Как решить уравнение с х и у в одном уравнении 7 класс

Системы линейных уравнений (7 класс)

Если несколько линейных уравнений с одними теми же неизвестными рассматривают совместно, то говорят, что это система линейных уравнений с несколькими неизвестными.

Решить систему с двумя неизвестными – это значит найти все пары значений переменных, которые удовлетворяют каждому из заданных уравнений. Каждая такая пара называется решением системы.

Пример:
Пара значений (x=3);(y=-1) является решением первой системы, потому что при подстановке этих тройки и минус единицы в вместо (x) и (y), оба уравнения превратятся в верные равенства (begin3-2cdot (-1)=5 \3 cdot 3+2 cdot (-1)=7 end)

А вот (x=1); (y=-2) — не является решением первой системы, потому что после подстановки второе уравнение «не сходится» (begin1-2cdot(-2)=5 \3cdot1+2cdot(-2)≠7 end)

Отметим, что такие пары часто записывают короче: вместо «(x=3); (y=-1)» пишут так: ((3;-1)).

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Как решить систему линейных уравнений?

Есть три основных способа решения систем линейных уравнений:

Возьмите любое из уравнений системы и выразите из него любую переменную.

Полученное выражение подставьте вместо этой переменной в другое линейное уравнение системы.

Ответ запишите парой чисел ((x_0;y_0))

Замечание к шагу 1: нет никакой разницы какую переменную и из какого уравнения выражать. Обычно более удобно выражать ту переменную, перед которой нет коэффициента или, говоря точнее, коэффициент которой равен единице (в примере выше это был икс в первом уравнении).

Почему так? Потому что во всех остальных случаях у нас при выражении переменной получилась бы дробное выражение . Попробуем, например, выразить икс из второго уравнения системы:

И сейчас нам нужно будет эту дробь подставлять в первое уравнение и решать то, что получиться. До верного ответа мы бы всё равно дошли, но идти было бы неудобнее

Способ алгебраического сложения.

    Равносильно преобразовывая каждое уравнение в отдельности, запишите систему в виде:(begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end).

    Теперь нужно сделать так, чтоб коэффициенты при одном из неизвестных стали одинаковы (например, ((3) и (3)) или противоположны по значению (например, (5) и (-5)). В нашем примере уравняем коэффициенты при игреках. Для этого первое уравнение домножим на (2), а второе — на (3).

    (begin2x+3y=13 |cdot 2\ 5x+2y=5 |cdot 3end)(Leftrightarrow)(begin4x+6y=26\15x+6y=15end)(Leftrightarrow)

    Сложите (или вычтите) почленно обе части уравнения так, чтобы получилось уравнение с одним неизвестным.

    Как решить уравнение с х и у в одном уравнении 7 класс

    Найдите неизвестное из полученного уравнения.

    Подставьте найденное значение неизвестного в любое из исходных уравнений и найдите второе неизвестное.

    Ответ запишите парой чисел ((x_0;y_0)).

    Замечание к шагу 3: В каком случае уравнения складывают, а в каком вычитают? Ответ прост – делайте так, чтоб пропала переменная: если «уравненные» коэффициенты имеют один и тот же знак – вычитайте, а если разные – складывайте.

    Пример. Решите систему уравнений: (begin12x-7y=2\5y=4x-6end)

    Приводим систему к виду (begina_1 x+b_1 y=c_1\a_2 x+b_2 y=c_2end) преобразовывая второе уравнение.

    «Уравняем» коэффициенты при иксах. Для этого домножим второе уравнение на (3).

    Знаки при иксах разные, поэтому чтоб иксы пропали, уравнения надо сложить.

    Делим уравнение на (8), чтобы найти (y).

    Игрек нашли. Теперь найдем (x), подставив вместо игрека (-2) в любое из уравнений системы.

    Икс тоже найден. Пишем ответ.

    Приведите каждое уравнение к виду линейной функции (y=kx+b).

    Постройте графики этих функций. Как? Можете прочитать здесь .

    Как решить уравнение с х и у в одном уравнении 7 класс

  1. Найдите координаты ((x;y)) точки пересечения графиков и запишите их в ответ в виде ((x_0;y_0 )).
    Ответ: ((4;2))
  2. Матхак. Если сомневаетесь в правильности ответа (неважно каким способом вы решали), проверьте подстановкой значений (x_0) и (y_0) в каждое уравнение. Если оба уравнения превратятся в верные равенства, то ответ правильный.
    Пример: решая систему (begin3x-8=2y\x+y=6end), мы получили ответ ((4;2)). Проверим его, подставив вместо икса (4), а вместо игрека (2).

    Оба уравнения сошлись, решение системы найдено верно.

    Пример. Решите систему уравнений: (begin3(5x+3y)-6=2x+11\4x-15=11-2(4x-y)end)

    Перенесем все выражения с буквами в одну сторону, а числа в другую.

    Во втором уравнении каждое слагаемое — четное, поэтому упрощаем уравнение, деля его на (2).

    Эту систему линейных уравнений можно решить любым из способов, но мне кажется, что способ подстановки здесь удобнее всего. Выразим y из второго уравнения.

    Подставим (6x-13) вместо (y) в первое уравнение.

    Первое уравнение превратилась в обычное линейное . Решаем его.

    Сначала раскроем скобки.

    Перенесем (117) вправо и приведем подобные слагаемые.

    Поделим обе части первого уравнения на (67).

    Ура, мы нашли (x)! Подставим его значение во второе уравнение и найдем (y).

    Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

    Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

    Решение простых линейных уравнений

    Как решить уравнение с х и у в одном уравнении 7 класс

    О чем эта статья:

    Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    Понятие уравнения

    Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

    Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

    Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

    Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

    Решить уравнение значит найти все возможные корни или убедиться, что их нет.

    Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

    Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

    Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

    Алгебра 7 Линейное уравнение с одной переменной

    Какие бывают виды уравнений

    Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

    Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

    Линейное уравнение выглядят так: ах + b = 0, где a и b — действительные числа. Вот, что поможет в решении:

    если а ≠ 0 — уравнение имеет единственный корень: х = -b : а;

    если а = 0 — уравнение корней не имеет;

    если а и b равны нулю, то корнем уравнения является любое число.

    Квадратное уравнение выглядит так: ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

    Числовой коэффициент — число, которое стоит при неизвестной переменной.

    Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

    Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

    Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Как решать простые уравнения

    Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

    1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

    Для примера рассмотрим простейшее уравнение: x+3=5.

    Начнем с того, что в каждом уравнении есть левая и правая часть.

    Как решить уравнение с х и у в одном уравнении 7 класс

    Перенесем 3 из левой части в правую и меняем знак на противоположный.

    Как решить уравнение с х и у в одном уравнении 7 класс

    Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

    Решим еще один пример: 6x = 5x + 10.

    Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

    Приведем подобные и завершим решение.

    2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

    Применим правило при решении примера: 4x=8.

    При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

    Как решить уравнение с х и у в одном уравнении 7 класс

    Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

    Разделим каждую часть на 4. Как это выглядит:

    Как решить уравнение с х и у в одном уравнении 7 класс

    Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

    Как решить уравнение с х и у в одном уравнении 7 класс

    Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: -4x = 12

      Разделим обе части на -4, чтобы коэффициент при неизвестной стал равен единице.

    -4x = 12 | : (-4)
    x = −3

    Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

    Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

    Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

    Алгоритм решения простого линейного уравнения
    1. Раскрываем скобки, если они есть.
    2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
    3. Приводим подобные члены в каждой части уравнения.
    4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

    Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

    Как решить уравнение с х и у в одном уравнении 7 класс

    Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

    Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

    Примеры линейных уравнений

    Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

    Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    ЮПеренести 1 из левой части в правую со знаком минус.

    Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

    Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3(х − 4) + 2х − 1.

    5х − 15 + 2 = 3х − 12 + 2х − 1

    Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

    5х − 3х − 2х = −12 − 1 + 15 − 2

    Приведем подобные члены.

    Ответ: х — любое число.

    Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

    Пример 4. Решить: 4(х + 2) = 6 − 7х.

    Видео:Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Уравнение с двумя переменными

    Уравнение с двумя переменными и его решение

    Уравнение вида ax+by = c , где a,b,c — данные числа, называется линейным уравнением с двумя переменными x и y.

    Например: 2x+5y = 6; -x+1,5y = 0; $frac$ x-8y = 7

    Уравнение с двумя переменными может быть не только линейным, т.е. содержать не только первые степени переменных x и y.

    Например: $2x^2+y^2 = 3, x-5y^2 = 1, 7x^3+y = 7$

    Решением уравнения с двумя переменными называется упорядоченная пара значений переменных (x,y), обращающая это уравнение в тождество.

    О тождествах – см. §3 данного справочника

    Например: для уравнения 2x+5y=6 решениями являются пары

    x = -2, y = 2; x = -1,y = 1,6; x = -3,y = 2,4 и т.д.

    Уравнение имеет бесконечное множество решений.

    Свойства уравнения с двумя переменными

    Уравнения с двумя переменными, имеющие одни и те же решения, называют равносильными. Уравнения с двумя переменными, не имеющие решений, также считают равносильными.

    Уравнения с двумя переменными имеют такие же свойства, как и уравнения с одной переменной:

    • если в уравнении перенести слагаемое из одной части в другую и изменить его знак, получится уравнение, равносильное данному;
    • если обе части уравнения умножить или разделить на одно и то же, отличное от нуля число, то получится уравнение, равносильное данному.

    Например: $2x+5y = 6 ⟺5y = -2x+6 iff y = -0,4x+1,2$

    Примеры

    Пример 1. Из данного линейного уравнения выразите y через x и x через y:

    Алгоритм: рассмотрим 3x+4y=10

    1) оставим слагаемое с выражаемой переменной с одной стороны, остальные слагаемые перенесем в другую сторону: 4y=-3x+10

    2) разделим полученное уравнение слева и справа на коэффициент при выражаемой переменной: y=-0,75x+2,5 — искомое выражение y(x).

    Аналогично для x(y): $3x+4y = 10 iff 3x = -4y+10 iff x = -1 frac y+3 frac$

    🎬 Видео

    Сложные уравнения. Как решить сложное уравнение?Скачать

    Сложные уравнения. Как решить сложное уравнение?

    Линейные уравненияСкачать

    Линейные уравнения

    7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать

    7 класс, 4 урок, Линейное уравнение с одной переменной

    Линейное уравнение с одной переменной. 6 класс.Скачать

    Линейное уравнение с одной переменной. 6 класс.

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать

    Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнение

    Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

    Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

    АЛГЕБРА 7 класс : Уравнение и его корни | ВидеоурокСкачать

    АЛГЕБРА 7 класс : Уравнение и его корни | Видеоурок

    Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать

    Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)

    Линейное уравнение с одной переменнойСкачать

    Линейное уравнение с одной переменной

    Уравнения с дробями. Алгебра 7 класс.Скачать

    Уравнения с дробями. Алгебра 7 класс.

    Решение квадратных уравнений. Метод разложения на множители. 8 класс.Скачать

    Решение квадратных уравнений. Метод разложения на множители. 8 класс.
    Поделиться или сохранить к себе: