Как решить уравнение с х в квадрате в знаменателе

Решение дробных уравнений с преобразованием в квадратные уравнения

Дробным уравнением называется уравнение, в котором хотя бы одно из слагаемых — дробь, в знаменателе которой присутствует неизвестное. Например, дробным уравнением является уравнение Как решить уравнение с х в квадрате в знаменателе.

Решать дробные уравнения удобно в следующем порядке:

  • найти общий знаменатель дробей, входящих в уравнение, если каждая дробь имеет смысл,
  • заменить данное уравнение целым, умножив обе его часть на общий знаменатель,
  • решить получившееся целое уравнение,
  • исключить из его корней те, которые обращают в нуль общий знаменатель.

Пример 1. Решить дробное уравнение:

Как решить уравнение с х в квадрате в знаменателе.

Решение. Воспользуемся основным свойством дроби с представим левую и правую части этого уравнения в виде дробей с одинаковым знаменателем:

Как решить уравнение с х в квадрате в знаменателе.

Эти дроби равны при тех и только тех значениях, при которых равны их числители, а знаменатель отличен от нуля. Если знаменатель равен нулю, то дроби, а следовательно, и уравнение не имеет смысла.

Таким образом, чтобы найти корни данного уравнения, нужно решить уравнение

Как решить уравнение с х в квадрате в знаменателе.

Упростив уравнение (раскрыв скобки и приведя подобные члены), получим квадратное уравнение

Как решить уравнение с х в квадрате в знаменателе.

Как решить уравнение с х в квадрате в знаменателе.

Найденные корни не обращают знаменатель в нуль, поэтому они являются корнями исходного дробного уравнения.

Пример 2. Решить дробное уравнение:

Как решить уравнение с х в квадрате в знаменателе.

Решение. Найдём общий знаменатель дробей, входящих в данное дробное уравнение. Общий знаменатель —

Как решить уравнение с х в квадрате в знаменателе.

Заменим исходное уравнение целым. Для этого умножим обе его части на общий знаменатель. Получим:

Как решить уравнение с х в квадрате в знаменателе

Выполним необходимые преобразования в полученном уравнении и придём к квадратному уравнению

Как решить уравнение с х в квадрате в знаменателе.

Как решить уравнение с х в квадрате в знаменателе.

Если x = -3 , то найденный на первом шаге знаменатель обращается в нуль:

Как решить уравнение с х в квадрате в знаменателе,

то же самое, если x = 3 .

Следовательно, числа -3 и 3 не являются корнями исходного уравнения, а, поскольку никакие другие корни не найдены, данное уравнение не имеет решения.

Пример 3. Решить дробное уравнение:

Как решить уравнение с х в квадрате в знаменателе.

Решение. Найдём общий знаменатель дробей, входящих в данное уравнение. Для этого знаменатели дробей разложим на множители:

Как решить уравнение с х в квадрате в знаменателе.

Общий знаменатель — выражение

Как решить уравнение с х в квадрате в знаменателе

Заменим исходное уравнение целым, умножив обе его части на общий знаменатель. Получим:

Как решить уравнение с х в квадрате в знаменателе

Выполнив преобразования, придём к квадратному уравнению

Как решить уравнение с х в квадрате в знаменателе.

Как решить уравнение с х в квадрате в знаменателе.

Ни один из корней не обращает общий знаменатель в нуль. Следовательно, числа -4 и 9 — корни данного уравнения.

Пример 4. Решить дробное уравнение:

Как решить уравнение с х в квадрате в знаменателе.

Решение. Введём новую переменную, обозначив Как решить уравнение с х в квадрате в знаменателе. Получим уравнение с переменной y :

Как решить уравнение с х в квадрате в знаменателе.

Корни этого уравнения:

Как решить уравнение с х в квадрате в знаменателе

Как решить уравнение с х в квадрате в знаменателеили Как решить уравнение с х в квадрате в знаменателе.

Из уравнения Как решить уравнение с х в квадрате в знаменателенаходим, что

Как решить уравнение с х в квадрате в знаменателе.

Из уравнения Как решить уравнение с х в квадрате в знаменателенаходим, что

Как решить уравнение с х в квадрате в знаменателе.

Итак, данное уравнение имеет четыре корня:

Как решить уравнение с х в квадрате в знаменателе, Как решить уравнение с х в квадрате в знаменателе.

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Решение уравнений с дробями

Как решить уравнение с х в квадрате в знаменателе

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0Скачать

Как решать любое квадратное уравнение Полное Неполное квадр ур x^2+2x-3=0 5x^2-2x=0 2x^2-2=0 3x^2=0

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Алгебра 8. Урок 11 - Дробно-рациональные уравненияСкачать

Алгебра 8. Урок 11 - Дробно-рациональные уравнения

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решить уравнение с х в квадрате в знаменателе Как решить уравнение с х в квадрате в знаменателе

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решить уравнение с х в квадрате в знаменателе Как решить уравнение с х в квадрате в знаменателе

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решить уравнение с х в квадрате в знаменателе

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решить уравнение с х в квадрате в знаменателе

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решить уравнение с х в квадрате в знаменателе

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решить уравнение с х в квадрате в знаменателе

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решить уравнение с х в квадрате в знаменателе

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решить уравнение с х в квадрате в знаменателе

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решить уравнение с х в квадрате в знаменателе

Переведем новый множитель в числитель..

Как решить уравнение с х в квадрате в знаменателе

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решить уравнение с х в квадрате в знаменателе

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Неполные квадратные уравнения. Алгебра, 8 классСкачать

    Неполные квадратные уравнения. Алгебра, 8 класс

    Решение уравнений с переменной в знаменателе дроби

    Вы будете перенаправлены на Автор24

    Уравнения, содержащие переменную в знаменателе можно решать двумя способами:

    Приведя дроби к общему знаменателю

    Используя основное свойство пропорции

    Вне зависимости от выбранного способа необходимо после нахождения корней уравнения выбрать из найденных допустимые значения, т.е те, которые не обращают знаменатель в $0$.

    Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    1 способ. Приведение дробей к общему знаменателю.

    Решение:

    1.Перенесем дробь из правой части уравнения в левую

    Для того чтобы правильно это сделать, вспомним, что при перенесении элементов в другую часть уравнения меняется знак перед выражениями на противоположный. Значит, если в правой части перед дробью был знак «+», то в левой перед ней будет знак «-».Тогда в левой части получим разность дробей.

    2.Теперь отметим что у дробей разные знаменатели, значит для того, чтобы составить разность необходимо привести дроби к общему знаменателю. Общим знаменателем будет произведение многочленов, стоящих в знаменателях исходных дробей: $(2x-1)(x+3)$

    Для того чтобы получить тождественное выражение, числитель и знаменатель первой дроби необходимо умножить на многочлен $(x+3)$, а второй на многочлен $(2x-1)$.

    Выполним преобразование в числителе первой дроби-произведем умножение многочленов. Вспомним , что для этого необходимо умножить первое слагаемое первого многочлена умножить на каждое слагаемое второго многочлена, затем второе слагаемое первого многочлена умножить на каждое слагаемое второго многочлена и результаты сложить

    [left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3=^2+6х+3х+9]

    Приведем подобные слагаемые в полученном выражении

    [left(2x+3right)left(х+3right)=2хcdot х+2хcdot 3+3cdot х+3cdot 3=^2+6х+3х+9=] [^2+9х+9]

    Выполним аналогично преобразование в числителе второй дроби-произведем умножение многочленов

    $left(x-5right)left(2х-1right)=хcdot 2х-хcdot 1-5cdot 2х+5cdot 1=^2-х-10х+5=^2-11х+5$

    Тогда уравнение примет вид:

    Теперь дроби с одинаковым знаменателем, значит можно производить вычитание. Вспомним, что при вычитании дробей с одинаковым знаменателем из числителя первой дроби необходимо вычесть числитель второй дроби, знаменатель оставить прежним

    Преобразуем выражение в числителе. Для того, чтобы раскрыть скобки, перед которыми стоит знак «-» надо изменить все знаки перед слагаемыми , стоящими в скобках на противоположные

    Приведем подобные слагаемые

    Тогда дробь примет вид

    3.Дробь равна $0$, если ее числитель равен 0. Поэтому мы приравниваем числитель дроби к $0$.

    Решим линейное уравнение:

    4.Проведем выборку корней. Это значит, что необходимо проверить, не обращаются ли знаменатели исходных дробей в $0$ при найденных корнях.

    Поставим условие, что знаменатели не равны $0$

    Значит допустимы все значения переменных, кроме $-3$ и $0,5$.

    Найденный нами корень является допустимым значением, значит его смело можно считать корнем уравнения. Если бы найденный корень был бы не допустимым значением, то такой корень был бы посторонним и ,конечно, не был бы включен в ответ.

    Ответ:$-0,2.$

    Теперь можем составить алгоритм решения уравнения, которое содержит переменную в знаменателе

    Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать

    Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnline

    Алгоритм решения уравнения, которое содержит переменную в знаменателе

    Перенести все элементы из правой части уравнения в левую. Для получения тождественного уравнения необходимо изменить все знаки, стоящие перед выражениями в правой части на противоположные

    Если в левой части мы получим выражение с разными знаменателями, то приводим их к общему, используя основное свойство дроби. Выполнить преобразования, используя тождественные преобразования и получить итоговую дробь равную $0$.

    Приравнять числитель к $0$ и найти корни получившегося уравнения.

    Проведем выборку корней, т.е. найти допустимые значения переменных, которые не обращают знаменатель в $0$.

    Видео:Алгебра 8 класс (Урок№19 - Уравнение х² = а.)Скачать

    Алгебра 8 класс (Урок№19 - Уравнение х² = а.)

    2 способ. Используем основное свойство пропорции

    Основным свойством пропорции является то, что произведение крайних членов пропорции равно произведению средних членов.

    Используем данное свойство для решения этого задания

    1.Найдем и приравняем произведение крайних и средних членов пропорции.

    Решив полученное уравнение, мы найдем корни исходного

    2.Найдем допустимые значения переменной .

    Из предыдущего решения (1 способ) мы уже нашли , что допустимы любые значения, кроме $-3$ и $0,5$.

    Тогда, установив что найденный корень является допустимым значением, мы выяснили, что $-0,2$ будет являться корнем.

    Ответ:$-0,2.$

    Получи деньги за свои студенческие работы

    Курсовые, рефераты или другие работы

    Автор этой статьи Дата последнего обновления статьи: 12.05.2021

    💥 Видео

    Математика| Разложение квадратного трехчлена на множители.Скачать

    Математика| Разложение квадратного трехчлена на множители.

    Решение дробных рациональных уравнений. Алгебра, 8 классСкачать

    Решение дробных рациональных уравнений. Алгебра, 8 класс

    №6 Линейное уравнение х-х/3=3 Простое уравнение с дробями Решите уравнение с дробью 9кл 11кл ОГЭ ЕГЭСкачать

    №6 Линейное уравнение х-х/3=3 Простое уравнение с дробями Решите уравнение с дробью 9кл 11кл ОГЭ ЕГЭ

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебраСкачать

    Решение уравнений сводящихся к квадратным уравнениям. Биквадратные уравнения – 8 класс алгебра

    Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональностиСкачать

    Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональности

    Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.Скачать

    Как найти Х в уравнении с дробью. Уравнений с дробями. Как решить дробное уравнение. Пропорция.

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?Скачать

    ЭТО НУЖНО ЗНАТЬ — Как решать Дробно Рациональные уравнения?

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

    Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline
    Поделиться или сохранить к себе: