Как решить систему уравнений с множествами

Решение некоторых задач по теории множеств

Разделы: Математика

На математическом кружке вместе с учащимися рассматривался ряд задач, благодаря наглядности которых, процесс решения становится понятным и интересным. На первый взгляд им хочется составить систему уравнений, но в процессе решения остается много неизвестных, что ставит их в тупик. Для того, чтобы уметь решать эти задачи, необходимо предварительно рассмотреть некоторые теоретические разделы теории множеств.

Введем определение множества, а так же некоторые обозначения.

Под множеством мы будем понимать такой набор, группу, коллекцию элементов, обладающих каким-либо общим для них всех свойством или признаком.

Множества обозначим А, В, С…, а элементы множеств а, b, с…, используя латинский алфавит.

Можно сделать такую запись определения множества:

Как решить систему уравнений с множествами, где

Как решить систему уравнений с множествами” – принадлежит;
“=>“ – следовательно;
“ø” – пустое множество, т.е. не содержащее ни одного элемента.

Два множества будем называть равными, если они состоят из одних и тех же элементов

Как решить систему уравнений с множествами

Если любой элемент из множества А принадлежит и множеству В, то говорят, что множество А включено в множество В, или множество А является подмножеством множества В, или А является частью В, т.е. если Как решить систему уравнений с множествами, то Как решить систему уравнений с множествами, где “С” знак подмножества или включения.

Графически это выглядит так (рис.1):

Как решить систему уравнений с множествами

Можно дать другое определение равных множеств. Два множества называются равными, если они являются взаимными подмножествами.

Как решить систему уравнений с множествами

Рассмотрим операции над множествами и их графическую иллюстрацию (рис.2).

Объединением множеств А и В называется множество С, образованное всеми элементами, которые принадлежат хотя бы одному из множеств А или В. Слова “или ” ключевое в понимании элементов входящих в объединение множеств.

Это определение можно записать с помощью обозначений:

А υ В, где Как решить систему уравнений с множествами

где “ υ ” – знак объединения,

“ / ” – заменяет слова ”таких что“

Как решить систему уравнений с множествами

Пресечение двух множеств А и В называется множество С, образованное всеми элементами, которые принадлежат и множеству А, и множеству В. Здесь уже ключевое слово “и”. Запишем коротко:

А ∩ В = С, где Как решить систему уравнений с множествами

“∩“ – знак пересечения. (рис.3)

Как решить систему уравнений с множествами

Обозначим буквой Е основное или универсальное множество, где Как решить систему уравнений с множествамиA С Е (“Как решить систему уравнений с множествами”- любо число), т.е. А Как решить систему уравнений с множествамиЕ = Е; АКак решить систему уравнений с множествамиЕ =А

Множество всех элементов универсального множества Е, не принадлежащих множеству А называется дополнением множества А до Е и обозначается Ā Е или Ā (рис.4)

Как решить систему уравнений с множествамиЕ

Примерами для понимания этих понятий являются свойства:

А Как решить систему уравнений с множествамиĀ=Е Ø = Е Е Ā=Ā

Свойства дополнения имеют свойства двойственности:

АКак решить систему уравнений с множествамиВ = А∩В

АКак решить систему уравнений с множествамиВ = АUВ

Введем еще одно понятие – это мощность множества.

Для конечного множества А через m (A) обозначим число элементов в множестве А.

Из определение следуют свойства:

Для любых конечных множеств справедливы так же утверждения:

m (AКак решить систему уравнений с множествамиB) =m (A) + m (В) – m (А∩В)

m (A∩B) = m (A) + m (В) – m (АКак решить систему уравнений с множествамиВ)

m (AКак решить систему уравнений с множествамиBКак решить систему уравнений с множествамиC) = m (A) + m (В) + m (С)– m (А∩В) — m (А∩С) – m (В∩С) – m (А∩В∩С).

А теперь рассмотрим ряд задач, которые удобно решать, используя графическую иллюстрацию.

Задача №1

В олимпиаде по математике для абитуриентов приняло участие 40 учащихся, им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. По алгебре решили задачу 20 человек, по геометрии – 18 человек, по тригонометрии – 18 человек.

По алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека.

  1. Сколько учащихся решили все задачи?
  2. Сколько учащихся решили только две задачи?
  3. Сколько учащихся решили только одну задачу?

Задача № 2

Первую или вторую контрольные работы по математике успешно написали 33 студента, первую или третью – 31 студент, вторую или третью – 32 студента. Не менее двух контрольных работ выполнили 20 студентов.

Сколько студентов успешно решили только одну контрольную работу?

Задача № 3

В классе 35 учеников. Каждый из них пользуется хотя бы одним из видов городского транспорта: метро, автобусом и троллейбусом. Всеми тремя видами транспорта пользуются 6 учеников, метро и автобусом – 15 учеников, метро и троллейбусом – 13 учеников, троллейбусом и автобусом – 9 учеников.

Сколько учеников пользуются только одним видом транспорта?

Решение задачи № 1

Запишем коротко условие и покажем решение:

  • m (Е) = 40
  • m (А) = 20
  • m (В) = 18
  • m (С) = 18
  • m (А∩В) = 7
  • m (А∩С) = 8
  • m (В∩С) = 9

m (АКак решить систему уравнений с множествамиВКак решить систему уравнений с множествамиС) = 3 => m (АКак решить систему уравнений с множествамиВКак решить систему уравнений с множествамиС) = 40 – 3 = 37

Обозначим разбиение универсального множества Е множествами А, В, С (рис.5).

Как решить систему уравнений с множествами

К 1 – множество учеников, решивших только одну задачу по алгебре;

К 2 – множество учеников, решивших только две задачи по алгебре и геометрии;

К 3 – множество учеников, решивших только задачу по геометрии;

К 4 – множество учеников, решивших только две задачи по алгебре и тригонометрии;

К 5 – множество всех учеников, решивших все три задачи;

К 6 – множество всех учеников, решивших только две задачи, по геометрии и тригонометрии;

К 7 – множество всех учеников, решивших только задачу по тригонометрии;

К 8 – множество всех учеников, не решивших ни одной задачи.

Используя свойство мощности множеств и рисунок можно выполнить вычисления:

  • m (К 5 ) = m (А∩В∩С)= m (АКак решить систему уравнений с множествамиВКак решить систему уравнений с множествамиС) — m (А) — m (В) — m (С) + m (А∩В) + m (А∩С) + m (В∩С)
  • m (К 5 ) = 37-20-18-18+7+8+9=5
  • m (К 2 ) = m (А∩В) — m (К 5 ) = 7-5=2
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 8-5=3
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-5=4
  • m (К 1 ) = m (А) — m (К 2 ) — m (К 4 ) — m (К 5 ) = 20-2-3-5=10
  • m (К 3 ) = m (В) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 18-2-4-5=7
  • m (К 7 ) = m (С) — m (К4) — m (К 6 ) — m (К 5 ) = 18-3-4-5 =6
  • m (К 2 ) + m (К 4 ) + m (К6) = 2+3+4=9 – число учеников решивших только две задачи;
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 10+7+6=23 – число учеников решивших только одну задачу.

Ответ:

5 учеников решили три задачи;

9 учеников решили только по две задачи;

23 ученика решили только по одной задаче.

С помощью этого метода можно записать решения второй и третьей задачи так:

Решение задачи № 2

  • m (АКак решить систему уравнений с множествамиВ) = 33
  • m (АКак решить систему уравнений с множествамиС) = 31
  • m (ВКак решить систему уравнений с множествамиС) = 32
  • m (К 2 ) + m (К 4 ) + m (К 6 ) + m (К 5 ) = 20

Найти m (К 1 ) + m (К 3 ) + m (К 7 )

  • m (АUВ) = m (К 1 ) + m (К 2 ) + m (К 3 ) + m (К 4 ) + m (К 5 ) + m (К 6 ) = m (К 1 ) + m (К 3 ) + 20 = 33 =>
  • m (К 1 ) + m (К 3 ) = 33 – 20 = 13
  • m (АUС) = m (К 1 ) + m (К 4 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) = m (К 1 ) + m (К 7 ) + 20 = 31 =>
  • m (К 1 ) + m (К 7 ) = 31 – 20 = 11
  • m (ВUС) = m (К 3 ) + m (К 2 ) + m (К 5 ) + m (К 6 ) + m (К 7 ) + m (К 4 ) = m (К 3 ) + m (К 7 ) + 20 = 32 =>
  • m (К 3 ) + m (К 7 ) = 32 – 20 = 12
  • 2m (К 1 ) + m (К 3 ) + m (К 7 ) = 13+11=24
  • 2m (К 1 ) + 12 = 24
  • Как решить систему уравнений с множествами
  • m (К 3 )= 13-6=7
  • m (К 7 )=12-7=5
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = 6+7+5=18

Ответ:

Только одну контрольную работу решили 18 учеников.

Решение задачи № 3

  • m (Е) = 35
  • m (А∩В∩С)= m (К 5 ) = 6
  • m (А∩В)= 15
  • m (А∩С)= 13
  • m (В∩С)= 9

Найти m (К1) + m (К3) + m (К 7 )

  • m (К 2 ) = m (А∩В) — m (К 5 ) = 15-6=9
  • m (К 4 ) = m (А∩С) — m (К 5 ) = 13-6=7
  • m (К 6 ) = m (В∩С) — m (К 5 ) = 9-6=3
  • m (К 1 ) + m (К 3 ) + m (К 7 ) = m (Е) — m (К 4 ) — m (К 2 ) — m (К 6 ) — m (К 5 ) = 35-7-9-3-6=10

Ответ:

Только одним видом транспорта пользуется 10 учеников.

Литература: А.Х. Шахмейстер «Множества. Функции. Последовательности»

Видео:Множества и операции над нимиСкачать

Множества и операции над ними

Решение систем уравнений

Дата добавления: 2015-07-23 ; просмотров: 412 ; Нарушение авторских прав

1. Решить систему уравнений

Как решить систему уравнений с множествами

где А, В, и С — данные множества, и В ÍА ÍС.

Используя тождества задач 1.2 и 1.3 предыдущего раздела, получим:

· А ÇХ =В Û А Ç Х ÍВ и В Í А Ç Х. Следовательно, из второго включения

В Í А, и В ÍХ; из первого включения : Х Í `А È В. Из этих двух

включений: В Í Х Í `А È В.

· А È Х = С Û А È Х Í С и С Í А È Х. Из первого включения следует,

что А Í СХ Í С, из второго включения имеем С Ç `А Í Х. Следовательно,

· Соединяя двойные включения, полученные из первого и второго уравнений,

получим (`А Ç С) È В Í Х Í С Ç ( `А È В). Преобразуя правое

выражение, получим: СА È В Í Х Í СА È В.

Следовательно,Х = АС ÈВ.

2. Решить систему уравнений

Как решить систему уравнений с множествами

где А, В, С — данные множества и В Í А, А ÇС= Æ.

Ответ: Х=С È(АВ).

3. Решить систему уравнений

Как решить систему уравнений с множествами

где А, В, С — данные множества и В Í А Í С.

Ответ: Х = СВ.

4. Решить систему уравнений

Как решить систему уравнений с множествами

При каких А, В и С система имеет решение?

Два множества P и Q равны тогда и только тогда, когда пересечение

P Ç `Q =Æ и P È`Q=I.

1. Пусть А È Х = В Ç Х.

Как решить систему уравнений с множествамиТогда (А È Х) Ç (В ÇХ)= Æ. Преобразуем это выражение обычным образом:

(А È Х) Ç(`В È `Х)= (А Ç `В) È (А Ç `Х) È (`В Ç Х) = Æ.

Объединение множеств может быть пусто тогда и только тогда, когда пусты все множества, участвующие в объединении (по определению объединения). Т.е.

А Ç `В = Æ, Х Ç`В = Æ, А Ç `Х = Æ.

Из А Ç `В = Æ , следует, что А Í В.

Из Х Ç`В = Æ, следует, что то Х Í В.

Из А Ç `Х = Æ следует, что А Í Х.

Из полученных выражений получаем двойное включение А Í Х Í В и А Í В.

2. Пусть А Ç Х = С È Х.

Как решить систему уравнений с множествамиТогда (А ÇХ) Ç (С È Х) = Æ. Преобразуем это выражение обычным образом:

(А Ç Х) Ç (`С Ç `Х ) = Æ. Это тождественное равенство, так как Х Ç `Х = Æ по аксиоме дополнения. Поэтому перепишем преобразование иначе:

Как решить систему уравнений с множествами(А Ç Х) Ç (С È Х) = Æ. Отсюда

( `А È `Х ) Ç (С È Х) = ( `А Ç С ) È (`А Ç Х) È (С Ç `Х ) = Æ.

Из ( `А Ç С ) = Æ следует, что С Í А.

Из ( `А Ç Х) = Æ следует, что Х Í А.

Из (С Ç `Х) = Æ следует, что С Í Х .

Из полученных выражений получаем двойное включение С Í Х Í А и С Í А.

3. Объединяя полученные двойные включения, получим:

А È С Í Х Í А Ç В. Так как С Í А Í В, то А È С = А и А Ç В = А.

Окончательно получаем А Í Х Í А,т.е. Х=А.

4. Решить систему уравнений

Как решить систему уравнений с множествами

При каких А, В, С система имеет решение?

Решение: Используем для решения тот же подход что и в задаче 3.

1. Как решить систему уравнений с множествамиПусть (А Ç Х) Ç (В Ç `Х ) = Æ. Отсюда получим: В Ç `А Í Х и В Í Х.

2. Как решить систему уравнений с множествамиПусть (С È Х) Ç (ХА)= Æ. Отсюда — С Í Х Í `А.

3. Объединяя полученные в пунктах 1 и 2 включения, получим

В È С Í Х Í `Апри условии, чтоВ È С Í `А.

5. Решить систему уравнений и определить, при каких А, В, С система имеет решение.

Как решить систему уравнений с множествами

Решение: Воспользуемся приемом задачи 3 настоящего раздела.

Как решить систему уравнений с множествами1. (А Ç `Х) Ç ХВ = Æ . Отсюда получим А Ç В Í Х и AÍX.

Как решить систему уравнений с множествами2. ХА Ç СХ = Æ. Отсюда — Х Í А È С и XÍA.

Объединяя полученные включения, получим

А Í Х Í А. Отсюда Х = А.

|следующая лекция ==>
Задание множеств. Операции на множествах|Декартово произведение множеств

Не нашли то, что искали? Google вам в помощь!

Видео:9 класс, 11 урок, Методы решения систем уравненийСкачать

9 класс, 11 урок, Методы решения систем уравнений

Как решать систему уравнений

Как решить систему уравнений с множествами

О чем эта статья:

8 класс, 9 класс, ЕГЭ/ОГЭ

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Основные понятия

Алгебра в 8 и 9 классе становится сложнее. Но если изучать темы последовательно и регулярно практиковаться в тетрадке и онлайн — ходить на уроки математики будет не так страшно.

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в исходное уравнение получилось верное числовое равенство.

Например, возьмем 3 + 4 = 7. При вычислении левой части получается верное числовое равенство, то есть 7 = 7.

Уравнением можно назвать, например, равенство 3 + x = 7 с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Система уравнений — это несколько уравнений, для которых надо найти значения неизвестных, каждое из которых соответствует данным уравнениям.

Так как существует множество уравнений, составленных с их использованием систем уравнений также много. Поэтому для удобства изучения существуют отдельные группы по схожим характеристикам. Рассмотрим способы решения систем уравнений.

Видео:Реакция на результаты ЕГЭ 2022 по русскому языкуСкачать

Реакция на результаты ЕГЭ 2022 по русскому языку

Линейное уравнение с двумя переменными

Уравнение вида ax + by + c = 0 называется линейным уравнением с двумя переменными x и y, где a, b, c — числа.

Решением этого уравнения называют любую пару чисел (x; y), которая соответствует этому уравнению и обращает его в верное числовое равенство.

Теорема, которую нужно запомнить: если в линейном уравнение есть хотя бы один не нулевой коэффициент при переменной — его графиком будет прямая линия.

Вот алгоритм построения графика ax + by + c = 0, где a ≠ 0, b ≠ 0:

Дать переменной 𝑥 конкретное значение x = x₁, и найти значение y = y₁ при ax₁ + by + c = 0.

Дать x другое значение x = x₂, и найти соответствующее значение y = y₂ при ax₂ + by + c = 0.

Построить на координатной плоскости xy точки: (x₁; y₁); (x₂; y₂).

Провести прямую через эти две точки и вуаля — график готов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Видео:Операции над множествамиСкачать

Операции  над  множествами

Система двух линейных уравнений с двумя переменными

Для ax + by + c = 0 можно сколько угодно раз брать произвольные значение для x и находить значения для y. Решений в таком случае может быть бесчисленное множество.

Система линейных уравнений (ЛУ) с двумя переменными образуется в случае, когда x и y связаны не одним, а двумя уравнениями. Такая система может иметь одно решение или не иметь решений совсем. Выглядит это вот так:

Из первого линейного уравнения a₁x + b₁y + c₁ = 0 можно получить линейную функцию, при условии если b₁ ≠ 0: y = k₁x + m₁. График — прямая линия.

Из второго ЛУ a₂x + b₂y + c₂ = 0 можно получить линейную функцию, если b₂ ≠ 0: y = k₂x + m₂. Графиком снова будет прямая линия.

Можно записать систему иначе:

Множеством решений первого ЛУ является множество точек, лежащих на определенной прямой, аналогично и для второго ЛУ. Если эти прямые пересекаются — у системы есть единственное решение. Это возможно при условии, если k₁ ≠ k₂.

Две прямые могут быть параллельны, а значит, они никогда не пересекутся и система не будет иметь решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ ≠ m₂.

Две прямые могут совпасть, и тогда каждая точка будет решением, а у системы будет бесчисленное множество решений. Это возможно при следующих условиях: k₁ = k₂ и m₁ = m₂.

Видео:2. Системы множествСкачать

2. Системы множеств

Метод подстановки

Разберем решение систем уравнений методом подстановки. Вот алгоритм при переменных x и y:

Выразить одну переменную через другую из более простого уравнения системы.

Подставить то, что получилось на место этой переменной в другое уравнение системы.

Решить полученное уравнение, найти одну из переменных.

Подставить поочередно каждый из найденных корней в уравнение, которое получили на первом шаге, и найти второе неизвестное значение.

Записать ответ. Ответ принято записывать в виде пар значений (x; y).

Потренируемся решать системы линейных уравнений методом подстановки.

Пример 1

Решите систему уравнений:

x − y = 4
x + 2y = 10

Выразим x из первого уравнения:

x − y = 4
x = 4 + y

Подставим получившееся выражение во второе уравнение вместо x:

x + 2y = 10
4 + y + 2y = 10

Решим второе уравнение относительно переменной y:

4 + y + 2y = 10
4 + 3y = 10
3y = 10 − 4
3y = 6
y = 6 : 3
y = 2

Полученное значение подставим в первое уравнение вместо y и решим уравнение:

x − y = 4
x − 2 = 4
x = 4 + 2
x = 6

Ответ: (6; 2).

Пример 2

Решите систему линейных уравнений:

x + 5y = 7
3x = 4 + 2y

Сначала выразим переменную x из первого уравнения:

x + 5y = 7
x = 7 − 5y

Выражение 7 − 5y подставим вместо переменной x во второе уравнение:

3x = 4 + 2y
3 (7 − 5y) = 4 + 2y

Решим второе линейное уравнение в системе:

3 (7 − 5y) = 4 + 2y
21 − 15y = 4 + 2y
21 − 15y − 2y = 4
21 − 17y = 4
17y = 21 − 4
17y = 17
y = 17 : 17
y = 1

Подставим значение y в первое уравнение и найдем значение x:

x + 5y = 7
x + 5 = 7
x = 7 − 5
x = 2

Ответ: (2; 1).

Пример 3

Решите систему линейных уравнений:

x − 2y = 3
5x + y = 4

Из первого уравнения выразим x:

x − 2y = 3
x = 3 + 2y

Подставим 3 + 2y во второе уравнение системы и решим его:

5x + y = 4
5 (3 + 2y) + y = 4
15 + 10y + y = 4
15 + 11y = 4
11y = 4 − 15
11y = −11
y = −11 : 11
y = −1

Подставим получившееся значение в первое уравнение и решим его:

x − 2y = 3
x − 2 (−1) = 3
x + 2 = 3
x = 3 − 2
x = 1

Ответ: (1; −1).

Видео:Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Метод сложения

Теперь решим систему уравнений способом сложения. Алгоритм с переменными x и y:

При необходимости умножаем почленно уравнения системы, подбирая множители так, чтобы коэффициенты при одной из переменных стали противоположными числами.

Складываем почленно левые и правые части уравнений системы.

Решаем получившееся уравнение с одной переменной.

Находим соответствующие значения второй переменной.

Запишем ответ в в виде пар значений (x; y).

Видео:Способы решения систем нелинейных уравнений. 9 класс.Скачать

Способы решения систем нелинейных уравнений. 9 класс.

Система линейных уравнений с тремя переменными

Системы ЛУ с тремя переменными решают так же, как и с двумя. В них присутствуют три неизвестных с коэффициентами и свободный член. Выглядит так:

Решений в таком случае может быть бесчисленное множество. Придавая двум переменным различные значения, можно найти третье значение. Ответ принято записывать в виде тройки значений (x; y; z).

Если x, y, z связаны между собой тремя уравнениями, то образуется система трех ЛУ с тремя переменными. Для решения такой системы можно применять метод подстановки и метод сложения.

Видео:Алгебра 9 класс. Решение систем уравнений через подстановку.Скачать

Алгебра 9 класс. Решение систем уравнений через подстановку.

Решение задач

Разберем примеры решения систем уравнений.

Задание 1. Как привести уравнение к к стандартному виду ах + by + c = 0?

5x − 8y = 4x − 9y + 3

5x − 8y = 4x − 9y + 3

5x − 8y − 4x + 9y = 3

Задание 2. Как решать систему уравнений способом подстановки

Выразить у из первого уравнения:

Подставить полученное выражение во второе уравнение:

Найти соответствующие значения у:

Задание 3. Как решать систему уравнений методом сложения

  1. Решение систем линейных уравнений начинается с внимательного просмотра задачи. Заметим, что можно исключить у. Для этого умножим первое уравнение на минус два и сложим со вторым:
  1. Решаем полученное квадратное уравнение любым способом. Находим его корни:
  1. Найти у, подставив найденное значение в любое уравнение:
  1. Ответ: (1; 1), (1; -1).

Задание 4. Решить систему уравнений

Решим второе уравнение и найдем х = 2, х = 5. Подставим значение переменной х в первое уравнение и найдем соответствующее значение у.

Задание 5. Как решить систему уравнений с двумя неизвестными

При у = -2 первое уравнение не имеет решений, при у = 2 получается:

📸 Видео

Математика это не ИсламСкачать

Математика это не Ислам

Решение системы уравнений методом Гаусса. Бесконечное множество решенийСкачать

Решение системы уравнений методом Гаусса. Бесконечное множество решений

Решение системы уравнений методом ГауссаСкачать

Решение системы уравнений методом Гаусса

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Множества. Операции над множествами. 10 класс алгебраСкачать

Множества. Операции над множествами. 10 класс алгебра

Решение систем уравнений второй степени. Алгебра, 9 классСкачать

Решение систем уравнений второй степени. Алгебра, 9 класс

4. Множества. Операции над множествами. Дискретная математикаСкачать

4. Множества. Операции над множествами. Дискретная математика

9 класс, 2 урок, Множества и операции над нимиСкачать

9 класс, 2 урок, Множества и операции над ними

Решение систем уравнений методом сложенияСкачать

Решение систем уравнений методом сложения
Поделиться или сохранить к себе: