помощью группировки членов:
[66x + 46 = 93x + 32]
[66x — 93x = 32 — 46]
Где можно решить уравнение со смешанными дробями онлайн?
Решить уравнение вы можете на нашем сайте https://pocketteacher.ru. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать — это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.
Наш искусственный интеллект решает сложные математические задания за секунды.
Мы решим вам контрольные, домашние задания, олимпиадные задачи с подробными шагами. Останется только переписать в тетрадь!