Как решить уравнение с дву

Уравнения с двумя переменными (неопределенные уравнения)

Разделы: Математика

Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

Цель урока:

    повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
  • воспитание познавательного интереса к учебному предмету
  • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию
Содержание
  1. Урок 1.
  2. Ход урока.
  3. 1) Орг. момент.
  4. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  5. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  6. Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Решение уравнений с двумя неизвестными В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение. Определение Итак, уравнением с двумя неизвестными называют любое равенство следующего типа: a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные. Ниже приведены несколько примеров: Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными. Решение задач Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора. Для наглядности объяснений подберем корни для выражения: y-x = 6. При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5). Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y. У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9 Приведем исходное равенство к следующему виду: В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней. При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному. Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть. Оба равенства равносильны. Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны. Оба уравнения также равносильны. Система уравнений с двумя неизвестными Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными. Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие. Решить подобные системы уравнений можно, применяя следующие методы. Метод подстановки Выражаем неизвестное из любого равенства через вторую переменную. Подставляем получившееся выражение неизвестного во второе равенство и решаем его. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного. Метод сложения Приводим к равенству модули чисел при каком-либо неизвестном. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную. Графический метод Выражаем в каждом равенстве одну переменную через другую. Строим графики двух имеющихся уравнений в одной координатной плоскости. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений. Делаем проверку, подставив полученные значения в исходную систему равенств. При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно. В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов. Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин! Видео Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

Решение систем уравнений Содержание: Графический метод решения систем уравнений Вспоминаем то, что знаем Что такое график уравнения с двумя неизвестными? Что представляет собой график линейного уравнения с двумя неизвестными? Решите графическим методом систему линейных уравнений: Открываем новые знания Решите графическим методом систему уравнений: Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту В курсе алгебры 7-го класса вы изучали системы линейных уравнений. Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные. По этой ссылке вы найдёте полный курс лекций по высшей математике: Начнём с графического метода Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений. Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков. Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему. Возможно вам будут полезны данные страницы: Примеры с решением Пример 1: Решим систему уравнений: Построим графики уравнений Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0). Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2). Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы. Ответ: (2; 5) и (-1; 2). Пример 2: Выясним количество решений системы уравнений: Построим графики уравнений Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3. Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем. Ответ: Два решения. Решение систем уравнений методом подстановки Вспоминаем то, что знаем Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки. Решите систему линейных уравнений методом подстановки: Открываем новые знания Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать? Решите систему уравнений методом подстановки: Как решить систему двух уравнений с двумя неизвестными методом подстановки? Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки? Ранее вы решали системы уравнений первой степени. Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки. Пример 3: Пусть (х; у) — решение системы. Выразим х из уравнения Подставим найденное выражение в первое уравнение: Решим полученное уравнение: Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой. Чуть сложнее дело обстоит в следующем примере. Пример 4: Решим систему уравнений: Пусть (х; у) — решение системы. Выразим у из линейного уравнения: Подставим найденное выражение в первое уравнение системы: После преобразований получим: Ответ: (-0,5; 0,5), (4; 5). Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом». Пример 5: Подставим во второе уравнение тогда его можно переписать в виде: Теперь выразим х через у из первого уравнения системы: Подставим в полученное ранее уравнение ху = 2: Корни этого уравнения: . Иногда решить систему можно, используя метод алгебраического сложения. Пример 6: Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим: . Корни этого уравнения: Подставим найденные значения в первое уравнение. Рассмотрим два случая: 1) 2) , получим уравнение корней нет. Иногда упростить решение удаётся, используя различные варианты замены неизвестных. Пример 7: Решим систему уравнений: Обозначим Второе уравнение системы примет вид: Решим полученное уравнение. Получим, умножая обе части на 2а: Осталось решить методом подстановки линейные системы: Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями Напомним, что при решении задач обычно действуют следующим образом: 1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений; 2) решают полученную систему; 3) отвечают на вопрос задачи. Пример 8: Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника. Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см. Воспользуемся теоремой Пифагора: Решим систему. Выразим из первого уравнения у: Подставим во второе уравнение: Корни уравнения: Найдём С учётом условия получим ответ: длина — 12 см, ширина — 5 см. Пример 9: Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа. Пусть х — первое число, у — второе число. Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число. Вычтем из второго уравнения первое. Получим: Дальше будем решать методом подстановки: Подставим в первое уравнение выражение для у: Корни уравнения: (не подходит по смыслу задачи). Найдём у из уравнения: Получим ответ: 16 и 7. Симметричные системы уравнений с двумя неизвестными Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется. Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное. ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось. Например, если в системе уравнений переставить местами неизвестные х и у, то получим систему: Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось. Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных: Сначала научитесь выражать через неизвестные выражения: Присылайте задания в любое время дня и ночи в ➔ Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института. Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды. Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Решение уравнений с двумя неизвестными В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение. Определение Итак, уравнением с двумя неизвестными называют любое равенство следующего типа: a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные. Ниже приведены несколько примеров: Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными. Решение задач Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора. Для наглядности объяснений подберем корни для выражения: y-x = 6. При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5). Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y. У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9 Приведем исходное равенство к следующему виду: В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней. При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному. Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть. Оба равенства равносильны. Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны. Оба уравнения также равносильны. Система уравнений с двумя неизвестными Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными. Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие. Решить подобные системы уравнений можно, применяя следующие методы. Метод подстановки Выражаем неизвестное из любого равенства через вторую переменную. Подставляем получившееся выражение неизвестного во второе равенство и решаем его. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного. Метод сложения Приводим к равенству модули чисел при каком-либо неизвестном. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную. Графический метод Выражаем в каждом равенстве одну переменную через другую. Строим графики двух имеющихся уравнений в одной координатной плоскости. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений. Делаем проверку, подставив полученные значения в исходную систему равенств. При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно. В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов. Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин! Видео Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

    Решение систем уравнений Содержание: Графический метод решения систем уравнений Вспоминаем то, что знаем Что такое график уравнения с двумя неизвестными? Что представляет собой график линейного уравнения с двумя неизвестными? Решите графическим методом систему линейных уравнений: Открываем новые знания Решите графическим методом систему уравнений: Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту В курсе алгебры 7-го класса вы изучали системы линейных уравнений. Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные. По этой ссылке вы найдёте полный курс лекций по высшей математике: Начнём с графического метода Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений. Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков. Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему. Возможно вам будут полезны данные страницы: Примеры с решением Пример 1: Решим систему уравнений: Построим графики уравнений Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0). Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2). Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы. Ответ: (2; 5) и (-1; 2). Пример 2: Выясним количество решений системы уравнений: Построим графики уравнений Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3. Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем. Ответ: Два решения. Решение систем уравнений методом подстановки Вспоминаем то, что знаем Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки. Решите систему линейных уравнений методом подстановки: Открываем новые знания Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать? Решите систему уравнений методом подстановки: Как решить систему двух уравнений с двумя неизвестными методом подстановки? Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки? Ранее вы решали системы уравнений первой степени. Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки. Пример 3: Пусть (х; у) — решение системы. Выразим х из уравнения Подставим найденное выражение в первое уравнение: Решим полученное уравнение: Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой. Чуть сложнее дело обстоит в следующем примере. Пример 4: Решим систему уравнений: Пусть (х; у) — решение системы. Выразим у из линейного уравнения: Подставим найденное выражение в первое уравнение системы: После преобразований получим: Ответ: (-0,5; 0,5), (4; 5). Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом». Пример 5: Подставим во второе уравнение тогда его можно переписать в виде: Теперь выразим х через у из первого уравнения системы: Подставим в полученное ранее уравнение ху = 2: Корни этого уравнения: . Иногда решить систему можно, используя метод алгебраического сложения. Пример 6: Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим: . Корни этого уравнения: Подставим найденные значения в первое уравнение. Рассмотрим два случая: 1) 2) , получим уравнение корней нет. Иногда упростить решение удаётся, используя различные варианты замены неизвестных. Пример 7: Решим систему уравнений: Обозначим Второе уравнение системы примет вид: Решим полученное уравнение. Получим, умножая обе части на 2а: Осталось решить методом подстановки линейные системы: Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями Напомним, что при решении задач обычно действуют следующим образом: 1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений; 2) решают полученную систему; 3) отвечают на вопрос задачи. Пример 8: Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника. Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см. Воспользуемся теоремой Пифагора: Решим систему. Выразим из первого уравнения у: Подставим во второе уравнение: Корни уравнения: Найдём С учётом условия получим ответ: длина — 12 см, ширина — 5 см. Пример 9: Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа. Пусть х — первое число, у — второе число. Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число. Вычтем из второго уравнения первое. Получим: Дальше будем решать методом подстановки: Подставим в первое уравнение выражение для у: Корни уравнения: (не подходит по смыслу задачи). Найдём у из уравнения: Получим ответ: 16 и 7. Симметричные системы уравнений с двумя неизвестными Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется. Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное. ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось. Например, если в системе уравнений переставить местами неизвестные х и у, то получим систему: Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось. Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных: Сначала научитесь выражать через неизвестные выражения: Присылайте задания в любое время дня и ночи в ➔ Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института. Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды. Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Решение уравнений с двумя неизвестными
  • Определение
  • Решение задач
  • Система уравнений с двумя неизвестными
  • Метод подстановки
  • Метод сложения
  • Графический метод
  • Видео
  • Решение систем уравнений
  • Графический метод решения систем уравнений
  • Начнём с графического метода
  • Примеры с решением
  • Решение систем уравнений методом подстановки
  • Симметричные системы уравнений с двумя неизвестными
  • Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Как решить уравнение с дву(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Как решить уравнение с двуZ kКак решить уравнение с дву0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Как решить уравнение с двугде (Как решить уравнение с дву; Как решить уравнение с дву) – какое-либо решение уравнения (1), t Как решить уравнение с двуZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Как решить уравнение с двуZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Как решить уравнение с дву

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Как решить уравнение с двуZ, а девочек у, y Как решить уравнение с двуZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Как решить уравнение с двуZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Как решить уравнение с двугде m Как решить уравнение с двуZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Как решить уравнение с дву, где n Как решить уравнение с двуZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Как решить уравнение с дву

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Как решить уравнение с дву=> Как решить уравнение с дву

    б) Как решить уравнение с дву=> Как решить уравнение с дву

    в) Как решить уравнение с дву=> Как решить уравнение с дву

    г) Как решить уравнение с дву=> Как решить уравнение с дву

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Как решить уравнение с дву

    Как решить уравнение с двуКак решить уравнение с двуКак решить уравнение с дву
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Как решить уравнение с двуКак решить уравнение с двуКак решить уравнение с дву
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Как решить уравнение с дву

    в) Как решить уравнение с дву

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Как решить уравнение с двуZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Как решить уравнение с двуZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Как решить уравнение с двуZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Как решить уравнение с двуZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Как решить уравнение с двуZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Как решить уравнение с двуZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Как решить уравнение с двуZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Как решить уравнение с двуZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Как решить уравнение с дву(1;2), (5;2), (-1;-1), (-5;-2)

    Как решить уравнение с дву

    Число 3 можно разложить на множители:

    a) Как решить уравнение с двуб) Как решить уравнение с двув) Как решить уравнение с двуг) Как решить уравнение с дву
    в) Как решить уравнение с дву(11;12), (-11;-12), (-11;12), (11;-12)
    г) Как решить уравнение с дву(24;23), (24;-23), (-24;-23), (-24;23)
    д) Как решить уравнение с дву(48;0), (24;1), (24;-1)
    е) Как решить уравнение с двуx = 3m; y = 2m, mКак решить уравнение с двуZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Как решить уравнение с двуZ
    з) Как решить уравнение с двуx = 2m; y = m; x = 2m; y = -m, m Как решить уравнение с двуZ
    и)Как решить уравнение с двурешений нет

    4) Решить уравнения в целых числах

    Как решить уравнение с дву(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Как решить уравнение с дву(-4;-1), (-2;1), (2;-1), (4;1)
    Как решить уравнение с дву(-11;-12), (-11;12), (11;-12), (11;12)
    Как решить уравнение с дву(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Как решить уравнение с дву(-1;0)
    б)Как решить уравнение с дву(5;0)
    в) Как решить уравнение с дву(2;-1)
    г) Как решить уравнение с дву(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать

    Линейное уравнение с двумя переменными. 7 класс.

    Решение уравнений с двумя неизвестными

    В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

    Видео:Линейное уравнение с двумя переменными. 6 класс.Скачать

    Линейное уравнение с двумя переменными. 6 класс.

    Определение

    Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

    a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

    Ниже приведены несколько примеров:

    Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

    Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    Решение задач

    Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

    Для наглядности объяснений подберем корни для выражения: y-x = 6.

    При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

    Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

    У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

    Приведем исходное равенство к следующему виду:

    В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

    При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

    Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

    Оба равенства равносильны.

    Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

    Оба уравнения также равносильны.

    Как решить уравнение с дву

    Видео:Уравнение с двумя модулями: особенности решенияСкачать

    Уравнение с двумя модулями: особенности решения

    Система уравнений с двумя неизвестными

    Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

    Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

    Решить подобные системы уравнений можно, применяя следующие методы.

    Метод подстановки

    1. Выражаем неизвестное из любого равенства через вторую переменную.
    2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
    3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

    Метод сложения

    1. Приводим к равенству модули чисел при каком-либо неизвестном.
    2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
    3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

    Графический метод

    1. Выражаем в каждом равенстве одну переменную через другую.
    2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
    3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
    4. Делаем проверку, подставив полученные значения в исходную систему равенств.

    При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

    В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

    Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

    Видео:Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСССкачать

    Видеоурок ЛИНЕЙНОЕ УРАВНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ 7 КЛАСС

    Видео

    Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

    Видео:Уравнение с двумя переменными и его график. Алгебра, 9 классСкачать

    Уравнение с двумя переменными и его график. Алгебра, 9 класс

    Решение систем уравнений

    Содержание:

    Графический метод решения систем уравнений

    Вспоминаем то, что знаем

    Что такое график уравнения с двумя неизвестными?

    Что представляет собой график линейного уравнения с двумя неизвестными?

    Решите графическим методом систему линейных уравнений:

    Как решить уравнение с двуОткрываем новые знания

    Решите графическим методом систему уравнений:

    Как решить уравнение с дву

    Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

    В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

    Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

    По этой ссылке вы найдёте полный курс лекций по высшей математике:

    Начнём с графического метода

    Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

    Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

    Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

    Возможно вам будут полезны данные страницы:

    Примеры с решением

    Пример 1:

    Решим систему уравнений:

    Как решить уравнение с дву

    Построим графики уравнений Как решить уравнение с дву

    Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

    Как решить уравнение с двуПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

    Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

    Ответ: (2; 5) и (-1; 2).

    Пример 2:

    Выясним количество решений системы уравнений:

    Как решить уравнение с дву

    Построим графики уравнений Как решить уравнение с дву

    Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

    Как решить уравнение с двуОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

    Ответ: Два решения.

    Решение систем уравнений методом подстановки

    Вспоминаем то, что знаем

    Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

    Решите систему линейных уравнений методом подстановки:

    Как решить уравнение с дву

    Открываем новые знания

    Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

    Решите систему уравнений методом подстановки:

    Как решить уравнение с дву

    Как решить систему двух уравнений с двумя неизвестными методом подстановки?

    Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

    Ранее вы решали системы уравнений первой степени.

    Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

    Пример 3:

    Как решить уравнение с дву

    Пусть (х; у) — решение системы.

    Выразим х из уравнения Как решить уравнение с дву

    Как решить уравнение с дву

    Подставим найденное выражение в первое уравнение:

    Как решить уравнение с дву

    Решим полученное уравнение:

    Как решить уравнение с дву

    Как решить уравнение с дву

    Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

    Чуть сложнее дело обстоит в следующем примере.

    Пример 4:

    Решим систему уравнений:

    Как решить уравнение с дву

    Пусть (х; у) — решение системы.

    Выразим у из линейного уравнения:

    Как решить уравнение с дву

    Подставим найденное выражение в первое уравнение системы:

    Как решить уравнение с дву

    После преобразований получим:

    Как решить уравнение с дву

    Как решить уравнение с дву

    Ответ: (-0,5; 0,5), (4; 5).

    Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

    Пример 5:

    Как решить уравнение с дву

    Подставим во второе уравнение Как решить уравнение с двутогда его можно переписать в виде:

    Как решить уравнение с дву

    Теперь выразим х через у из первого уравнения системы:

    Как решить уравнение с дву

    Подставим в полученное ранее уравнение ху = 2:

    Как решить уравнение с дву

    Корни этого уравнения: Как решить уравнение с дву

    Как решить уравнение с дву.

    Иногда решить систему можно, используя метод алгебраического сложения.

    Пример 6:

    Как решить уравнение с дву

    Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

    Как решить уравнение с дву.

    Корни этого уравнения: Как решить уравнение с дву

    Подставим найденные значения в первое уравнение. Рассмотрим два случая:

    1) Как решить уравнение с дву

    2) Как решить уравнение с дву, получим уравнение Как решить уравнение с двукорней нет.

    Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

    Пример 7:

    Решим систему уравнений:

    Как решить уравнение с дву

    Обозначим Как решить уравнение с дву

    Второе уравнение системы примет вид:

    Как решить уравнение с дву

    Решим полученное уравнение. Получим, умножая обе части на 2а:

    Как решить уравнение с дву

    Как решить уравнение с дву

    Осталось решить методом подстановки линейные системы:

    Как решить уравнение с дву

    Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

    Напомним, что при решении задач обычно действуют следующим образом:

    1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

    2) решают полученную систему;

    3) отвечают на вопрос задачи.

    Пример 8:

    Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

    Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Как решить уравнение с двусм.

    Воспользуемся теоремой Пифагора: Как решить уравнение с дву

    Как решить уравнение с дву

    Решим систему. Выразим из первого уравнения у:

    Как решить уравнение с дву

    Подставим во второе уравнение:

    Как решить уравнение с дву

    Корни уравнения: Как решить уравнение с дву

    Найдём Как решить уравнение с дву

    С учётом условия Как решить уравнение с двуполучим ответ: длина — 12 см, ширина — 5 см.

    Пример 9:

    Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

    Пусть х — первое число, у — второе число.

    Тогда: Как решить уравнение с дву— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

    Как решить уравнение с дву

    Вычтем из второго уравнения первое. Получим:

    Как решить уравнение с дву

    Дальше будем решать методом подстановки:

    Как решить уравнение с дву

    Подставим в первое уравнение выражение для у:

    Как решить уравнение с дву

    Корни уравнения: Как решить уравнение с дву(не подходит по смыслу задачи).

    Найдём у из уравнения:

    Как решить уравнение с дву

    Получим ответ: 16 и 7.

    Симметричные системы уравнений с двумя неизвестными

    Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Как решить уравнение с двусимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решить уравнение с дву, то есть не меняется. А вот уравнение Как решить уравнение с двуне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решить уравнение с дву, то есть меняется.

    Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

    ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

    Например, если в системе уравнений

    Как решить уравнение с дву

    переставить местами неизвестные х и у, то получим систему:

    Как решить уравнение с дву

    Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

    Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

    Как решить уравнение с дву

    Сначала научитесь выражать через неизвестные Как решить уравнение с двувыражения:

    Как решить уравнение с дву

    Как решить уравнение с дву

    Как решить уравнение с дву

    Присылайте задания в любое время дня и ночи в ➔ Как решить уравнение с двуКак решить уравнение с дву

    Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

    Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

    Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

    💡 Видео

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Линейное уравнение с двумя переменными.Скачать

    Линейное уравнение с двумя переменными.

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

    Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

    Как решать уравнения с дробью? #shortsСкачать

    Как решать уравнения с дробью? #shorts

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    Уравнение с X и Y #shortsСкачать

    Уравнение с X и Y #shorts

    Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.Скачать

    Нелинейные уравнения с двумя переменными и их геометрический смысл. 9 класс.

    Линейное уравнение с двумя переменными 7 классСкачать

    Линейное уравнение с двумя переменными 7 класс

    После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных УравненийСкачать

    После этого видео, ТЫ РЕШИШЬ ЛЮБУЮ Систему Нелинейных Уравнений

    Уравнение с двумя модулями - bezbotvyСкачать

    Уравнение с двумя модулями - bezbotvy

    Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

    Как решать уравнения? уравнение 7 класс. Линейное уравнение

    Уравнение с двумя скобками.5 класс.МатематикаСкачать

    Уравнение с двумя скобками.5 класс.Математика

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

    ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

    Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»Скачать

    Математика. Линейные диофантовы уравнения с двумя неизвестными. Центр онлайн-обучения «Фоксфорд»
    Поделиться или сохранить к себе: