Как решить иррациональное уравнение с кубическим корнем

Как решить иррациональное уравнение с кубическим корнем

Решите иррациональное уравнение Как решить иррациональное уравнение с кубическим корнем

Попробуем решить иррациональное уравнение методом возведения обеих частей уравнения в одну и ту же степень. Напомним его алгоритм:

  • Переходим к более простому уравнению, для чего один или большее число раз выполняем по кругу три следующих действия:
    • Уединяем радикал.
    • Возводим обе части уравнения в одну и ту же степень.
    • Упрощаем вид полученного после возведения в степень уравнения.
  • Решаем полученное уравнение.
  • Отсеиваем посторонние корни, если раннее мы проводили возведение в четную степень.

Начнем с первого прохода тройки действий – уединим радикал, возведем обе части в степень и упростим полученное уравнение.

Уединение радикала приводит к уравнению Как решить иррациональное уравнение с кубическим корнем.

Теперь возведем обе части уравнения в квадрат, что позволит в дальнейшем избавиться от корня в левой части. Имеем Как решить иррациональное уравнение с кубическим корнем.

Упрощаем вид полученного уравнения при помощи преобразования уравнений. Отталкиваясь от определения корня, заменяем выражение в левой части уравнения тождественно равным ему выражением 2·x+1 , это дает уравнение Как решить иррациональное уравнение с кубическим корнем. Что касается дальнейшего упрощения вида уравнения, то целесообразно по одному из свойств корней вторую степень отправить под кубический корень, то есть, перейти к уравнению Как решить иррациональное уравнение с кубическим корнем.

Как видно, первый проход цикла тройки действий (уединение радикала, возведение обеих частей уравнения в степень и упрощение вида уравнения) позволил избавиться от одного корня, но остался еще один корень. Чтобы избавиться от него, еще раз выполним три уже упомянутых действия.

Радикал у нас уже уединен в правой части. Переходим к возведению в степень.

Степень корня равна трем, поэтому обе части возведем в третью степень: Как решить иррациональное уравнение с кубическим корнем.

Упростим вид полученного уравнения. Для этого заменим выражение в правой части уравнения тождественно равным ему выражением (x+1) 2 , получим (2·x+1) 3 =(x+1) 2 . После этого перенесем это выражение в левую часть: (2·x+1) 3 −(x+1) 2 =0 . Дальше воспользуемся формулами сокращенного умножения квадрат суммы и куб суммы, раскроем скобки, а также сгруппируем и приведем подобные слагаемые:
8·x 3 +12·x 2 +6·x+1−(x 2 +2·x+1)=0 ,
8·x 3 +12·x 2 +6·x+1−x 2 −2·x−1=0 ,
8·x 3 +(12·x 2 −x 2 )+(6·x−2·x)+(1−1)=0 ,
8·x 3 +11·x 2 +4·x=0 .

Так мы получили кубическое уравнение. В еще одном проходе тройки действий нет необходимости, так как полученное уравнение не содержит корней, и мы знаем, как решать кубические уравнения. Поэтому, переходим ко второму этапу алгоритма – решению полученного уравнения.

Для решения полученного кубического уравнения подходит метод разложения на множители. После вынесения за скобки переменной x , уравнение принимает вид x·(8·x 2 +11·x+4)=0 , а оно равносильно совокупности двух уравнений x=0 и 8·x 2 +11·x+4=0 . Отсюда первый корень уравнения очевиден: x1=0 . Остальные корни найдем, решив квадратное уравнение 8·x 2 +11·x+4=0 . Вычисляем дискриминант D=11 2 −4·8·4=121−128=−7 , он отрицательный, следовательно, квадратное уравнение не имеем действительных корней. Таким образом, кубическое уравнение 8·x 3 +11·x 2 +4·x=0 имеет единственный корень x1=0 .

Остался последний этап решения – отсеивание посторонних корней. В нашем случае этот этап необходим, так как найденный корень может оказаться посторонним для решаемого иррационального уравнения. Причин для этого две. Первая — выше мы проводили возведение обеих частей уравнения квадрат, а, как известно, это преобразование может привести к появлению посторонних корней. Вторая – мы переходили от уравнения Как решить иррациональное уравнение с кубическим корнемк уравнению Как решить иррациональное уравнение с кубическим корнем, при таком переходе происходит расширение ОДЗ, а это может привести к появлению посторонних корней. Итак, отсеем посторонние корни. Сделаем это через проверку подстановкой. Подставляем x1=0 в исходное уравнение:
Как решить иррациональное уравнение с кубическим корнем

Так как подстановка дала верное числовое равенство, то x1=0 – корень исходного уравнения. Других корней уравнение не имеет.

На первом этапе мы избавлялись от корней по очереди, в два приема, сначала от квадратного, затем — от кубического. При этом нам пришлось два раза проходить цикл из трех действий – уединение радикала, возведение в степень, упрощение вида. Но можно было избавиться сразу от обоих радикалов, прибегнув к одному возведению в степень. В какую именно степень? Несложно догадаться, что в шестую, или в двенадцатую, или в восемнадцатую, и т.д., то есть, в любую степень, равную кратному показателей корней. Целесообразно брать наименьшее общее кратное (НОК), так как это дает наиболее простое уравнение из возможных. В нашем случае НОК(2, 3)=6 , поэтому, следует выполнять возведение в шестую степень. Покажем, как выглядит решение иррационального уравнения Как решить иррациональное уравнение с кубическим корнемпри таком подходе.
Как решить иррациональное уравнение с кубическим корнем

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Иррациональные уравнения с кубическими радикалами

Разделы: Математика

Тема: «Иррациональные уравнения вида Как решить иррациональное уравнение с кубическим корнем , Как решить иррациональное уравнение с кубическим корнем

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов:

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб.

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение Как решить иррациональное уравнение с кубическим корнем

Перепишем уравнение в виде Как решить иррациональное уравнение с кубическим корнеми возведём в куб обе его части. Получим уравнение равносильное данному уравнению Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнемКак решить иррациональное уравнение с кубическим корнемКак решить иррациональное уравнение с кубическим корнем

Пример 2. Решить уравнение Как решить иррациональное уравнение с кубическим корнем.

Перепишем уравнение в виде Как решить иррациональное уравнение с кубическим корнеми возведём в куб обе его части. Получим уравнение равносильное данному уравнению

Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнем,

и рассмотрим полученное уравнение как квадратное относительно одного из корней

Как решить иррациональное уравнение с кубическим корнем,

Как решить иррациональное уравнение с кубическим корнем

Как решить иррациональное уравнение с кубическим корнем,

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка: Как решить иррациональное уравнение с кубическим корнем

Замечание: Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

Как решить иррациональное уравнение с кубическим корнемКак решить иррациональное уравнение с кубическим корнем,

(незначительная модификация известной формулы), тогда

Как решить иррациональное уравнение с кубическим корнем

Пример3. Решить уравнение Как решить иррациональное уравнение с кубическим корнем.

Возведём уравнение в куб с использованием формул, приведённых выше.

Как решить иррациональное уравнение с кубическим корнем,

Но выражение Как решить иррациональное уравнение с кубическим корнемдолжно быть равно правой части. Поэтому имеем:

Как решить иррациональное уравнение с кубическим корнем, откуда

Как решить иррациональное уравнение с кубическим корнем.

Теперь при возведении в куб получаем обычное квадратное уравнение:

Как решить иррациональное уравнение с кубическим корнем, и два его корня

Как решить иррациональное уравнение с кубическим корнем,Как решить иррациональное уравнение с кубическим корнем

Оба значения, как показывает проверка, правильные.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение Как решить иррациональное уравнение с кубическим корнем.

Возводя, как и ранее, обе части в третью степень, имеем:

Как решить иррациональное уравнение с кубическим корнем.

Откуда (учитывая, что выражение в скобках равно Как решить иррациональное уравнение с кубическим корнем), получаем:

Как решить иррациональное уравнение с кубическим корнем, значит

Как решить иррациональное уравнение с кубическим корнем. ПолучаемКак решить иррациональное уравнение с кубическим корнем, Как решить иррациональное уравнение с кубическим корнем.Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ: Как решить иррациональное уравнение с кубическим корнем.

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство Как решить иррациональное уравнение с кубическим корнемвлечёт равенство Как решить иррациональное уравнение с кубическим корнем. Заменим с на –с, получим:

Как решить иррациональное уравнение с кубическим корнеми Как решить иррациональное уравнение с кубическим корнем.

Нетрудно проверить тождество

Как решить иррациональное уравнение с кубическим корнем,

Итак, если Как решить иррациональное уравнение с кубическим корнем, то либо Как решить иррациональное уравнение с кубическим корнем, либо Как решить иррациональное уравнение с кубическим корнем. Уравнение можно представить в виде Как решить иррациональное уравнение с кубическим корнем, Как решить иррациональное уравнение с кубическим корнем.

Заменяя с на –с, получаем: если Как решить иррациональное уравнение с кубическим корнем, то либо Как решить иррациональное уравнение с кубическим корнем, либо Как решить иррациональное уравнение с кубическим корнем

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение Как решить иррациональное уравнение с кубическим корнем.

Введём замену, составим и решим систему уравнений.

Пусть Как решить иррациональное уравнение с кубическим корнем, Как решить иррациональное уравнение с кубическим корнем. Тогда:

Как решить иррациональное уравнение с кубическим корнемоткуда очевидно, что Как решить иррациональное уравнение с кубическим корнем

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Как решить иррациональное уравнение с кубическим корнемЛегко убедиться , что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ: Корней нет.

Пример 6. Решить уравнение Как решить иррациональное уравнение с кубическим корнем.

Введём замену, составим и решим систему уравнений.

Пусть Как решить иррациональное уравнение с кубическим корнем, Как решить иррациональное уравнение с кубическим корнем. Тогда

Как решить иррациональное уравнение с кубическим корнемКак решить иррациональное уравнение с кубическим корнемКак решить иррациональное уравнение с кубическим корнем

Как решить иррациональное уравнение с кубическим корнемили Как решить иррациональное уравнение с кубическим корнем

Возвращаясь к исходной переменной имеем:

Как решить иррациональное уравнение с кубическим корнемх=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, то функция y=f(x)+g(x) также возрастает (убывает ) на этом множестве.
  • Если функции y=f(x) и y=g(x) возрастают (убывают) на некотором множестве, при чем обе они принимают неотрицательные значения при всех допустимых х, то функция y=f(x)g(x) возрастает (убывает) на данном множестве.
  • Если функция y=f(x) монотонная, то уравнение f(x)=a имеет не более одного решения.
  • Если функции y=f(x) и y=g(x) имеют разный характер монотонности, то уравнение f(x)=g(x) имеет не более одного решения.
  • Функция вида Как решить иррациональное уравнение с кубическим корнемвозрастает при к>0 и убывает при к 30.05.2009

Видео:Как осилить уравнение с кубическими корнями? Основной способСкачать

Как осилить уравнение с кубическими корнями? Основной способ

Алгебра

План урока:

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

8 класс, 38 урок, Иррациональные уравнения

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Уравнения с корнем. Иррациональные уравнения #shorts

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Видео:10 класс. Алгебра. Иррациональные уравнения.Скачать

10 класс. Алгебра. Иррациональные уравнения.

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Видео:Решите уравнение с корнями ★ Иррациональное уравнениеСкачать

Решите уравнение с корнями ★ Иррациональное уравнение

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Видео:Иррациональное неравенство #8Скачать

Иррациональное неравенство #8

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

🌟 Видео

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис Трушин

Иррациональное уравнениеСкачать

Иррациональное уравнение

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнем

Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Иррациональное уравнение на 2 минутыСкачать

Иррациональное уравнение на 2 минуты

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)Скачать

Алгебра 10 класс (Урок№20 - Иррациональные уравнения и неравенства.)

Иррациональные уравнения | Математика ЕГЭ 10 класс | УмскулСкачать

Иррациональные уравнения | Математика ЕГЭ 10 класс | Умскул

Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональностиСкачать

Алгебра 8. Урок 8 - Квадратный корень. Освобождение от иррациональности

Иррациональные уравнения #1Скачать

Иррациональные уравнения #1

Иррациональные уравнения. 10 классСкачать

Иррациональные уравнения. 10 класс

10 класс. Алгебра. Решение иррациональных уравнений.Скачать

10 класс. Алгебра. Решение иррациональных уравнений.
Поделиться или сохранить к себе: