- п.1. Понятие уравнения с двумя переменными
- п.2. Обобщенные правила преобразования графика уравнения
- п.4. Примеры
- Как решить систему уравнений с уравнением окружности
- Уравнение с двумя переменными и его график. Уравнение окружности
- п.1. Понятие уравнения с двумя переменными
- п.2. Обобщенные правила преобразования графика уравнения
- п.4. Примеры
- Система уравнений окружность ответы
- Решение систем уравнений
- Графический метод решения систем уравнений
- Начнём с графического метода
- Примеры с решением
- Решение систем уравнений методом подстановки
- Симметричные системы уравнений с двумя неизвестными
- Уравнение с двумя переменными и его график. Уравнение окружности
- п.1. Понятие уравнения с двумя переменными
- п.2. Обобщенные правила преобразования графика уравнения
- п.4. Примеры
- Уравнение окружности.
- Графический метод решения системы уравнений
- Задания по теме «Системы уравнений с параметром»
- Задание №1227
- Условие
- Решение
- 💡 Видео
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm<y=frac=-frac + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm<y=frac> ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm<R=sqrt=2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm<y=frac> ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm<y=frac=-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm<frac+2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Как решить систему уравнений с уравнением окружности
Видео:Уравнение окружности (1)Скачать
Уравнение с двумя переменными и его график. Уравнение окружности
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm ) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm ) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm =-frac + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm > ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm =2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm > ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm =-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm +2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
Видео:9 класс, 6 урок, Уравнение окружностиСкачать
Система уравнений окружность ответы
Видео:УРАВНЕНИЕ ОКРУЖНОСТИСкачать
Решение систем уравнений
Содержание:
Графический метод решения систем уравнений
Вспоминаем то, что знаем
Что такое график уравнения с двумя неизвестными?
Что представляет собой график линейного уравнения с двумя неизвестными?
Решите графическим методом систему линейных уравнений:
Открываем новые знания
Решите графическим методом систему уравнений:
Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту
В курсе алгебры 7-го класса вы изучали системы линейных уравнений.
Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.
По этой ссылке вы найдёте полный курс лекций по высшей математике:
Начнём с графического метода
Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.
Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.
Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.
Возможно вам будут полезны данные страницы:
Примеры с решением
Пример 1:
Решим систему уравнений:
Построим графики уравнений
Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).
Парабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).
Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.
Ответ: (2; 5) и (-1; 2).
Пример 2:
Выясним количество решений системы уравнений:
Построим графики уравнений
Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.
Окружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.
Ответ: Два решения.
Решение систем уравнений методом подстановки
Вспоминаем то, что знаем
Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.
Решите систему линейных уравнений методом подстановки:
Открываем новые знания
Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?
Решите систему уравнений методом подстановки:
Как решить систему двух уравнений с двумя неизвестными методом подстановки?
Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?
Ранее вы решали системы уравнений первой степени.
Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.
Пример 3:
Пусть (х; у) — решение системы.
Выразим х из уравнения
Подставим найденное выражение в первое уравнение:
Решим полученное уравнение:
Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.
Чуть сложнее дело обстоит в следующем примере.
Пример 4:
Решим систему уравнений:
Пусть (х; у) — решение системы.
Выразим у из линейного уравнения:
Подставим найденное выражение в первое уравнение системы:
После преобразований получим:
Ответ: (-0,5; 0,5), (4; 5).
Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».
Пример 5:
Подставим во второе уравнение тогда его можно переписать в виде:
Теперь выразим х через у из первого уравнения системы:
Подставим в полученное ранее уравнение ху = 2:
Корни этого уравнения:
.
Иногда решить систему можно, используя метод алгебраического сложения.
Пример 6:
Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:
.
Корни этого уравнения:
Подставим найденные значения в первое уравнение. Рассмотрим два случая:
1)
2) , получим уравнение корней нет.
Иногда упростить решение удаётся, используя различные варианты замены неизвестных.
Пример 7:
Решим систему уравнений:
Обозначим
Второе уравнение системы примет вид:
Решим полученное уравнение. Получим, умножая обе части на 2а:
Осталось решить методом подстановки линейные системы:
Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями
Напомним, что при решении задач обычно действуют следующим образом:
1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;
2) решают полученную систему;
3) отвечают на вопрос задачи.
Пример 8:
Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.
Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — см.
Воспользуемся теоремой Пифагора:
Решим систему. Выразим из первого уравнения у:
Подставим во второе уравнение:
Корни уравнения:
Найдём
С учётом условия получим ответ: длина — 12 см, ширина — 5 см.
Пример 9:
Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.
Пусть х — первое число, у — второе число.
Тогда: — произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.
Вычтем из второго уравнения первое. Получим:
Дальше будем решать методом подстановки:
Подставим в первое уравнение выражение для у:
Корни уравнения: (не подходит по смыслу задачи).
Найдём у из уравнения:
Получим ответ: 16 и 7.
Симметричные системы уравнений с двумя неизвестными
Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть не меняется. А вот уравнение не симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид , то есть меняется.
Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.
ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.
Например, если в системе уравнений
переставить местами неизвестные х и у, то получим систему:
Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.
Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:
Сначала научитесь выражать через неизвестные выражения:
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.
Видео:422 Алгебра 9 класс. Решите графически систему уравнений. Уравнение окружностиСкачать
Уравнение с двумя переменными и его график. Уравнение окружности
п.1. Понятие уравнения с двумя переменными
Мы уже знакомы со многими функциями и умеем их записывать в виде формул:
y = 2x + 5 – прямая, y = 5x 2 + 2x – 1 – парабола, (mathrm ) – гипербола.
Если записать такое выражение: x 2 (x + y) = 1 – y – в нём тоже есть две переменные x и y, и постоянная 1.
Для наших примеров:
F(x; y) = 2x – y + 5 = 0 – прямая
F(x; y) = 5x 2 + 2x – y – 1 = 0 – парабола
F(x; y) = (mathrm ) – y = 0 – гипербола
F(x; y)=x 2 (x + y) + y – 1 = 0 – некоторая кривая (график — ниже).
п.2. Обобщенные правила преобразования графика уравнения
Пусть F(x; y) = 0 – исходный график некоторой функции
Симметричное отображение относительно оси OY
Симметричное отображение относительно оси OX
Центральная симметрия относительно начала координат
Параллельный перенос графика на a единиц вправо
Параллельный перенос графика на a единиц влево
Параллельный перенос графика на b единиц вниз
Параллельный перенос графика на b единиц вверх
Сжатие графика к оси OY в a раз
Сжатие графика к оси OX в b раз
F(x; by) = 0
0 Например:
Окружность с центром в точке O(2; 1) и радиусом R = 3 задаётся уравнением: $$ mathrm $$
п.4. Примеры
Пример 1. Постройте график уравнения:
а) 2x + 7y – 14 = 0
Выразим y из уравнения: ( mathrm =-frac + 2 > ) – это прямая
б) xy + 4 = 0
Выразим y из уравнения: ( mathrm > ) – это гипербола
в) ( x+ 2) 2 + y 2 = 4
Это – уравнение окружности с центром O(–2; 0), радиусом ( mathrm =2> )
г) x 2 + 5y – 2 = 0
Выразим y из уравнения: ( mathrm > ) – это парабола
Пример 2*. Постройте график уравнения:
а) 2|x| + 5y = 10
( mathrm =-frac25|x|+2> )
Строим график для ( mathrm ), а затем отражаем его относительно оси OY в левую полуплоскость.
б) 3x + |y| = 6
|y| = –3x + 6
Строим график для y > 0: y = –3x + 6, а затем отражаем его относительно оси OX в нижнюю полуплоскость.
в) |x| + |y| = 2
|y| = –|x| + 2
Строим график для x > 0, y > 0: y = –x + 2, а затем отражаем его относительно осей OX и OY.
г) |x – 1| + |y – 2| = 4
Получим тот же ромб (квадрат), что и в (в), но его центр будет перенесен из начала координат в точку O(1; 2).
д) (mathrm +2|y-2|=4>)
Ромб по x растянется в 2 раза по диагонали, а по y – сожмётся в 2 раза по диагонали.
Пример 3. Постройте график уравнения:
а) x 2 + y 2 + 4x – 6y + 4 = 0
Выделим полные квадраты:
(x 2 + 4x + 4) + (y 2 – 6y + 9) – 9 = 0
(x + 2) 2 + (y – 3) 2 = 3 2 – уравнение окружности с центром (–2; 3), радиусом 3.
Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать
Уравнение окружности.
Окружностью принято обозначать множество всех точек плоскости, равноудаленных от одной точки – от центра.
В формулировке окружности упоминается расстояние между точкой окружности и центром.
Формула расстояния между двумя точками М1(х1; у1) и М2(х2; у2) имеет вид:
,
Применив формулу и формулировку окружности, получаем уравнение окружности с центром в точке С (х0; у0) и радиусом r.
Отметим произвольную точку М(х; у) на этой окружности.
.
Предположим, что М принадлежит окружности с центром С и радиусом r, то МС = r.
Следовательно, МС 2 = r 2 и координаты точки М удовлетворяют уравнению окружности (х – х0 ) 2 +(у – у0 ) 2 = r 2 .
Из выше изложенного делаем вывод, что уравнение окружности с центром в точке С (х0; у0) и радиусом r имеет вид:
В случае когда центр окружности совпадает с началом координат, то получаем частный случай уравнения окружности с центром в точке О (0;0):
Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать
Графический метод решения системы уравнений
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
На этом уроке мы будем рассматривать решение систем двух уравнений с двумя переменными. Вначале рассмотрим графическое решение системы двух линейных уравнений, специфику совокупности их графиков. Далее решим несколько систем графическим методом.
Видео:9 класс, 7 урок, Уравнение прямойСкачать
Задания по теме «Системы уравнений с параметром»
Открытый банк заданий по теме системы уравнений с параметром. Задания C6 из ЕГЭ по математике (профильный уровень)
Видео:Алгебра 9 класс. Графическое решение систем уравненийСкачать
Задание №1227
Условие
Найдите все значения a > 0, при каждом из которых система begin(x-4)^2+(|y|-4)^2=9,\ x^2+(y-4)^2=a^2end имеет ровно 2 решения.
Решение
Если y geqslant 0, то первое уравнение задаёт окружность phi _1 с центром в точке C_1 (4; 4) радиуса 3 , а если y то оно задаёт окружность phi _2 с центром в точке C_2 (4; -4) того же радиуса.
При a > 0 второе уравнение задаёт окружность phi с центром в точке C(0; 4) радиуса a . Поэтому задача состоит в том, чтобы найти все значения параметра a , при каждом из которых окружность phi имеет ровно две общие точки с объединением окружностей phi _1 и phi _2.
Координаты точки касания окружностей phi и phi _1 явно видны на чертеже — точки A_1 (1; 4) и B_1 (7; 4) . То есть при a=CA_1=1 и a=CB_1=7 окружности phi и phi _1 касаются. При a > 7 и a окружности phi и phi _1 не пересекаются, при 1 окружности phi и phi _2 имеют 2 общие точки.
Далее, из точки C проведём луч CC_2 и обозначим A_2 и B_2 точки его пересечения с окружностью phi_2 , где A_2 лежит между C и C_2. Заметим, что длина отрезка CC_2= sqrt <4^2+(4-(-4))^>= sqrt = 4sqrt 5.
При a или a > CB_2 окружности phi и phi_2 не пересекаются. При CA_2 окружности phi и phi _2 имеют 2 общие точки. При a =CA_2=4sqrt 5-3 или a=CB_2=4sqrt 5+3, окружности phi и phi _2 касаются.
Исходная система имеет ровно 2 решения тогда и только тогда, когда окружность phi с одной из окружностей phi _1 и phi _2 имеет 2 общие точки, а с другой не пересекается, либо касается одновременно двух окружностей.
Так как 1 то условию задачи удовлетворяют значения ain (1;4sqrt 5-3) cup (7; 4sqrt 5+3).
💡 Видео
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Геометрия 9 класс (Урок№9 - Уравнение линии на плоскости. Уравнение окружности. Уравнение прямой.)Скачать
Математика | Система уравнений на желтую звездочку (feat Золотой Медалист по бегу)Скачать
Уравнение окружностиСкачать
Решение системы неравенств с двумя переменными. 9 класс.Скачать
Составить уравнение окружности. Геометрия. Задачи по рисункам.Скачать
МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать
ГЕОМЕТРИЯ 9 класс: Уравнение окружности и прямойСкачать
ПРОСТОЙ СЕКРЕТ ДЛЯ НАЧИНАЮЩИХ! Реши алгебру за 12 минут — Уравнение ОкружностиСкачать
Графический способ решения систем уравнений | Алгебра 9 класс #18 | ИнфоурокСкачать
Составляем уравнение окружностиСкачать