Как решить графически систему уравнений с квадратом

Решение систем уравнений

Содержание:

Графический метод решения систем уравнений

Вспоминаем то, что знаем

Что такое график уравнения с двумя неизвестными?

Что представляет собой график линейного уравнения с двумя неизвестными?

Решите графическим методом систему линейных уравнений:

Как решить графически систему уравнений с квадратомОткрываем новые знания

Решите графическим методом систему уравнений:

Как решить графически систему уравнений с квадратом

Как можно решить систему двух уравнений с двумя неизвестными с помощью графиков уравнений этой системы? Отвечаем, проверяем себя по тексту

В курсе алгебры 7-го класса вы изучали системы линейных уравнений.

Для их решения вы применяли три метода: графический, метод подстановки и метод алгебраического сложения. Эти же методы служат и для решения других систем двух уравнений с двумя неизвестными, в которых могут содержаться уравнения второй степени или другие рациональные уравнения — как целые, так и дробные.

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Начнём с графического метода

Этот метод основан на том, что каждому уравнению с двумя неизвестными соответствует некоторое множество точек координатной плоскости (график этого уравнения). Построив графики уравнений, мы найдём точки пересечения этих графиков (если они есть), и пары чисел — координаты точек пересечения — будут представлять собой решения системы уравнений.

Найденные решения будут, вообще говоря, приближёнными, в зависимости от точности построений соответствующих графиков.

Таким образом, решить графически систему уравнений — значит найти общие точки графиков уравнений, входящих в систему.

Возможно вам будут полезны данные страницы:

Примеры с решением

Пример 1:

Решим систему уравнений:

Как решить графически систему уравнений с квадратом

Построим графики уравнений Как решить графически систему уравнений с квадратом

Графиком первого уравнения является парабола, с вершиной в точке (0; 1) и ветвями, направленными вверх, графиком второго — прямая, проходящая через точки (0; 3) и (-3; 0).

Как решить графически систему уравнений с квадратомПарабола и прямая пересекаются в точках А(2; 5) и В(— 1; 2).

Проверкой убеждаемся, что найденные пары чисел действительно являются решениями системы.

Ответ: (2; 5) и (-1; 2).

Пример 2:

Выясним количество решений системы уравнений:

Как решить графически систему уравнений с квадратом

Построим графики уравнений Как решить графически систему уравнений с квадратом

Графики этих уравнений — окружности. Центр первой окружности — начало координат, а её радиус равен 2; центр второй окружности — точка Р(1; — 1), её радиус равен 3.

Как решить графически систему уравнений с квадратомОкружности пересекаются в двух точках М и N, координаты которых можно найти приближённо. Поскольку нам нужно определить только количество решений, мы делать этого не будем.

Ответ: Два решения.

Решение систем уравнений методом подстановки

Вспоминаем то, что знаем

Расскажите, как решить систему двух линейных уравнений с двумя неизвестными методом подстановки.

Решите систему линейных уравнений методом подстановки:

Как решить графически систему уравнений с квадратом

Открываем новые знания

Как вы думаете, можно ли применять метод подстановки при решении систем, где не все уравнения являются линейными? При каком условии это удастся сделать?

Решите систему уравнений методом подстановки:

Как решить графически систему уравнений с квадратом

Как решить систему двух уравнений с двумя неизвестными методом подстановки?

Всякую ли систему двух уравнений с двумя неизвестными можно решить методом подстановки?

Ранее вы решали системы уравнений первой степени.

Теперь познакомимся с системами, в которых хотя бы одно уравнение не является линейным. Как и прежде, распространённым методом решения систем является метод подстановки.

Пример 3:

Как решить графически систему уравнений с квадратом

Пусть (х; у) — решение системы.

Выразим х из уравнения Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Подставим найденное выражение в первое уравнение:

Как решить графически систему уравнений с квадратом

Решим полученное уравнение:

Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Убедиться, что найденные пары чисел действительно являются решениями системы, можно подстановкой.

Чуть сложнее дело обстоит в следующем примере.

Пример 4:

Решим систему уравнений:

Как решить графически систему уравнений с квадратом

Пусть (х; у) — решение системы.

Выразим у из линейного уравнения:

Как решить графически систему уравнений с квадратом

Подставим найденное выражение в первое уравнение системы:

Как решить графически систему уравнений с квадратом

После преобразований получим:

Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Ответ: (-0,5; 0,5), (4; 5).

Если это целесообразно, то можно осуществлять подстановку некоторого выражения «в целом».

Пример 5:

Как решить графически систему уравнений с квадратом

Подставим во второе уравнение Как решить графически систему уравнений с квадратомтогда его можно переписать в виде:

Как решить графически систему уравнений с квадратом

Теперь выразим х через у из первого уравнения системы:

Как решить графически систему уравнений с квадратом

Подставим в полученное ранее уравнение ху = 2:

Как решить графически систему уравнений с квадратом

Корни этого уравнения: Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом.

Иногда решить систему можно, используя метод алгебраического сложения.

Пример 6:

Как решить графически систему уравнений с квадратом

Сложим уравнения, предварительно умножив первое уравнение на —1. В результате получим:

Как решить графически систему уравнений с квадратом.

Корни этого уравнения: Как решить графически систему уравнений с квадратом

Подставим найденные значения в первое уравнение. Рассмотрим два случая:

1) Как решить графически систему уравнений с квадратом

2) Как решить графически систему уравнений с квадратом, получим уравнение Как решить графически систему уравнений с квадратомкорней нет.

Иногда упростить решение удаётся, используя различные варианты замены неизвестных.

Пример 7:

Решим систему уравнений:

Как решить графически систему уравнений с квадратом

Обозначим Как решить графически систему уравнений с квадратом

Второе уравнение системы примет вид:

Как решить графически систему уравнений с квадратом

Решим полученное уравнение. Получим, умножая обе части на 2а:

Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Осталось решить методом подстановки линейные системы:

Как решить графически систему уравнений с квадратом

Ответ: (2; 1), (1; 2). Решение задач с помощью систем уравнений Знакомимся с новыми знаниями

Напомним, что при решении задач обычно действуют следующим образом:

1) обозначают буквами какие-нибудь неизвестные величины, выражают через них другие величины, составляют систему уравнений;

2) решают полученную систему;

3) отвечают на вопрос задачи.

Пример 8:

Периметр прямоугольника равен 34 см, а его диагональ 13 см. Найдите стороны прямоугольника.

Пусть х см — длина, у см — ширина (х у), тогда периметр прямоугольника — Как решить графически систему уравнений с квадратомсм.

Воспользуемся теоремой Пифагора: Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Решим систему. Выразим из первого уравнения у:

Как решить графически систему уравнений с квадратом

Подставим во второе уравнение:

Как решить графически систему уравнений с квадратом

Корни уравнения: Как решить графически систему уравнений с квадратом

Найдём Как решить графически систему уравнений с квадратом

С учётом условия Как решить графически систему уравнений с квадратомполучим ответ: длина — 12 см, ширина — 5 см.

Пример 9:

Если произведение двух положительных чисел увеличить на первое из них, то получится 128. Если это же произведение увеличить на второе из них то получится 135. Найдите эти числа.

Пусть х — первое число, у — второе число.

Тогда: Как решить графически систему уравнений с квадратом— произведение, увеличенное на первое число, ху 4-у — произведение, увеличенное на второе число.

Как решить графически систему уравнений с квадратом

Вычтем из второго уравнения первое. Получим:

Как решить графически систему уравнений с квадратом

Дальше будем решать методом подстановки:

Как решить графически систему уравнений с квадратом

Подставим в первое уравнение выражение для у:

Как решить графически систему уравнений с квадратом

Корни уравнения: Как решить графически систему уравнений с квадратом(не подходит по смыслу задачи).

Найдём у из уравнения:

Как решить графически систему уравнений с квадратом

Получим ответ: 16 и 7.

Симметричные системы уравнений с двумя неизвестными

Уравнение с двумя неизвестными называется симметричным, если при перестановке этих неизвестных местами уравнение не меняется. Например, уравнение Как решить графически систему уравнений с квадратомсимметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решить графически систему уравнений с квадратом, то есть не меняется. А вот уравнение Как решить графически систему уравнений с квадратомне симметричное, так как при перестановке входящих в него неизвестных оно приобретает вид Как решить графически систему уравнений с квадратом, то есть меняется.

Система двух уравнений с двумя неизвестными называется симметричной, если каждое уравнение этой системы симметричное.

ПРЕДУПРЕЖДЕНИЕ. В определении симметричной системы уравнений требуется, чтобы каждое уравнение в отдельности не менялось.

Например, если в системе уравнений

Как решить графически систему уравнений с квадратом

переставить местами неизвестные х и у, то получим систему:

Как решить графически систему уравнений с квадратом

Видно, что система в целом не изменилась (уравнения поменялись местами по сравнению с первоначальной системой). Но такая система не является симметричной, так как каждое из уравнений в отдельности изменилось.

Убедитесь, что симметричные системы с двумя неизвестными х и у можно решать с помощью замены неизвестных:

Как решить графически систему уравнений с квадратом

Сначала научитесь выражать через неизвестные Как решить графически систему уравнений с квадратомвыражения:

Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Как решить графически систему уравнений с квадратом

Присылайте задания в любое время дня и ночи в ➔ Как решить графически систему уравнений с квадратомКак решить графически систему уравнений с квадратом

Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.

Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.

Сайт предназначен для облегчения образовательного путешествия студентам очникам и заочникам по вопросам обучения . Наталья Брильёнова не предлагает и не оказывает товары и услуги.

Видео:Графический способ решения систем уравнений. Алгебра, 9 классСкачать

Графический способ решения систем уравнений. Алгебра, 9 класс

Графическое решение квадратных уравнений

Разделы: Математика

На уроке учащиеся продемонстрировали знания и умения программы:

– распознавать виды функции, строить их графики;
– отрабатывали навыки построения квадратичной функции;
– отрабатывали графические способы решения квадратных уравнений, используя метод выделения полного квадрата.

Мне захотелось уделить особое внимание решению задач с параметром, так как ЕГЭ по математике предлагает очень много заданий такого типа.

Возможность применить на уроке такой вид работы дали мне сами ученики, так как они имеют достаточную базу знаний, которые можно углубить и расширить.

Заранее подготовленные учащимися шаблоны позволили экономить время урока. В ходе урока мне удалось реализовать поставленные задачи в начале урока и получить ожидаемый результат.

Использование физкультминутки помогло избежать переутомления учащихся, сохранить продуктивную мотивацию получения знаний.

В целом результатом урока я довольна, но думаю, что есть еще резервные возможности: современные инновационные технологические средства, которыми мы, к сожалению, не имеем возможности пользоваться.

Тип урока: закрепление изученного материала.

Цели урока:

  • Общеобразовательные и дидактические:
    • развивать разнообразные способы мыслительной деятельности учащихся;
    • формировать способности самостоятельного решения задач;
    • воспитывать математическую культуру учащихся;
    • развивать интуицию учащихся и умение пользоваться полученными знаниями.
  • Учебные цели:
    • обобщить ранее изученные сведения по теме «Графическое решение квадратных уравнений»;
    • повторить построение графиков квадратичной функции;
    • сформировать навыки использования алгоритмов решения квадратичных уравнений графическим методом.
  • Воспитательные:
    • привитие интереса к учебной деятельности, к предмету математики;
    • формирование толерантности (терпимости), умения работать в коллективе.

I. Организационный момент

– Сегодня на уроке мы обобщим и закрепим графическое решение квадратных уравнений различными способами.
В дальнейшем эти навыки нам будут нужны в старших классах на уроках математики при решении тригонометрических и логарифмических уравнений, нахождения площади криволинейной трапеции, а также на уроках физики.

II. Проверка домашней работы

Разберем на доске № 23.5(г).

Решить это уравнение с помощью параболы и прямой.

х 2 + х – 6 = 0
Преобразуем уравнение: х 2 = 6 – х
Введем функции:

у = х 2 ; квадратичная функция у = 6 – х линейная,
графиком явл. парабола, графиком явл. прямая,

Строем в одной системе координат графики функций (по шаблону)

Как решить графически систему уравнений с квадратом

Получили две точки пересечения.

Решением квадратного уравнения являются абсциссы этих точек х1 = – 3, х2 = 2.

III. Фронтальный опрос

  • Что является графиком квадратичной функции?
  • Скажите алгоритм построения графика квадратичной функции?
  • Что называется квадратичным уравнением?
  • Приведите примеры квадратичных уравнений?
  • Запишите на доске свой пример квадратичного уравнения, Назовите, чему равны коэффициенты?
  • Что значит решить уравнение?
  • Сколько способов вы знаете графического решения квадратных уравнений?
  • В чем заключается графические способы решение квадратных уравнений:

IV. Закрепление материала

На доске решают учащиеся первым, вторым, третьим способами.

Класс решает четвертым

Как решить графически систему уравнений с квадратомПреобразую квадратное уравнение, выделяя полный квадрат двучлена:

– х 2 + 6х – 5 = – (х 2 – 6х + 5) = – (х 2 – 6х + 32 – 9 + 5) = – ((х – 3) 2 – 4) = – (х – 3) 2 + 4

Получили квадратное уравнение:

у = – (х 2 – 3) 2 + 4

Квадратичная функция вида у = а (х + L) 2 + m

Графиком явл. парабола, ветви направлены вниз, сдвиг основной параболы по оси Ох в право на 3 ед., по оси Оу вверх на 4 ед., вершина (3; 4).

Строим по шаблону.

Нашли точки пересечения параболы с осью Ох. Абсциссы этих точек явл. решением данного уравнения. х = 1, х = 5.

Давайте посмотрим другие графические решение у доски. Прокомментируйте свой способ решения квадратных уравнений.

1 ученик

Как решить графически систему уравнений с квадратом– х 2 + 6х – 5 = 0

Введем функцию у = – х + 6х – 5, квадратичная функция, графиком является парабола, ветви направлены вниз, вершина

х0 = – в/2а
х0 = – 6/– 2 = 3
у0 = – 3 2 + 18 = 9; точка (3; 9)
ось симметрии х = 3

Строим по шаблону

Получили точки пересечения с осью Ох, абсциссы этих точек являются решением квадратного уравнения. Два корня х1 = 1, х2 = 5

2 ученик

Преобразуем: – х 2 + 6х = 5

Как решить графически систему уравнений с квадратомВведем функции: у1 = – х 2 + 6х, у2 = 5, линейная функция, квадратичная функция, графиком графиком явл. прямая у || Ох явл. парабола, ветви направлены вниз, вершина х0 = – в/2а
х0 = – 6/– 2 = 3
у0 = – 3 2 + 18 = 9;
(3; 9).
ось симметрии х = 3
Строим по шаблону
Получили точки пересечения
параболы и прямой, их абсциссы являются решением квадратного уравнения. Два корня х1 = 1, х2 = 5
Итак, одно и тоже уравнение можно решать различными способами, а ответ получаться должен один и тот же.

V. Физкультминутка

VI. Решение задачи с параметром

При каких значениях р уравнение х 2 + 6х + 8 = р:
– Не имеет корней?
– Имеет один корень?
– Имеет два корня?
Чем отличается это уравнение от предыдущего?
Правильно, буквой!
Эту букву в дальнейшем мы будем называть параметром, Р.
Пока она вам ни о чем не говорит. Но мы будем в дальнейшем решать различные задачи с параметром.
Сегодня решим квадратное уравнение с параметром графическим методом, используя третий способ с помощью параболы и прямой параллельной оси абсцисс.
Ученик помогает учителю решать у доски.
С чего начнем решать?

Как решить графически систему уравнений с квадратомЗададим функции:

у1 = х 2 + 6х + 8 у2 = р линейная функция,
квадратичная функция, графиком является прямая
графиком явл. парабола,
ветви направлены вниз, вершина

Ось симметрии х = 3, таблицу строить не буду, а возьму шаблон у = х 2 и приложу к вершине параболы.
Парабола построена! Теперь надо провести прямую у = р.
– Где надо начертить прямую р, чтобы получить два корня?
– Где надо начертить прямую р, чтобы получить один корень?
– Где надо начертить прямую р, чтобы не было корней?
– Итак, сколько наше уравнение может иметь корней?
– Понравилась задача? Спасибо за помощь! Оценка 5.

VII. Самостоятельная работа по вариантам (5 мин.)

у = х 2 – 5х + 6 у = – х 2 + х – 6

Решить квадратное уравнение графическим способом, выбирая для вас удобный способ. Если кто-то справится с заданием раньше, проверьте свое решение другим способом. За это будет выставляться дополнительная оценка.

VIII. Итог урока

– Чему научились вы на сегодняшнем уроке?
– Сегодня на уроке мы с вами квадратные уравнения решали графическим методом, используя различные способы решения, и рассмотрели графический способ решения квадратного уравнения с параметром!
– Переходим к домашнему заданию.

IХ. Домашнее задание

1. Домашняя контрольная работа на стр. 147, из задачника Мордковича по вариантам I и II.
2. На кружке, в среду, будем решать V-м способом, (гипербола и прямая).

Х. Литература:

1. А.Г. Мордкович. Алгебра-8. Часть 1. Учебник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
2. А.Г. Мордкович, Л.А.Александрова, Т.Н. Мишустина, Е.Е. Тульчинская. Алгебра – 8. Часть 2. Задачник для учащихся образовательных учреждений. М.: Мнемозина, 2008 г.
3. А.Г. Мордкович. Алгебра 7-9. Методическое пособие для учителя.М.: Мнемозина, 2004 г.
4. Л.А. Александрова. Алгебра-8. Самостоятельные работы для учащихся образовательных учреждений./Под ред. А.Г. Мордковича. М.: Мнемозина, 2009 г.

Видео:Как решать систему уравнений графическим методом? | Математика | TutorOnlineСкачать

Как решать систему уравнений графическим методом? | Математика | TutorOnline

Системы уравнений с двумя переменными

п.1. Понятие системы уравнений с двумя переменными и её решения

п.2. Графический метод решения системы уравнений с двумя переменными

Поскольку каждое из уравнений с двумя переменными можно изобразить в виде графика на плоскости, графический метод решения систем таких уравнений достаточно удобен.

Как решить графически систему уравнений с квадратом

п.3. Примеры

Пример 1. Решите графическим способом систему уравнений:
а) ( left< begin mathrm & \ mathrm & endright. )
( mathrm ) – окружность с центром в начале координат
( mathrm ) – прямая ( mathrm )

Как решить графически систему уравнений с квадратом

Система имеет два решения (–3; 4) и (3; –4)
Ответ: .

б) ( left< begin mathrm & \ mathrm & endright. )
( mathrm ) – гипербола ( mathrm )
y – x = 4 – прямая y = x + 4

Как решить графически систему уравнений с квадратом

Система имеет два решения (–5; –1) и (1; 5)
Ответ: .

в) ( left< begin mathrm & \ mathrm & endright. )
x 2 + y = 1 – парабола y = –x 2 + 1
x 2 – y = 7 – парабола y = x 2 – 7

Как решить графически систему уравнений с квадратом

Система имеет два решения (–2; –3) и (2; –3)
Ответ: .

г) ( left< begin mathrm & \ mathrm & endright. )
xy = 1 – гипербола ( mathrm )
x 2 + y 2 = 2 – окружность с центром в начале координат, радиусом ( mathrm<sqrt> )

Как решить графически систему уравнений с квадратом

Система имеет два решения (–1; –1) и (1; 1)
Ответ: .

Пример 2*. Решите графическим способом систему уравнений
a) ( left< begin mathrm & \ mathrm & endright. )
x 3 – y = 1 – кубическая парабола y = x 3 – 1, смещённая на 1 вниз.
( mathrm ) – гипербола ( mathrm ), смещённая на 1 вниз

Как решить графически систему уравнений с квадратом

Система имеет два решения (–1; –2) и (1; 0)
Ответ: .

б) ( left< begin mathrm & \ mathrm & endright. )
|x| + |y| = 2 – квадрат с диагоналями 4, лежащими на осях
x 2 + y 2 = 4 – окружность с центром в начале координат, радиусом 2

Как решить графически систему уравнений с квадратом

Система имеет четыре решения (2; 0), (0; 2) , (–2; 0) и (0; –2)
Ответ: .

в) ( left< begin mathrm & \ mathrm & endright. )
y – x 2 = 4x + 6 – парабола y = (x 2 + 4x + 4) + 2 = (x + 2) 2 + 2, ветками вверх, смещённая на 2 влево и на 2 вверх
y + |x| = 6 – ломаная, y = –|x| + 6. Для x > 0, y = –x + 6, для x 0, y = x, для x

🔥 Видео

7 класс, 35 урок, Графическое решение уравненийСкачать

7 класс, 35 урок, Графическое решение уравнений

Решение системы линейных уравнений графическим методом. 7 класс.Скачать

Решение системы линейных уравнений графическим методом. 7 класс.

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)Скачать

Алгебра 8 класс (Урок№6 - Решение уравнений графическим способом.)

Решение системы уравнений графическим методомСкачать

Решение системы уравнений графическим методом

8 класс, 21 урок, Графическое решение уравненийСкачать

8 класс, 21 урок, Графическое решение уравнений

Алгебра 9 класс. Графическое решение систем уравненийСкачать

Алгебра 9 класс. Графическое решение систем уравнений

Решение квадратных неравенств графическим методом. 8 класс.Скачать

Решение квадратных неравенств графическим методом. 8 класс.

Графический метод решения уравнений 8 классСкачать

Графический метод решения уравнений   8 класс

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение систем уравнений второго порядка. 8 класс.Скачать

Решение систем уравнений второго порядка. 8 класс.

Решить графически систему уравненийСкачать

Решить графически систему уравнений

Графический способ решения систем уравнений | Алгебра 9 класс #18 | ИнфоурокСкачать

Графический способ решения систем уравнений | Алгебра 9 класс #18 | Инфоурок

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 классСкачать

ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ. Видеоурок | АЛГЕБРА 9 класс

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСССкачать

Урок по теме ГРАФИЧЕСКИЙ СПОСОБ РЕШЕНИЯ СИСТЕМ УРАВНЕНИЙ 7 КЛАСС

Решить графически систему уравнений. Алгебра-8Скачать

Решить графически систему уравнений. Алгебра-8

Система уравнений. Метод алгебраического сложенияСкачать

Система уравнений. Метод алгебраического сложения

420 Алгебра 9 класс. Как решить графически систему уравненийСкачать

420 Алгебра 9 класс. Как решить графически систему уравнений

Решить графически систему уравненийСкачать

Решить графически систему уравнений
Поделиться или сохранить к себе: