Как решить уравнение с корнем в числителе и знаменателе

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Решение уравнений с дробями

Как решить уравнение с корнем в числителе и знаменателе

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.Скачать

Преобразование выражений, содержащих квадратные корни. Избавление от иррациональности. 8 класс.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональностиСкачать

Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональности

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решить уравнение с корнем в числителе и знаменателе Как решить уравнение с корнем в числителе и знаменателе

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решить уравнение с корнем в числителе и знаменателе Как решить уравнение с корнем в числителе и знаменателе

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решить уравнение с корнем в числителе и знаменателе

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решить уравнение с корнем в числителе и знаменателе

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решить уравнение с корнем в числителе и знаменателе

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решить уравнение с корнем в числителе и знаменателе

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решить уравнение с корнем в числителе и знаменателе

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решить уравнение с корнем в числителе и знаменателе

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решить уравнение с корнем в числителе и знаменателе

Переведем новый множитель в числитель..

Как решить уравнение с корнем в числителе и знаменателе

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решить уравнение с корнем в числителе и знаменателе

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

    Алгебра 8. Урок 11 - Дробно-рациональные уравнения

    Иррациональные уравнения с кубическими радикалами

    Разделы: Математика

    Тема: «Иррациональные уравнения вида Как решить уравнение с корнем в числителе и знаменателе , Как решить уравнение с корнем в числителе и знаменателе

    (Методическая разработка.)

    Основные понятия

    Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

    Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

    Основные свойства радикалов:

    • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
    • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

    Методы решения иррациональных уравнений

    Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

    Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

    Основными методами решения иррациональных уравнений являются:

    а) метод возведения обеих частей уравнения в одну и ту же степень;

    б) метод введения новых переменных (метод замен);

    в) искусственные приемы решения иррациональных уравнений.

    В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

    1 метод. Возведение в куб.

    Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

    Пример 1. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе

    Перепишем уравнение в виде Как решить уравнение с корнем в числителе и знаменателеи возведём в куб обе его части. Получим уравнение равносильное данному уравнению Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателеКак решить уравнение с корнем в числителе и знаменателеКак решить уравнение с корнем в числителе и знаменателе

    Пример 2. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе.

    Перепишем уравнение в виде Как решить уравнение с корнем в числителе и знаменателеи возведём в куб обе его части. Получим уравнение равносильное данному уравнению

    Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателе,

    и рассмотрим полученное уравнение как квадратное относительно одного из корней

    Как решить уравнение с корнем в числителе и знаменателе,

    Как решить уравнение с корнем в числителе и знаменателе

    Как решить уравнение с корнем в числителе и знаменателе,

    следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

    Проверка: Как решить уравнение с корнем в числителе и знаменателе

    Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

    2 метод. Возведение в куб по формуле.

    По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

    Как решить уравнение с корнем в числителе и знаменателеКак решить уравнение с корнем в числителе и знаменателе,

    (незначительная модификация известной формулы), тогда

    Как решить уравнение с корнем в числителе и знаменателе

    Пример3. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе.

    Возведём уравнение в куб с использованием формул, приведённых выше.

    Как решить уравнение с корнем в числителе и знаменателе,

    Но выражение Как решить уравнение с корнем в числителе и знаменателедолжно быть равно правой части. Поэтому имеем:

    Как решить уравнение с корнем в числителе и знаменателе, откуда

    Как решить уравнение с корнем в числителе и знаменателе.

    Теперь при возведении в куб получаем обычное квадратное уравнение:

    Как решить уравнение с корнем в числителе и знаменателе, и два его корня

    Как решить уравнение с корнем в числителе и знаменателе,Как решить уравнение с корнем в числителе и знаменателе

    Оба значения, как показывает проверка, правильные.

    Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

    Пример4. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе.

    Возводя, как и ранее, обе части в третью степень, имеем:

    Как решить уравнение с корнем в числителе и знаменателе.

    Откуда (учитывая, что выражение в скобках равно Как решить уравнение с корнем в числителе и знаменателе), получаем:

    Как решить уравнение с корнем в числителе и знаменателе, значит

    Как решить уравнение с корнем в числителе и знаменателе. ПолучаемКак решить уравнение с корнем в числителе и знаменателе, Как решить уравнение с корнем в числителе и знаменателе.Сделаем проверку и убедимся х=0 –посторонний корень.

    Ответ: Как решить уравнение с корнем в числителе и знаменателе.

    Ответим на вопрос: «Почему возникли посторонние корни?»

    Равенство Как решить уравнение с корнем в числителе и знаменателевлечёт равенство Как решить уравнение с корнем в числителе и знаменателе. Заменим с на –с, получим:

    Как решить уравнение с корнем в числителе и знаменателеи Как решить уравнение с корнем в числителе и знаменателе.

    Нетрудно проверить тождество

    Как решить уравнение с корнем в числителе и знаменателе,

    Итак, если Как решить уравнение с корнем в числителе и знаменателе, то либо Как решить уравнение с корнем в числителе и знаменателе, либо Как решить уравнение с корнем в числителе и знаменателе. Уравнение можно представить в виде Как решить уравнение с корнем в числителе и знаменателе, Как решить уравнение с корнем в числителе и знаменателе.

    Заменяя с на –с, получаем: если Как решить уравнение с корнем в числителе и знаменателе, то либо Как решить уравнение с корнем в числителе и знаменателе, либо Как решить уравнение с корнем в числителе и знаменателе

    Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

    3 метод. Метод системы.

    Пример 5. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе.

    Введём замену, составим и решим систему уравнений.

    Пусть Как решить уравнение с корнем в числителе и знаменателе, Как решить уравнение с корнем в числителе и знаменателе. Тогда:

    Как решить уравнение с корнем в числителе и знаменателеоткуда очевидно, что Как решить уравнение с корнем в числителе и знаменателе

    Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

    Как решить уравнение с корнем в числителе и знаменателеЛегко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

    Ответ: Корней нет.

    Пример 6. Решить уравнение Как решить уравнение с корнем в числителе и знаменателе.

    Введём замену, составим и решим систему уравнений.

    Пусть Как решить уравнение с корнем в числителе и знаменателе, Как решить уравнение с корнем в числителе и знаменателе. Тогда

    Как решить уравнение с корнем в числителе и знаменателеКак решить уравнение с корнем в числителе и знаменателеКак решить уравнение с корнем в числителе и знаменателе

    Как решить уравнение с корнем в числителе и знаменателеили Как решить уравнение с корнем в числителе и знаменателе

    Возвращаясь к исходной переменной имеем:

    Как решить уравнение с корнем в числителе и знаменателех=0.

    4 метод. Использование монотонности функций.

    Прежде чем использовать данный метод обратимся к теории.

    Нам понадобятся следующие свойства:

    • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
    • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
    • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
    • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
    • Функция вида Как решить уравнение с корнем в числителе и знаменателевозрастает при к>0 и убывает при к 30.05.2009

    Видео:СЛОЖИТЕ ДВА КОРНЯСкачать

    СЛОЖИТЕ ДВА КОРНЯ

    Дробно-рациональные уравнения

    Видео:Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая часть. 8 класс.Скачать

    Преобразование выражений, содержащих кв. корни. Сокращение дробей. Практическая  часть. 8 класс.

    Что такое дробно-рациональные уравнения

    Дробно-рациональными уравнениями называют такие выражения, которые представляется возможным записать, как:

    при P ( x ) и Q ( x ) в виде выражений, содержащих переменную.

    Таким образом, дробно-рациональные уравнения обязательно содержат как минимум одну дробь с переменной в знаменателе с любым модулем.

    9 x 2 — 1 3 x = 0

    1 2 x + x x + 1 = 1 2

    6 x + 1 = x 2 — 5 x x + 1

    Уравнения, которые не являются дробно-рациональными:

    СЛОЖНА-А-А 🙀 Ты же знаешь, что если не разобраться в теме сейчас, то потом придется исправлять оценки. Беги на бесплатное онлайн-занятие с репетитором (подробности тут + 🎁).

    Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

    СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

    Как решаются дробно-рациональные уравнения

    В процессе решения дробно-рациональных уравнений обязательным действием является определение области допустимых значений. Найденные корни следует проверить на допустимость, чтобы исключить посторонние решения.

    Алгоритм действий при стандартном способе решения:

    1. Выписать и определить ОДЗ.
    2. Найти общий знаменатель для дробей.
    3. Умножить каждый из членов выражения на полученный общий параметр (знаменатель), сократить дроби, которые получились в результате, чтобы исключить знаменатели.
    4. Записать уравнение со скобками.
    5. Раскрыть скобки для приведения подобных слагаемых.
    6. Найти корни полученного уравнения.
    7. Выполним проверку корней в соответствии с ОДЗ.
    8. Записать ответ.

    Пример 1

    Разберем предложенный алгоритм на практическом примере. Предположим, что имеется дробно-рациональное уравнение, которое требуется решить:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    Начать следует с области допустимых значений:

    x 2 — 4 ≠ 0 ⇔ x ≠ ± 2

    Воспользуемся правилом сокращенного умножения:

    x 2 — 4 = ( x — 2 ) ( x + 2 )

    В результате общим знаменателем дробей является:

    Выполним умножение каждого из членов выражения на общий знаменатель:

    x x — 2 — 7 x + 2 = 8 x 2 — 4

    x ( x — 2 ) ( x + 2 ) x — 2 — 7 ( x — 2 ) ( x + 2 ) x + 2 = 8 ( x — 2 ) ( x + 2 ) ( x — 2 ) ( x + 2 )

    После сокращения избавимся от скобок и приведем подобные слагаемые:

    x ( x + 2 ) — 7 ( x — 2 ) = 8

    x 2 + 2 x — 7 x + 14 = 8

    Осталось решить квадратное уравнение:

    Согласно ОДЗ, первый корень является лишним, так как не удовлетворяет условию, по которому корень не равен 2. Тогда в ответе можно записать:

    Видео:29. Вычисление пределов функции №4. Неопределенность 0/0 с корнями.Скачать

    29. Вычисление пределов функции №4. Неопределенность 0/0 с корнями.

    Примеры задач с ответами для 9 класса

    Требуется решить дробно-рациональное уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    x x + 2 + x + 1 x + 5 — 7 — x x 2 + 7 x + 10 = 0

    Определим область допустимых значений:

    О Д З : x + 2 ≠ 0 ⇔ x ≠ — 2

    x 2 + 7 x + 10 ≠ 0

    D = 49 — 4 · 10 = 9

    x 1 ≠ — 7 + 3 2 = — 2

    x 2 ≠ — 7 — 3 2 = — 5

    Квадратный трехчлен x 2 + 7 x + 10 следует разложить на множители, руководствуясь формулой:

    a x 2 + b x + c = a ( x — x 1 ) ( x — x 2 )

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Заметим, что общим знаменателем для дробей является: ( x + 2 ) ( x + 5 ) . Умножим на этот знаменатель уравнение:

    x x + 2 + x + 1 x + 5 — 7 — x ( x + 2 ) ( x + 5 ) = 0

    Сократим дроби, избавимся от скобок, приведем подобные слагаемые:

    x ( x + 2 ) ( x + 5 ) x + 2 + ( x + 1 ) ( x + 2 ) ( x + 5 ) x + 5 —

    — ( 7 — x ) ( x + 2 ) ( x + 5 ) ( x + 2 ) ( x + 5 ) = 0

    x ( x + 5 ) + ( x + 1 ) ( x + 2 ) — 7 + x = 0

    x 2 + 5 x + x 2 + 3 x + 2 — 7 + x = 0

    2 x 2 + 9 x — 5 = 0

    Потребуется решить квадратное уравнение:

    2 x 2 + 9 x — 5 = 0

    Первый корень не удовлетворяет условиям ОДЗ, поэтому в ответ нужно записать только второй корень.

    Дано дробно-рациональное уравнение, корни которого требуется найти:

    4 x — 2 — 3 x + 4 = 1

    В первую очередь следует переместить все слагаемые влево и привести дроби к минимальному единому знаменателю:

    4 ( x + 4 ) x — 2 — 3 ( x — 2 ) x + 4 — 1 ( x — 2 ) ( x + 4 ) = 0

    4 ( x + 4 ) — 3 ( x — 2 ) — ( x — 2 ) ( x + 4 ) ( x — 2 ) ( x + 4 ) = 0

    4 x + 16 — 3 x + 6 — ( x 2 + 4 x — 2 x — 8 ) ( x — 2 ) ( x + 4 ) = 0

    x + 22 — x 2 — 4 x + 2 x + 8 ( x — 2 ) ( x + 4 ) = 0

    Заметим, что получилось нулевое значение для дроби. Известно, что дробь может равняться нулю, если в числителе нуль, а знаменатель не равен нулю. На основании этого можно составить систему:

    — x 2 — x + 30 ( x — 2 ) ( x + 4 ) = 0 ⇔ — x 2 — x + 30 = 0 ( x — 2 ) ( x + 4 ) ≠ 0

    Следует определить такие значения для переменной, при которых в дроби знаменатель будет обращаться в нуль. Такие значения необходимо удалить из ОДЗ:

    ( x — 2 ) ( x + 4 ) ≠ 0

    Далее можно определить значения для переменных, которые при подстановке в уравнение обращают числитель в нуль:

    — x 2 — x + 30 = 0 _ _ _ · ( — 1 )

    Получилось квадратное уравнение, которое можно решить:

    Сравнив корни с условиями области допустимых значений, можно сделать вывод, что оба корня являются решениями данного уравнения.

    Нужно решить дробно-рациональное уравнение:

    x + 2 x 2 — 2 x — x x — 2 = 3 x

    На первом шаге следует перенести все слагаемые в одну сторону и привести дроби к минимальному единому знаменателю:

    x + 2 1 x ( x — 2 ) — x x x — 2 — 3 ( x — 2 ) x = 0

    x + 2 — x 2 — 3 ( x — 2 ) x ( x — 2 ) = 0

    x + 2 — x 2 — 3 x + 6 x ( x — 2 ) = 0

    — x 2 — 2 x + 8 x ( x — 2 ) = 0 ⇔ — x 2 — 2 x + 8 = 0 x ( x — 2 ) ≠ 0

    Перечисленные значения переменной обращают знаменатель в нуль. По этой причине их необходимо удалить из области допустимых значений.

    — x 2 — 2 x + 8 = 0 _ _ _ · ( — 1 )

    Корни квадратного уравнения:

    x 1 = — 4 ; x 2 = 2

    Заметим, что второй корень не соответствует ОДЗ. Таким образом, в ответе остается только первый корень.

    Найти корни уравнения:

    x 2 — x — 6 x — 3 = x + 2

    Согласно стандартному алгоритму решения дробно-рациональных уравнений, выполним перенос всех слагаемых в одну сторону. Далее необходимо привести к дроби к наименьшему общему знаменателю:

    x 2 — x — 6 1 x — 3 — x ( x — 3 ) — 2 ( x — 3 ) = 0

    x 2 — x — 6 — x ( x — 3 ) — 2 ( x — 3 ) x — 3 = 0

    x 2 — x — 6 — x 2 + 3 x — 2 x + 6 x — 3 = 0

    0 x x — 3 = 0 ⇔ 0 x = 0 x — 3 ≠ 0

    Такое значение переменной, при котором знаменатель становится равным нулю, нужно исключить из области допустимых значений:

    Заметим, что это частный случай линейного уравнения, которое обладает бесконечным множеством корней. При подстановке какого-либо числа на место переменной х в любом случае числовое равенство будет справедливым. Единственным недопустимым значением для х в данном задании является число 3, которое не входит в ОДЗ.

    Ответ: х — любое число, за исключением 3.

    Требуется вычислить корни дробно-рационального уравнения:

    5 x — 2 — 3 x + 2 = 20 x 2 — 4

    На первом этапе необходимо выполнить перенос всех слагаемых влево, привести дроби к минимальному единому знаменателю:

    5 ( x + 2 ) x — 2 — 3 ( x — 2 ) x + 2 — 20 1 ( x — 2 ) ( x + 2 ) = 0

    5 ( x + 2 ) — 3 ( x — 2 ) — 20 ( x — 2 ) ( x + 2 ) = 0

    5 x + 10 — 3 x + 6 — 20 ( x — 2 ) ( x + 2 ) = 0

    2 x — 4 ( x — 2 ) ( x + 2 ) = 0 ⇔ 2 x — 4 = 0 ( x — 2 ) ( x + 2 ) ≠ 0

    ( x — 2 ) ( x + 2 ) ≠ 0

    Данные значения переменной х являются недопустимыми, так как в этом случае теряется смысл дроби в связи с тем, что знаменатель принимает нулевое значение.

    Заметим, что 2 не входит в область допустимых значений. В связи с этим, можно заключить, что у уравнения отсутствуют корни.

    Ответ: корни отсутствуют

    Нужно найти корни уравнения:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 )

    Начнем с определения ОДЗ:

    — 5 ≠ 0 x ≠ 0 x ( x — 5 ) ≠ 0 x ≠ 5 x ≠ 0

    При умножении обеих частей уравнения на единый знаменатель всех дробей и сокращении аналогичных выражений, которые записаны в числителе и знаменателе, получим:

    x — 3 x — 5 + 1 x = x + 5 x ( x — 5 ) · x ( x — 5 )

    ( x — 3 ) x ( x — 5 ) x — 5 + x ( x — 5 ) x = ( x + 5 ) x ( x — 5 ) x ( x — 5 )

    ( x — 3 ) x + x = x + 5

    Прибегая к арифметическим преобразованиям, можно записать уравнение в упрощенной форме:

    x 2 — 3 x + x — 5 = x + 5 → x 2 — 2 x — 5 — x — 5 = 0 → x 2 — 3 x — 10 = 0

    Для дальнейших действий следует определить, к какому виду относится полученное уравнение. В нашем случае уравнение является квадратным с коэффициентом при x 2 , который равен 1. Таким образом, целесообразно воспользоваться теоремой Виета:

    x 1 · x 2 = — 10 x 1 + x 2 = 3

    В этом случае подходящими являются числа: -2 и 5.

    Второе значение не соответствует области допустимых значений.

    Молодец! Раз ты дочитал это до конца, вероятно, ты все отлично усвоил. Но если вдруг что-то еще непонятно — попробуй онлайн-занятие с репетитором (подробности тут + 🎁).

    💡 Видео

    Решить уравнение с дробями - Математика - 6 классСкачать

    Решить уравнение с дробями - Математика - 6 класс

    Корни. 8 класс. Вебинар | МатематикаСкачать

    Корни. 8 класс. Вебинар | Математика

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Область определения (корня) функции #2. Алгебра 10 класс.Скачать

    Область определения (корня) функции #2. Алгебра 10 класс.

    30. Вычисление предела функции. Неопределенность 0/0 с корнямиСкачать

    30. Вычисление предела функции. Неопределенность 0/0 с корнями

    Алгебра 8 класс. Иррациональность в знаменателе. Извлечение корня. Урок 17.Скачать

    Алгебра 8 класс. Иррациональность в знаменателе. Извлечение корня. Урок 17.

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

    №7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ

    ЕГЭ по математике // Задание 5, 7 // Иррациональное уравнениеСкачать

    ЕГЭ по математике // Задание 5, 7 // Иррациональное уравнение
    Поделиться или сохранить к себе: