Как решить уравнение относительно х или у

Решение простых линейных уравнений

Как решить уравнение относительно х или у

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Содержание
  1. Понятие уравнения
  2. Какие бывают виды уравнений
  3. Как решать простые уравнения
  4. Примеры линейных уравнений
  5. Обыкновенные дифференциальные уравнения
  6. Обыкновенные дифференциальные уравнения
  7. Основные понятия о дифференциальных уравнениях
  8. Дифференциальные уравнения первого порядка
  9. Дифференциальные уравнения с разделенными переменными
  10. Дифференциальные уравнения с разделяющимися переменными
  11. Однородные дифференциальные уравнения
  12. Линейные дифференциальные уравнения
  13. Дифференциальное уравнение Бернулли
  14. Обыновенное дефференциальное уравнение
  15. Основные понятия и определения
  16. Примеры с решением
  17. Системы обыкновенных дифференциальных уравнений
  18. Системы дифференциальных уравнений первого порядка
  19. Системы линейных дифференциальных уравнений с постоянными коэффициентами
  20. math4school.ru
  21. Уравнения в целых числах
  22. Немного теории
  23. Задачи с решениями
  24. Задачи без решений
  25. 💥 Видео

Видео:Как решить это уравнение относительно xСкачать

Как решить это уравнение относительно x

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.

Например, возьмем выражение 2 + 4 = 6. При вычислении левой части получается верное числовое равенство, то есть 6 = 6.

Уравнением можно назвать выражение 2 + x = 6, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое при подстановке на место неизвестной уравнивает выражения справа и слева.

Решить уравнение значит найти все возможные корни или убедиться, что их нет.

Решить уравнение с двумя, тремя и более переменными — это два, три и более значения переменных, которые обращают данное выражение в верное числовое равенство.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Видео:решить уравнение относительно хСкачать

решить уравнение относительно х

Какие бывают виды уравнений

Уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные.

Особенность преобразований алгебраических уравнений в том, что в левой части должен остаться многочлен от неизвестных, а в правой — нуль.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = -b : а;
  • если а равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Числовой коэффициент — число, которое стоит при неизвестной переменной.

Кроме линейных и квадратных есть и другие виды уравнений, с которыми мы познакомимся в следующий раз:

Онлайн-курсы по математике за 7 класс помогут закрепить новые знания на практике с талантливым преподавателем.

Видео:8. Дифференциальные уравнения, линейные относительно х и х'Скачать

8. Дифференциальные уравнения, линейные относительно х и х'

Как решать простые уравнения

Чтобы научиться решать простые линейные уравнения, нужно запомнить формулу и два основных правила.

1. Правило переноса. При переносе из одной части в другую, член уравнения меняет свой знак на противоположный.

Для примера рассмотрим простейшее уравнение: x+3=5

Начнем с того, что в каждом уравнении есть левая и правая часть.

Перенесем 3 из левой части в правую и меняем знак на противоположный.

Можно проверить: 2 + 3 = 5. Все верно. Корень равен 2.

Решим еще один пример: 6x = 5x + 10.

Перенесем 5x из правой части в левую. Знак меняем на противоположный, то есть на минус.

Приведем подобные и завершим решение.

2. Правило деления. В любом уравнении можно разделить левую и правую часть на одно и то же число. Это может ускорить процесс решения. Главное — быть внимательным, чтобы не допустить глупых ошибок.

Применим правило при решении примера: 4x=8.

При неизвестной х стоит числовой коэффициент — 4. Их объединяет действие — умножение.

Чтобы решить уравнение, нужно сделать так, чтобы при неизвестной x стояла единица.

Разделим каждую часть на 4. Как это выглядит:

Как решить уравнение относительно х или у

Теперь сократим дроби, которые у нас получились и завершим решение линейного уравнения:

Рассмотрим пример, когда неизвестная переменная стоит со знаком минус: −4x = 12

    Разделим обе части на −4, чтобы коэффициент при неизвестной стал равен единице.

−4x = 12 | : (−4)
x = −3

Если знак минус стоит перед скобками, и по ходу вычислений его убрали — важно не забыть поменять знаки внутри скобок на противоположные. Этот простой факт позволит не допустить обидные ошибки, особенно в старших классах.

Напомним, что не у каждого линейного уравнения есть решение — иногда корней просто нет. Изредка среди корней может оказаться ноль — ничего страшного, это не значит, что ход решения оказался неправильным. Ноль — такое же число, как и остальные.

Способов решения линейных уравнений немного, нужно запомнить только один алгоритм, который будет эффективен для любой задачки.

Алгоритм решения простого линейного уравнения
  1. Раскрываем скобки, если они есть.
  2. Группируем члены, которые содержат неизвестную переменную в одну часть уравнения, остальные члены — в другую.
  3. Приводим подобные члены в каждой части уравнения.
  4. Решаем уравнение, которое получилось: aх = b. Делим обе части на коэффициент при неизвестном.

Чтобы быстрее запомнить ход решения и формулу линейного уравнения, скачайте или распечатайте алгоритм — храните его в телефоне, учебнике или на рабочем столе.

Как решить уравнение относительно х или у

Видео:Как решают уравнения в России и США!?Скачать

Как решают уравнения в России и США!?

Примеры линейных уравнений

Теперь мы знаем, как решать линейные уравнения. Осталось попрактиковаться на задачках, чтобы чувствовать себя увереннее на контрольных. Давайте решать вместе!

Пример 1. Как правильно решить уравнение: 6х + 1 = 19.

    Перенести 1 из левой части в правую со знаком минус.

Разделить обе части на множитель, стоящий перед переменной х, то есть на 6.

Пример 2. Как решить уравнение: 5(х − 3) + 2 = 3 (х − 4) + 2х − 1.

5х − 15 + 2 = 3х − 12 + 2х − 1

Сгруппировать в левой части члены с неизвестными, а в правой — свободные члены. Не забываем при переносе из одной части уравнения в другую поменять знаки на противоположные у переносимых членов.

5х − 3х − 2х = −12 − 1 + 15 − 2

Приведем подобные члены.

Ответ: х — любое число.

Пример 3. Решить: 4х = 1/8.

    Разделим обе части уравнения на множитель стоящий перед переменной х, то есть на 4.

Пример 4. Решить: 4(х + 2) = 6 − 7х.

  1. 4х + 8 = 6 − 7х
  2. 4х + 7х = 6 − 8
  3. 11х = −2
  4. х = −2 : 11
  5. х = −2/11

Ответ: −2/11 или −(0,18). О десятичных дробях можно почитать в другой нашей статье.

Пример 5. Решить: Как решить уравнение относительно х или у

  1. Как решить уравнение относительно х или у
  2. 3(3х — 4) = 4 · 7х + 24
  3. 9х — 12 = 28х + 24
  4. 9х — 28х = 24 + 12
  5. -19х = 36
  6. х = 36 : (-19)
  7. х = — 36/19

Пример 6. Как решить линейное уравнение: х + 7 = х + 4.

5х — 15 + 2 = 3х — 2 + 2х — 1

Сгруппировать в левой части неизвестные члены, в правой — свободные члены:

Приведем подобные члены.

Ответ: нет решений.

Пример 7. Решить: 2(х + 3) = 5 − 7х.

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Обыкновенные дифференциальные уравнения

Содержание:

Видео:Решение матричных уравненийСкачать

Решение матричных уравнений

Обыкновенные дифференциальные уравнения

При решении многих задач математики, техники, экономики и других отраслей науки бывает трудно установить закон, связывающий искомые и известные переменные величины. Но удается установить связь между производными или дифференциалами этих переменных, которая выражается уравнениями или системами уравнений. Такие уравнения называют дифференциальными уравнениями. Термин «дифференциальное уравнение» введен в 1676 году В. Лейбницом.

Мы рассмотрим только уравнения с функциями одной переменной и обычными производными, которые называют обычными дифференциальными уравнениями.

Основные понятия о дифференциальных уравнениях

Определение. Дифференциальным уравнением называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и еепроизводные или дифференциалы разных порядков, то есть уравнение
Как решить уравнение относительно х или у(7.1)

Важно понять, что искомая функция в дифференциальном уравнении входит под знак дифференциала или под знак производной.

Определение. Порядком дифференциального уравнения называется наивысший порядок производной от неизвестной функции, входящей в дифференциальное уравнение.

Так, уравнение y’ – 2 xy 2 + 5 = 0 является дифференциальным уравнением первого порядка, а уравнения y» + 2 y’ – y – sin x = 0 — дифференциальным уравнением второго порядка.

Определение. Решением дифференциального уравнения (7.1) называется такая функция y = φ (x), которая при подстановке в уравнение (7.1) превращает его в тождество.

Например, для дифференциального уравнения
y’- 2 x = 0 (7.2)
решением является функция y = x 2 . Найдем производную y’= 2x и подставим в уравнение, получим: 2x – 2x = 0, 0 ≡ 0.

Следует заметить, что y = x 2 не единственное решение уравнения. Это уравнение имеет бесконечное множество решений, которые можно записать так: y = x 2 + C.

Дифференциальные уравнения первого порядка

Определение. Дифференциальным уравнением первого порядка называется уравнение, которое связывает независимую переменную x, искомую функцию y = f (x) и ее первую производную:
F (x, y, y’) = 0.
(7.3)

Поскольку производную можно записать в виде отношения дифференциалов, то в уравнение производная может не входить, а будут входить дифференциалы неизвестной функции и независимой переменной.

Если уравнение (7.2) решить относительно у’, то оно будет иметь вид:
y’= f (x, y) или Как решить уравнение относительно х или у. (7.4)

Простые примеры показывают, что дифференциальное уравнение может иметь бесконечное множество решений. Это мы видим на примере уравнения (7.2). Легко убедиться также, что дифференциальное уравнение Как решить уравнение относительно х или уимеет решениями функции y = Cx, а дифференциальное уравнение Как решить уравнение относительно х или у— функции Как решить уравнение относительно х или угде C — произвольное число.

Как видим, в решение указанных дифференциальных уравнений входит произвольное число C. Предоставляя постоянной C различные значения, будем получать различные решения дифференциального уравнения.

Определение. Общим решением дифференциального уравнения (7.3) называется функция
у = φ (х, С), (7.5)
которая зависит от одной произвольной постоянной и удовлетворяет дифференциальное уравнение при произвольном значении C.

Если функция (7.5) выражается неявно, то есть в виде
Ф (х, у, С) = 0, (7.6)
то (7.6) называется общим интегралом дифференциального уравнения.

Определение. Частным решением дифференциального уравнения (7.3) называется такое решение, которое получается из общего решения (7.5) при некотором конкретном значении постоянной C.

Ф (х, у, С0) называется частным интегралом дифференциального уравнения.

На практике при решении конкретных задач часто приходится находить не все решения, а решение, которое удовлетворяет определенным начальным условиям. Одной из таких задач является задача Коши, которая для дифференциального уравнения первого порядка формулируется так: среди всех решений дифференциального уравнения (7.3) найти такое решение y, которое при заданном значении независимой переменной x = x0 равна заданному значению y0 , то есть y (x0) = y0 или Как решить уравнение относительно х или у(7.7)

Условие (7.7) называется начальным условием решения.

Покажем на примере, как найти частное решение дифференциального уравнения, когда известно общее решение и задано начальное условие.

Мы видим, что дифференциальное уравнение Как решить уравнение относительно х или уимеет общее решение y = Cx. Зададим начальное условие Как решить уравнение относительно х или у. Подставим эти значения в общее решение, получим 6 = 2С, откуда С = 3. Следовательно, функция y = 3x удовлетворяет и дифференциальное уравнение, и начальное условие.

Ответ на вопрос о том, при каких условиях уравнение (7.4) имеет
решение, дает теорема Коши.

ТЕОРЕМА (о существовании и единственности решения). Если функция f (x, y) и ее частная производная Как решить уравнение относительно х или у определены и непрерывные в области G, которая содержит точку M0 (x0; y0) , то существует единственное решение y = φ (x) уравнения (7.4), которое удовлетворяет начальному условию: y (x0) = y0.

Теорема Коши дает достаточные условия существования единого решения дифференциального уравнения (7.4). Заметим, что в условии теоремы не требуется существования частной производной Как решить уравнение относительно х или у.

График произвольного частного решения дифференциального уравнения называется интегральной кривой. Общему решению отвечает семья кривых. Так мы проверили, что уравнение Как решить уравнение относительно х или уимеет общее решение y = Cx, то ему соответствует семья прямых,
которые проходят через начало координат (рис. 1).

Уравнение Как решить уравнение относительно х или уимеет общее решение, ему соответствует семья равносторонних гипербол (рис. 2).
Как решить уравнение относительно х или у

Если задано начальное условие Как решить уравнение относительно х или уто это означает, что задана точка M0 (x0;y0), через которую должна проходить интегральная кривая, отвечающая искомому частному решению. Таким образом, отыскание частного решения дифференциального уравнения по заданному начальному условию геометрически означает, что из семьи
интегральных кривых мы выбираем проходящую через точку M0 (x0; y0).

Надо заметить, что нахождение решения дифференциального уравнения часто называют интегрированием уравнения. При этом операцию интегрирования функций называют квадратурой.

Общего метода решения дифференциальных уравнений первого порядка не существует. Рассмотрим некоторые методы решения отдельных типов дифференциальных уравнений.

Дифференциальные уравнения с разделенными переменными

Определение. Уравнение вида
f1 (y) dy = f2 (x) dx,
(7.8)
где f1 (y) и f2 (x) — заданные функции, называется дифференциальным уравнением с разделенными переменными.

В этом уравнении каждая из переменных находится только в той части уравнения, где находится ее дифференциал. Уравнение dy = f (x) dx является частным случаем уравнения (7.8). Чтобы решить уравнение (7.8), надо проинтегрировать обе его части:
Как решить уравнение относительно х или у.

Понятно, что произвольную постоянную С можно записывать в любой части равенства.

Пример 1. Решить дифференциальное уравнение:
Как решить уравнение относительно х или у, удовлетворяющее начальному условию Как решить уравнение относительно х или у

Решение. Проинтегрируем левую и правую части уравнения, причем для удобства потенцирования, произвольную постоянную запишем в виде ln |C| получим:
Как решить уравнение относительно х или у
Как решить уравнение относительно х или у
Как решить уравнение относительно х или у— это общее решение дифференциального уравнения.
Подставляя в общее решение начальное условие, найдем С: 2 = С.
Итак,
Как решить уравнение относительно х или уявляется частным решением данного уравнения.

Дифференциальные уравнения с разделяющимися переменными

Определение. Уравнение вида
f1 (x) f2 (y) + g1 (x) g2 (y) = 0
(7.9)
называется дифференциальным уравнением с разделяющимися переменными.

В этом уравнении переменные еще не разделены, но, поделив обе части уравнения на произведение f2 (y) g1 (x), получим уравнение с разделенными переменными:
Как решить уравнение относительно х или у

Интегрируя это уравнение, запишем
Как решить уравнение относительно х или у.

Получили общий интеграл данного уравнения.

Пример 2. Решить дифференциальное уравнение
x (y + 1) dx – (x 2 + 1) ydy = 0.

Решение. Поделим обе части этого уравнения на (y + 1) (x 2 + 1), после чего получим
Как решить уравнение относительно х или у.

Интегрируя, получим
Как решить уравнение относительно х или у Как решить уравнение относительно х или уКак решить уравнение относительно х или у
Как решить уравнение относительно х или у— общий интеграл дифференциального уравнения.

Пример 3. Найти частное решение дифференциального уравнения (1 + x 2 ) dy + ydx = 0, удовлетворяющее начальному условию y (0) = 1.

Решение. Отделим переменные, поделив уравнение на y ⋅ (1 + x 2 ), и проинтегрируем данное уравнение:
Как решить уравнение относительно х или у

Получили общий интеграл дифференциального уравнения.

Используя начальное условие, найдем произвольную постоянную С:
ln 1 + arctg 0 = C, откуда C = 0.

Найденную постоянную подставим в общий интеграл и отыщем частное решение:
Как решить уравнение относительно х или уоткуда Как решить уравнение относительно х или у

Однородные дифференциальные уравнения

Определение. Функция двух переменных f (x, y) называется однородной n- го измерения, если выполняется условие
Как решить уравнение относительно х или у

Например, f (x, y) = x 2 + y 2 , f (tx, ty) = t 2 f (x 2 + y 2 ) — однородная функция второго измерения.

Определение. Дифференциальное уравнение
y ‘= f (x, y) (7.10)
называется однородным, если функция f (x, y) однородная нулевого измерения.

Покажем, что это уравнение можно свести к уравнению с разделенными переменными.
Рассмотрим функцию f (tx, ty). Сделаем замену Как решить уравнение относительно х или убудем иметь:
Как решить уравнение относительно х или у
Тогда уравнение (7.10) запишется в виде Как решить уравнение относительно х или у(7.11)
В общем случае переменные в однородном уравнение не разделяются сразу. Но, если ввести вспомогательную неизвестную функцию u = u (x) по формуле
Как решить уравнение относительно х или уили y = xu, (7.12)
то мы сможем превратить однородное уравнение в уравнение с разделенными переменными.

Из формулы (7.12) найдем y’ = u + xu’ и уравнение Как решить уравнение относительно х или упримет вид: u + xu’ = φ (u),
то есть Как решить уравнение относительно х или у, откуда Как решить уравнение относительно х или у.

После интегрирования получим Как решить уравнение относительно х или у
Отсюда находим выражение для функции u, возвращаемся к переменной y = xu и получим решение однородного уравнения.

Чаще всего не удается найти функцию u явно выраженной, тогда, после интегрирования, в левую часть следует подставить Как решить уравнение относительно х или увместо u.
В результате получим решение уравнения в неявном виде.

Пример 1. Найти решение однородного уравнения

Как решить уравнение относительно х или у

Решение. Заменой y = xu сведем заданное уравнение к уравнению
Как решить уравнение относительно х или уили Как решить уравнение относительно х или у.

Отделяя переменные, найдем
Как решить уравнение относительно х или уоткуда Как решить уравнение относительно х или уили Как решить уравнение относительно х или у, то есть
Как решить уравнение относительно х или у.
Возвращаясь к переменной y, получим общее решение: Как решить уравнение относительно х или у.

Линейные дифференциальные уравнения

Определение. Линейным дифференциальным уравнением первого порядка называется уравнение, которое содержит искомую функцию и ее производную в первой степени без их произведения:
y’ + P (x) y = Q (x). (7.13)

Здесь P (x), Q (x) — известные функции независимой переменной x. Например, y’ + 2 xy = x 2 .

Если Q (x) = 0, то уравнение (7.13) называется линейным однородным и является уравнением с разделяющимися переменными.

Если Q (x) ≠ 0, то уравнение (7.13) называется линейным неоднородным, которое можно решить несколькими способами.

Рассмотрим метод Бернулли, с помощью которого уравнение (7.13) можно свести к интегрированию двух дифференциальных уравнений первого порядка с разделяющимися переменными.

Решение дифференциального уравнения (7.13) ищем в виде y = u (x) v (x) или y = uv, (7.14)
где u (x), v (x) — неизвестные функции. Одну из этих функций можно взять произвольную, а другая определяется из уравнения (7.13).

Из равенства y = uv найдем производную y’:
y’= u’ ⋅ v + u⋅ v’.

Подставим y и y’ в уравнение (7.13):
u’v + uv’ + P (x) ⋅ u⋅ v = Q (x) или u’v + u (v’ + P (x) ⋅ v) = Q (x).

Выберем функцию v такой, чтобы v’ + P (x) v = 0. (7.15)
Тогда для отыскания функции u получим уравнение:
u’v = Q (x). (7.16)

Сначала найдем v из уравнения (7.15).
Отделяя переменные, имеем Как решить уравнение относительно х или у, откуда
Как решить уравнение относительно х или у

Под неопределенным интегралом здесь будем понимать какую-то одну первообразную от функции P (x), то есть v будет определенной функцией от x.

Зная v, находим u из уравнения (7.16):
Как решить уравнение относительно х или у
откуда Как решить уравнение относительно х или у

Здесь мы уже берем для u все первообразные.

Найденные функции u и v подставляем в (7.14) и получаем общее решение линейного дифференциального уравнения:
Как решить уравнение относительно х или у(7.17)

При решении конкретных примеров проще выполнять эти выкладки, чем применять громоздкую формулу (7.17).

Пример 1. Решить дифференциальное уравнение Как решить уравнение относительно х или у.
Решение. Решение ищем в виде y = uv, тогда y’= u’ ⋅ v + u⋅ v’.
Подставим y и y’ в уравнение: Как решить уравнение относительно х или уили
Как решить уравнение относительно х или у. (7.18)

Выражение, стоящее в скобках, приравниваем к нулю, имеем
Как решить уравнение относительно х или уили Как решить уравнение относительно х или у

Отделим переменные, домножив обе части уравнения на Как решить уравнение относительно х или у, тогда Как решить уравнение относительно х или у.
После интегрирования, получим ln |v| = ln |x| (здесь ограничимся одной первообразной), откуда v = x.
Подставим v = x в уравнение (7.18):
Как решить уравнение относительно х или у

Общее решение запишется:
y = x (x + C) = x 2 + Cx.

Пример 2. Найти частное решение дифференциального уравнения Как решить уравнение относительно х или укоторый удовлетворяет начальному условию y (0) = 0.

Решение. Заданное уравнение — это линейное неоднородное уравнение первого порядка, решение которого ищем в виде y = u⋅v.
Тогда Как решить уравнение относительно х или у
Как решить уравнение относительно х или у

Подставим v в уравнение и найдем u:
Как решить уравнение относительно х или у

Общее решение дифференциального уравнения будет:
Как решить уравнение относительно х или у

Подставляем начальные условия в найденное решение и находим С:
Как решить уравнение относительно х или у

Из общего решения получаем частное решение
Как решить уравнение относительно х или у.

Дифференциальное уравнение Бернулли

Определение. Уравнения вида
Как решить уравнение относительно х или у(или Как решить уравнение относительно х или у)
называется дифференциальным уравнением Бернулли.

Данное уравнение отличается от уравнения (7.13) только множителем (или ) в правой части. Для того, чтобы права часть данного уравнения была такой, как в (7.13), разделим его левую и праву часть на :
Как решить уравнение относительно х или у

Сделаем замену: Как решить уравнение относительно х или уКак решить уравнение относительно х или у
Домножим левую и правую части полученного уравнения на (n + 1) и, используя замену, получим:
Как решить уравнение относительно х или у
Как решить уравнение относительно х или у

Мы получили линейное дифференциальное уравнение относительно новой переменной Как решить уравнение относительно х или у

Пример 1. Найти общее решение дифференциального уравнения xy’ + y = y 2 ln x.

Решение. Как решить уравнение относительно х или у.
Сделаем замену Как решить уравнение относительно х или уТогда Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Данное уравнение решим, сделав замену z = u (x) ⋅ v (x).
Как решить уравнение относительно х или у

Выбираем функцию v (x) так, чтобы выражение в скобках равнялось нулю, и эта функция была бы частным решением уравнения
Как решить уравнение относительно х или у

Тогда Как решить уравнение относительно х или у.

Проинтегрировав правую часть этого уравнения по частям, получим Как решить уравнение относительно х или у, а при y -1 = z = uv, имеем
Как решить уравнение относительно х или у

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Обыновенное дефференциальное уравнение

Обыкновенным дифференциальным уравнением называется любое соотношение, связывающее независимую переменную Как решить уравнение относительно х или уискомую функцию Как решить уравнение относительно х или уи производные искомой функции Как решить уравнение относительно х или удо некоторого порядка включительно.

Обыкновенное дифференциальное уравнение может быть приведено к виду

Как решить уравнение относительно х или у

Здесь Как решить уравнение относительно х или у— известная функция, заданная в некоторой области Как решить уравнение относительно х или у

Число Как решить уравнение относительно х или ут. е. наивысший из порядков производных, входящих в (1), называется порядком уравнения.

Обыкновенные дифференциальные уравнения первого порядка, разрешенные относительно производной. уравнения, интегрируемые в квадратурах

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Основные понятия и определения

Понятие об уравнении первого порядка, разрешенном относительно производной. В соответствии со сказанным во введении, уравнение первого порядка имеет вид

Как решить уравнение относительно х или у

В этой главе мы будем рассматривать уравнение, разрешенное относительно производной:

Как решить уравнение относительно х или у

Наряду с этим уравнением мы всегда будем рассматривать перевернутое уравнение

Как решить уравнение относительно х или у

используя последнее в окрестности тех точек, в которых Как решить уравнение относительно х или уобращается в бесконечность.

Во многих случаях оказывается целесообразным «место уравнении (2) и (2′) рассматривать одно равносильное им дифференциальное уравнение

Как решить уравнение относительно х или у

Обе переменные Как решить уравнение относительно х или уи Как решить уравнение относительно х или увходят в это уравнение уже равноправно, и любую из них мы можем принять за независимую переменную.

Умножая обе части уравнения (3) на некоторую функцию Как решить уравнение относительно х или уполучаем более симметричное уравнение:

Как решить уравнение относительно х или у

где Как решить уравнение относительно х или уОбратно, всякое уравнение вида (4) можно переписать в виде уравнений (2) или (2′), разрешая его относительно Как решить уравнение относительно х или уили Как решить уравнение относительно х или утак что уравнение (4) равносильно следующим двум уравнениям:

Как решить уравнение относительно х или у

Иногда уравнение записывают *з так называемой симметрической форме:

Как решить уравнение относительно х или у

Возможно вам будут полезны данные страницы:

Решение уравнения. Предположим, что правая часть уравнения (2), Как решить уравнение относительно х или уопределена на некотором подмножестве Как решить уравнение относительно х или увещественной плоскости Как решить уравнение относительно х или уФункцию Как решить уравнение относительно х или уопределенную в интервале Как решить уравнение относительно х или умы будем называть решением уравнения (2) в этом интервале*, если:

  1. Существует производная Как решить уравнение относительно х или удля всех значений Как решить уравнение относительно х или уиз интервала Как решить уравнение относительно х или у(Отсюда следует, что решение Как решить уравнение относительно х или упредставляет собою функцию, непрерывную ею всей области определения).
  2. Функция Как решить уравнение относительно х или уобращает уравнение (2) в тождество: Как решить уравнение относительно х или у

справедливое для всех значений Как решить уравнение относительно х или уиз интервала Как решить уравнение относительно х или уЭто означает, что при любом Как решить уравнение относительно х или уиз интервала Как решить уравнение относительно х или уточка Как решить уравнение относительно х или упринадлежит множеству Как решить уравнение относительно х или уи Как решить уравнение относительно х или у

Так как наряду с уравнением (2) рассматривается перевернутое уравнение (2′), то и решения Как решить уравнение относительно х или уэтого перевернутого уравнения естественно присоединять к решениям уравнения (2).

В этом смысле в дальнейшем мы будем для краткости называть решения уравнения (2′) решениями уравнения (2).

Примеры с решением

Пример 1.

Как решить уравнение относительно х или у

является решением уравнения

Как решить уравнение относительно х или у

в интервале Как решить уравнение относительно х или уибо она определена и дифференцируема в эгои интервале, и, подставляя се в уравнение (9), получаем тождество:

Как решить уравнение относительно х или у

справедливое при всех значениях Как решить уравнение относительно х или у

Пример 2.

Функция Как решить уравнение относительно х или уесть решение равнения Как решить уравнение относительно х или ув интервале Как решить уравнение относительно х или у

Пример 3.

Как решить уравнение относительно х или у

является решением уравнения Как решить уравнение относительно х или у

в интервале Как решить уравнение относительно х или у

Иногда функцию Как решить уравнение относительно х или уобращающую уравнение (2) в тождество (7), т. е. решение уравнения (2), называют интегралом этого уравнения. Мы будем употреблять термин интеграл только в смысле п. 16.

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Системы обыкновенных дифференциальных уравнений

При решении многих задач нужно найти функции y1 = y1 (x), y2 = y2 (x), . yn = yn (x), которые удовлетворяют системе дифференциальных уравнений, содержащих независимую переменную x , искомые y1 , y2 , . yn и их производные.

Пример. Пусть материальная точка массы m имеет криволинейную траекторию движения в пространстве. Определить положение точки в любой момент времени t, когда на нее действует сила Как решить уравнение относительно х или у.

Положение точки в любой момент времени t определяется ее координатами x, y, z; следовательно, x, y, z являются функциями от t. Проекциями вектора скорости точки на оси координат будут производные x’ , y’ , z’.
Положим, что силаКак решить уравнение относительно х или у, а соответственно и ее проекции Fx, Fy, Fz зависят от времени t, от положения x, y, z точки и от скорости движения точки, то есть от Как решить уравнение относительно х или у. Искомыми неизвестными функциями в этой задаче будут три функции x = x (t), y = y (t), z = z (t). Эти
функции определяются из уравнений динамики:
Как решить уравнение относительно х или у

Мы получили систему трех дифференциальных уравнений второго порядка. В случае движения, когда траектория является плоской кривой, лежит, например, в плоскости Оxy, получим систему двух уравнений для определения неизвестных функций x (t) и y (t):
Как решить уравнение относительно х или у

Рассмотрим простейшие системы дифференциальных уравнений.

Системы дифференциальных уравнений первого порядка

Система n уравнений первого порядка с n неизвестными функциями имеет вид:
Как решить уравнение относительно х или у(7.38)

где x — независимая переменная, y1, y2, . yn — неизвестные функции.

Если в левой части уравнений системы стоят производные первого порядка, а правые части уравнений вовсе не содержат производных, то такая система уравнений называется нормальной.

Решением системы называется совокупность функций y1, y2, . yn, которые превращают каждое уравнение системы в тождество относительно x.

Задача Коши для системы (7.38) состоит в нахождении функций y1, y2, . yn , удовлетворяющих систему (7.38) и заданные начальные условия:
Как решить уравнение относительно х или у(7.39)

Интегрирование системы (7.38) делают следующим образом. Дифференцируем по x первое уравнение системы (7.38):
Как решить уравнение относительно х или у
Заменим производные
Как решить уравнение относительно х или уих выражениями f1, f2, . fn из уравнений системы (7.38), получим уравнение
Как решить уравнение относительно х или у
Дифференцируем полученное уравнение и, подставив в это равенство значения производных из системы (7.38), найдем
Как решить уравнение относительно х или у
Продолжая дальше таким образом, получим
Как решить уравнение относительно х или у
В результате получаем следующую систему уравнений:
Как решить уравнение относительно х или у(7.40)

Из первых (n-1) уравнений определим y2, y3, . yn:
Как решить уравнение относительно х или у(7.41)

и подставим их значения в последнее уравнение системы (7.40) для определения y1: Как решить уравнение относительно х или у

Продифференцируем это выражение (n-1) раз, определим
Как решить уравнение относительно х или укак функции от x, C1, C2, . Cn. Подставим эти функции в (7.41), найдем
Как решить уравнение относительно х или у(7.43)

Для того, чтобы полученное решение удовлетворяло заданным начальным условиям, остается только найти значение произвольных постоянных из уравнений (7.42) и (7.43) так, как мы это делали для одного дифференциального уравнения.

Пример 1. Проинтегрировать систему
Как решить уравнение относительно х или у
когда заданы начальные условия Как решить уравнение относительно х или у
Решение. Дифференцируем по x первое уравнение, имеем:
Как решить уравнение относительно х или у. Подставляем сюда значение Как решить уравнение относительно х или уи Как решить уравнение относительно х или уиз системы, получим Как решить уравнение относительно х или у
Как решить уравнение относительно х или у

Из первого уравнения системы найдем Как решить уравнение относительно х или уи подставим в полученное нами уравнение:
Как решить уравнение относительно х или уили Как решить уравнение относительно х или у

Общим решением этого уравнения является
Как решить уравнение относительно х или у (*)
и тогда Как решить уравнение относительно х или у (**)

Подберем постоянные С1 и С2 так, чтобы выполнялись начальные условия. На основании (*) и (**) имеем:
1 = С1 – 9; 0 = С2 – 2С1 + 14, откуда С1 = 10, С2 = 6.
Таким образом, решением системы, которое удовлетворяет заданным начальным условиям, будет:
Как решить уравнение относительно х или у

Системы линейных дифференциальных уравнений с постоянными коэффициентами

Система дифференциальных уравнений:
Как решить уравнение относительно х или у(7.44)
где коэффициенты aij — постоянные числа, t — независимая переменная, x1 (t), . xn (t)
неизвестные функции, называется системой линейных дифференциальных уравнений с постоянными коэффициентами.

Эту систему можно решать путем сведения к одному уравнению n-го порядка, как это было показано выше. Но эту систему можно решить и другим способом. Покажем, как это делается.

Будем искать решение системы (7.44) в виде:
Как решить уравнение относительно х или у(7.45)

Надо определить постоянные α1, α2, . αn и k так, чтобы функции (7.45) удовлетворяли систему (7.44). Подставим функции (7.45) в систему (7.44):
Как решить уравнение относительно х или у

Сократим на e kt и преобразуем систему, сведя ее к такой системе:
Как решить уравнение относительно х или у(7.46)

Это система линейных алгебраических уравнений относительно α1, α2, . αn. Составим определитель системы:
Как решить уравнение относительно х или у

Мы получим нетривиальные (ненулевые) решения (7.45) только при таких k, при которых определитель превратится в ноль. Получаем уравнение n-го порядка для определения k:
Как решить уравнение относительно х или у

Это уравнение называется характеристическим уравнением для системы (7.44).

Рассмотрим отдельные случаи на примерах:

1) Корни характеристического уравнения действительны и различны. Решение системы записывается в виде:
Как решить уравнение относительно х или у

Пример 2. Найти общее решение системы уравнений:
Как решить уравнение относительно х или у

Решение. Составим характеристическое уравнение:
Как решить уравнение относительно х или уили k 2 – 5k + 4 = 0, корни которого k1 = 1, k2 = 4.

Решение системы ищем в виде
Как решить уравнение относительно х или у

Составим систему (7.46) для корня k1 и найдем Как решить уравнение относительно х или уи Как решить уравнение относительно х или у:
Как решить уравнение относительно х или уили Как решить уравнение относительно х или у

Откуда Как решить уравнение относительно х или уПоложив Как решить уравнение относительно х или уполучим Как решить уравнение относительно х или у
Итак, мы получили решение системы:
Как решить уравнение относительно х или у

Далее составляем систему (7.46) для k = 4:
Как решить уравнение относительно х или у

Откуда Как решить уравнение относительно х или у
Получим второй решение системы: Как решить уравнение относительно х или у
Общее решение системы будет:
Как решить уравнение относительно х или у

2) Корни характеристического уравнения различны, но среди них есть комплексные:

k1 = α + iβ, k2 = α – iβ. Этим корням будут отвечать решения:

Как решить уравнение относительно х или у(7.47)

Как решить уравнение относительно х или у(7.48)

Можно доказать также, что истинные и мнимые части комплексного решения также будут решениями. Таким образом, получим два частных решения:
Как решить уравнение относительно х или у(7.49)
где Как решить уравнение относительно х или у— действительные числа, которые определяются через Как решить уравнение относительно х или у.

Соответствующие комбинации функций (7.49) войдут в общий решение системы.

Пример 3. Найти общее решение системы
Как решить уравнение относительно х или у

Решение. Составляем характеристическое уравнение:
Как решить уравнение относительно х или уили k 2 + 12k + 37 = 0, корни которого k1 = –6 + i, k2 = –6 – i .

Подставляем поочередно k1, k2 в систему (7.46), найдем
Как решить уравнение относительно х или у

Запишем уравнение (7.47) и (7.48) для наших данных
Как решить уравнение относительно х или у

Перепишем эти решения в таком виде:

Как решить уравнение относительно х или у

За частные решения можно взять отдельно действительные и отдельно мнимые части:
Как решить уравнение относительно х или у

Общим решением системы будет

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Присылайте задания в любое время дня и ночи в ➔ Как решить уравнение относительно х или уКак решить уравнение относительно х или у

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

math4school.ru

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Как решить уравнение относительно х или у

Видео:Дифференциальные уравнения не разрешенные относительно производной | poporyadku.schoolСкачать

Дифференциальные уравнения не разрешенные относительно производной | poporyadku.school

Уравнения в целых числах

Как решить уравнение относительно х или у

Немного теории

Уравнения в целых числах – это алгебраические уравнения с двумя или более неизвестными переменными и целыми коэффициентами. Решениями такого уравнения являются все целочисленные (иногда натуральные или рациональные) наборы значений неизвестных переменных, удовлетворяющих этому уравнению. Такие уравнения ещё называют диофантовыми, в честь древнегреческого математика Диофанта Александрийского, который исследовал некоторые типы таких уравнений ещё до нашей эры.

Современной постановкой диофантовых задач мы обязаны французскому математику Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Наиболее известное уравнение в целых числах – великая теорема Ферма: уравнение

не имеет ненулевых рациональных решений для всех натуральных n > 2.

Теоретический интерес к уравнениям в целых числах достаточно велик, так как эти уравнения тесно связаны со многими проблемами теории чисел.

В 1970 году ленинградский математик Юрий Владимирович Матиясевич доказал, что общего способа, позволяющего за конечное число шагов решать в целых числах произвольные диофантовы уравнения, не существует и быть не может. Поэтому следует для разных типов уравнений выбирать собственные методы решения.

При решении уравнений в целых и натуральных числах можно условно выделить следующие методы:

способ перебора вариантов;

применение алгоритма Евклида;

представление чисел в виде непрерывных (цепных) дробей;

разложения на множители;

решение уравнений в целых числах как квадратных (или иных) относительно какой-либо переменной;

метод бесконечного спуска.

Задачи с решениями

1. Решить в целых числах уравнение x 2 – xy – 2y 2 = 7.

Запишем уравнение в виде (x – 2y)(x + y) = 7.

Так как х, у – целые числа, то находим решения исходного уравнения, как решения следующих четырёх систем:

1) x – 2y = 7, x + y = 1;

2) x – 2y = 1, x + y = 7;

3) x – 2y = –7, x + y = –1;

4) x – 2y = –1, x + y = –7.

Решив эти системы, получаем решения уравнения: (3; –2), (5; 2), (–3; 2) и (–5; –2).

Ответ: (3; –2), (5; 2), (–3; 2), (–5; –2).

2. Решить в целых числах уравнение:

а) 20х + 12у = 2013;

в) 201х – 1999у = 12.

а) Поскольку при любых целых значениях х и у левая часть уравнения делится на два, а правая является нечётным числом, то уравнение не имеет решений в целых числах.

Ответ: решений нет.

б) Подберём сначала некоторое конкретное решение. В данном случае, это просто, например,

Поскольку числа 5 и 7 взаимно простые, то

Значит, общее решение:

х = 1 + 7k, у = 2 – 5k,

где k – произвольное целое число.

Ответ: (1+7k; 2–5k), где k – целое число.

в) Найти некоторое конкретное решение подбором в данном случае достаточно сложно. Воспользуемся алгоритмом Евклида для чисел 1999 и 201:

НОД(1999, 201) = НОД(201, 190) = НОД(190, 11) = НОД(11, 3) = НОД(3 , 2) = НОД(2, 1) = 1.

Запишем этот процесс в обратном порядке:

1 = 2 – 1 = 2 – (3 – 2) = 2·2 – 3 = 2· (11 – 3·3) – 3 = 2·11 – 7·3 = 2·11 – 7(190 – 11·17) =

= 121·11 – 7·190 = 121(201 – 190) – 7·190 = 121·201 – 128·190 =

= 121·201 – 128(1999 – 9·201) = 1273·201 – 128·1999.

Значит, пара (1273, 128) является решением уравнения 201х – 1999у = 1. Тогда пара чисел

x0 = 1273·12 = 15276, y0 = 128·12 = 1536

является решением уравнения 201х – 1999у = 12.

Общее решение этого уравнения запишется в виде

х = 15276 + 1999k, у = 1536 + 201k, где k – целое число,

или, после переобозначения (используем, что 15276 = 1283 + 7·1999, 1536 = 129 + 7·201),

х = 1283 + 1999n, у = 129 + 201n, где n – целое число.

Ответ: (1283+1999n, 129+201n), где n – целое число.

3. Решить в целых числах уравнение:

а) x 3 + y 3 = 3333333;

б) x 3 + y 3 = 4(x 2 y + xy 2 + 1).

а) Так как x 3 и y 3 при делении на 9 могут давать только остатки 0, 1 и 8 (смотрите таблицу в разделе «Делимость целых чисел и остатки»), то x 3 + y 3 может давать только остатки 0, 1, 2, 7 и 8. Но число 3333333 при делении на 9 даёт остаток 3. Поэтому исходное уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

б) Перепишем исходное уравнение в виде (x + y) 3 = 7(x 2 y + xy 2 ) + 4. Так как кубы целых чисел при делении на 7 дают остатки 0, 1 и 6, но не 4, то уравнение не имеет решений в целых числах.

Ответ: целочисленных решений нет.

а) в простых числах уравнение х 2 – 7х – 144 = у 2 – 25у;

б) в целых числах уравнение x + y = x 2 – xy + y 2 .

а) Решим данное уравнение как квадратное относительно переменной у. Получим

у = х + 9 или у = 16 – х.

Поскольку при нечётном х число х + 9 является чётным, то единственной парой простых чисел, которая удовлетворяет первому равенству, является (2; 11).

Так как х, у – простые, то из равенства у = 16 – х имеем

С помощью перебора вариантов находим остальные решения: (3; 13), (5; 11), (11; 5), (13; 3).

Ответ: (2; 11), (3; 13), (5; 11), (11; 5), (13; 3).

б) Рассмотрим данное уравнение как квадратное уравнение относительно x:

x 2 – (y + 1)x + y 2 – y = 0.

Дискриминант этого уравнения равен –3y 2 + 6y + 1. Он положителен лишь для следующих значений у: 0, 1, 2. Для каждого из этих значений из исходного уравнения получаем квадратное уравнение относительно х, которое легко решается.

Ответ: (0; 0), (0; 1), (1; 0), (1; 2), (2; 1), (2; 2).

5. Существует ли бесконечное число троек целых чисел x, y, z таких, что x 2 + y 2 + z 2 = x 3 + y 3 + z 3 ?

Попробуем подбирать такие тройки, где у = –z. Тогда y 3 и z 3 будут всегда взаимно уничтожаться, и наше уравнение будет иметь вид

Чтобы пара целых чисел (x; y) удовлетворяла этому условию, достаточно, чтобы число x–1 было удвоенным квадратом целого числа. Таких чисел бесконечно много, а именно, это все числа вида 2n 2 +1. Подставляя в x 2 (x–1) = 2y 2 такое число, после несложных преобразований получаем:

y = xn = n(2n 2 +1) = 2n 3 +n.

Все тройки, полученные таким образом, имеют вид (2n 2 +1; 2n 3 +n; –2n 3 – n).

6. Найдите такие целые числа x, y, z, u, что x 2 + y 2 + z 2 + u 2 = 2xyzu.

Число x 2 + y 2 + z 2 + u 2 чётно, поэтому среди чисел x, y, z, u чётное число нечётных чисел.

Если все четыре числа x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 делится на 4, но при этом 2xyzu не делится на 4 – несоответствие.

Если ровно два из чисел x, y, z, u нечётны, то x 2 + y 2 + z 2 + u 2 не делится на 4, а 2xyzu делится на 4 – опять несоответствие.

Поэтому все числа x, y, z, u чётны. Тогда можно записать, что

и исходное уравнение примет вид

Теперь заметим, что (2k + 1) 2 = 4k(k + 1) + 1 при делении на 8 даёт остаток 1. Поэтому если все числа x1, y1, z1, u1 нечётны, то x1 2 + y1 2 + z1 2 + u1 2 не делится на 8. А если ровно два из этих чисел нечётно, то x1 2 + y1 2 + z1 2 + u1 2 не делится даже на 4. Значит,

и мы получаем уравнение

Снова повторив те же самые рассуждения, получим, что x, y, z, u делятся на 2 n при всех натуральных n, что возможно лишь при x = y = z = u = 0.

7. Докажите, что уравнение

(х – у) 3 + (y – z) 3 + (z – x) 3 = 30

не имеет решений в целых числах.

Воспользуемся следующим тождеством:

(х – у) 3 + (y – z) 3 + (z – x) 3 = 3(х – у)(y – z)(z – x).

Тогда исходное уравнение можно записать в виде

(х – у)(y – z)(z – x) = 10.

Обозначим a = x – y, b = y – z, c = z – x и запишем полученное равенство в виде

Кроме того очевидно, a + b + c = 0. Легко убедиться, что с точностью до перестановки из равенства abc = 10 следует, что числа |a|, |b|, |c| равны либо 1, 2, 5, либо 1, 1, 10. Но во всех этих случаях при любом выборе знаков a, b, c сумма a + b + c отлична от нуля. Таким образом, исходное уравнение не имеет решений в целых числах.

8. Решить в целых числах уравнение 1! + 2! + . . . + х! = у 2 .

если х = 1, то у 2 = 1,

если х = 3, то у 2 = 9.

Этим случаям соответствуют следующие пары чисел:

Заметим, что при х = 2 имеем 1! + 2! = 3, при х = 4 имеем 1! + 2! + 3! + 4! = 33 и ни 3, ни 33 не являются квадратами целых чисел. Если же х > 5, то, так как

5! + 6! + . . . + х! = 10n,

можем записать, что

1! + 2! + 3! + 4! + 5! + . . . + х! = 33 + 10n.

Так как 33 + 10n – число, оканчивающееся цифрой 3, то оно не является квадратом целого числа.

Ответ: (1; 1), (1; –1), (3; 3), (3; –3).

9. Решите следующую систему уравнений в натуральных числах:

a 3 – b 3 – c 3 = 3abc, a 2 = 2(b + c).

3abc > 0, то a 3 > b 3 + c 3 ;

таким образом имеем

b 2 2 + х = у 4 + у 3 + у 2 + у.

Разложив на множители обе части данного уравнения, получим:

х(х + 1) = у(у + 1)(у 2 + 1),

х(х + 1) = (у 2 + у)(у 2 + 1)

Такое равенство возможно, если левая и правая части равны нулю, или представляют собой произведение двух последовательных целых чисел. Поэтому, приравнивая к нулю те или иные множители, получим 4 пары искомых значений переменных:

Произведение (у 2 + у)(у 2 + 1) можно рассматривать как произведение двух последовательных целых чисел, отличных от нуля, только при у = 2. Поэтому х(х + 1) = 30, откуда х5 = 5, х6 = –6. Значит, существуют ещё две пары целых чисел, удовлетворяющих исходному уравнению:

Ответ: (0; 0), (0; –1), (–1; 0), (–1; –1), (5; 2), (–6; 2.)

Задачи без решений

1. Решить в целых числах уравнение:

б) х 2 + у 2 = х + у + 2.

2. Решить в целых числах уравнение:

а) х 3 + 21у 2 + 5 = 0;

б) 15х 2 – 7у 2 = 9.

3. Решить в натуральных числах уравнение:

4. Доказать, что уравнение х 3 + 3у 3 + 9z 3 = 9xyz в рациональных числах имеет единственное решение

5. Доказать, что уравнение х 2 + 5 = у 3 в целых числах не имеет решений.

💥 Видео

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Точки пересечения графика линейной функции с координатными осями. 7 класс.Скачать

Точки пересечения графика линейной функции с координатными осями. 7 класс.

ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

ПРОСТЕЙШИЙ способ решения Показательных Уравнений

Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Решение неравенства методом интерваловСкачать

Решение неравенства методом интервалов

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

Математика без Ху!ни. Уравнение плоскости.Скачать

Математика без Ху!ни. Уравнение плоскости.

13. Как решить дифференциальное уравнение первого порядка?Скачать

13. Как решить дифференциальное уравнение первого порядка?

Нахождение коэффициента линейного уравнения с двумя переменными при данных значениях переменныхСкачать

Нахождение коэффициента линейного уравнения с двумя переменными при данных значениях переменных
Поделиться или сохранить к себе: