Математика с WolframAlpha ® . Объяснения с примерами.
- Решение обыкновенных дифференциальных уравнений в Wolfram|Alpha
- Дифференциальные уравнения
- Использование Wolfram Mathematica в решении дифференциальных уравнений
- Аннотация
- Ключевые слова
- Текст научной работы
- Читайте также
- Математическая подготовка студентов в вузе в контексте будущей профессиональной деятельности
- Использование прикладных программ при изучении математической статистики
- Применение систем компьютерной математики при изучении комплексного анализа
- Организация самостоятельной работы студентов в условиях информационно-образовательной среды вуза
- Системы компьютерной математики в решении дифференциальных уравнений
- Список литературы
- Цитировать
- Поделиться
- 📽️ Видео
Решение обыкновенных дифференциальных уравнений в Wolfram|Alpha
Решение дифференциальных уравнений с выводом результатов в пошаговом представлении (функция «Show steps» — Показать шаги) является одной из важных особенностей Wolfram|Alpha.
Wolfram|Alpha в большинстве случаев может помочь в решении дифференциальных уравнений различного уровня сложности, начиная от простейших дифференциальных уравнений первого порядка с разделяющимися переменными (separable equations ) и включая более сложные уравнения, для решения которых служат, например, методы операционного исчисления, использующие преобразование Лапласа.
Чтобы решить дифференциальное уравнение с помощью Wolfram|Alpha достаточно ввести его в систему. ВНИМАНИЕ! Для ввода символа производной используется знак апострофа » ‘ «, но не кавычки (!). Для определенности можно добавить перед уравнением поисковое предписание solve (хотя, во многих случаях, это и не обязательно).
- solve xy’+y=2x
Как видим, Wolfram|Alpha сначала определяет (классифицирует) этот пример, как обыкновенное линейное дифференциальное уравнение первого порядка, затем выводит общее решение данного уравнения, график частного решения, удовлетворяющего условию y(1)=1, а также семейство интегральных кривых данного уравнения.
Чтобы получить детальное пошаговое решение, используйте кнопку «Show steps»:
Аналогичным образом можно получить решение, например, дифференциального уравнения Бернулли:
- solve 2xy’+y=x^2y^3
- solve y’-2y/x=-x^2y^2
Wolfram|Alpha позволяет также получать решения дифференциальных уравнений второго и высших порядков. Например, так выглядит решение линейного неоднородного дифференциального уравнения второго порядка с постоянными коэффициентами:
- solve y» + 2y’ +y= 54x^2e^(2x)sin(3x)
Или же дифференциального уравнения 3-го порядка: solve y»» = y.
С помощью Wolfram|Alpha возможно получить общее решение дифференциального уравнения, заданного в общем виде:
- solve a*y»(x)+b*y'(x)+c*y(x)=0
Наконец, в некоторых случаях, когда это необходимо,Wolfram|Alpha использует для решения дифференциальных уравнений методы операционного исчисления (преобразование Лапласа):
- solve y»(x)-2y'(x)/x+y(x)=0
Подробное решение этого примера смотрите по этой ссылке.
Видео:12.01 Решение систем ДУ в Wolfram MathematicaСкачать
Дифференциальные уравнения
Язык Wolfram позволяет решать обыкновенные дифференциальные уравнения, дифференциальные уравнения в частных производных и уравнения с запаздыванием.
Функция DSolveValue возвращает решение дифференциального уравнения в общем виде:
Out[1]= |
Используем символ /. для замены константы:
Out[2]= |
Или добавим начальные условия для получения частного решения:
Out[3]= |
Функция NDSolveValue позволяет находить численные решения:
Out[1]= |
Объект InterpolatingFunction можно визуализировать без дополнительной обработки:
Out[2]= |
Для решения систем дифференциальных уравнений, необходимо использовать списки для задания уравнений и условий:
(Обратите внимание, что перенос уравнений на новую строку не влияет на результат.)
Out[1]= |
Построим решения системы в виде параметрического графика:
Видео:Wolframalpha : решение любых задач для студента по алгебре, вышке, физике, дифференциальные ур. и прСкачать
Использование Wolfram Mathematica в решении дифференциальных уравнений
Саратовский национальный исследовательский государственный университет имени Н.Г. Чернышевского
NovaInfo55, с. 5-9
Опубликовано 20 ноября 2016
Раздел: Физико-математические науки
Просмотров за месяц: 49
CC BY-NC
Видео:КиЯ 0.18 | Решение уравнения и отображение его корней в Wolfram LanguageСкачать
Аннотация
В статье рассматриваются примеры решения обыкновенных дифференциальных уравнений в системе Wolfram Mathematica.
Видео:Solving differential equations with the Wolfram LanguageСкачать
Ключевые слова
Видео:Откуда появляются дифференциальные уравнения и как их решатьСкачать
Текст научной работы
Системы компьютерной математики (Maple, Mathematica, MatLab, Derive и др.) применяются в различных областях науки. Они содержат процедуры для численных и аналитических расчетов, средства программирования, визуализации. В настоящее время пакеты прикладных программ используются не только при решении численных задач, но и при доказательстве теорем. Системы компьютерной математики используются в решении математических проблем в работах Д.С. Воронова, О.П. Гладуновой, Е.С. Корнева, М.В. Куркиной, Е.Д. Родионова, Я.В. Славолюбовой, В.В. Славского, Н.К. Смоленцева, Л.Н. Чибриковой и др.
Система компьютерной математики Wolfram Mathematica является одним из наиболее распространенных программных средств, которое позволяет выполнять численные, символьные вычисления, имеет развитую двумерную и трехмерную графику, а также встроенный язык программирования высокого уровня. Для знакомства с языком программирования Wolfram Language рекомендуется интернет-ресурс Wolfram Language & System «Documentation Center» (http://reference.wolfram.com/language/). Выбирая раздел, можно познакомиться с имеющимися командами для решения задач и с примерами их использования. Примеры использования Mathematica в решении геометрических задач приведены в 4.
Система Mathematica обладает обширными возможностями решения обыкновенных дифференциальных уравнений и их систем в символьном виде. Для этого используется функция DSolve, в алгоритме которой реализовано большинство известных на сегодняшний день аналитических методов.
Пример 1. Решим дифференциальное уравнение и построим график решений при различных значениях постоянной.
Пример 2. Решим уравнение y’=frac
Попытаемся решить уравнение с помощью функции DSolve:
В данном случае функция DSolve не может решить нелинейное уравнение. Поэтому запишем уравнение в виде:
и будем интегрировать обе части уравнения:
Следовательно, общее решение уравнения примет вид
-(-2+y^2)cos y+2ysin y=x-10ln (1-x)+13ln(2-x)+C
Пример 3. Решим дифференциальное уравнение и построим поле направлений и график решения уравнения при различных значениях константы.
Построим таблицу решений, заменив С[1] на a, где a изменяется от -2 до 2 с шагом 0,5:
Отобразим два графика одновременно и покажем, что векторы поля направлений являются касательными к решениям дифференциального уравнения:
Система Wolfram Mathematica используется для решения дифференциальных уравнений не только в математике, но и актуальна в других научных областях. Ее можно применять и в механике, в частности, для решения различных постановок задач, где в качестве математических объектов используются дифференциальные уравнения. В работах [6,7] рассмотрены уравнения движения мембран и акустических сред в виде обыкновенных дифференциальных уравнений. Для их решения может быть использована система компьютерной математики Wolfram Mathematica.
Видео:18+ Математика без Ху!ни. Дифференциальные уравнения.Скачать
Читайте также
Математическая подготовка студентов в вузе в контексте будущей профессиональной деятельности
Использование прикладных программ при изучении математической статистики
Применение систем компьютерной математики при изучении комплексного анализа
Организация самостоятельной работы студентов в условиях информационно-образовательной среды вуза
Системы компьютерной математики в решении дифференциальных уравнений
Видео:13. Как решить дифференциальное уравнение первого порядка?Скачать
Список литературы
- Букушева А.В. Использование Mathematica для описания геометрии динамических систем // Математика и ее приложения: фундаментальные проблемы науки и техники : сборник трудов всероссийской конференции, Барнаул, 24 — 26 ноября 2015. — Барнаул : Изд-во Алт. ун-та, 2015. С. 248-249.
- Букушева А.В. Применение Wolfram Language для выделения специальных классов почти контактных метрических структур // Компьютерные науки и информационные технологии : Материалы Междунар. науч. конф. — Саратов : Издат. центр.»Наука», 2016. С. 105-107.
- Букушева А.В. Использование систем компьютерной математики для решения геометрических задач сложного уровня // Информационные технологии в образовании: Материалы VI Всероссийской научно-практической конференции. – Саратов: ООО «Издательский центр «Наука»». 2014. – С. 76-77.
- Букушева А.В. Решение учебно-исследовательских задач с использованием систем компьютерной математики // Информационные технологии в образовании: Материалы VII Всеросс. научно-практ. конф. – Саратов: ООО «Издательский центр «Наука»», 2015. С.185-187.
- Букушева А.В. Учебно-исследовательские задачи в продуктивном обучении будущих бакалавров-математиков // Образовательные технологии. 2016. №2. С. 16-26.
- Вельмисова А.И. Распространение и отражение гармонических волн в плоском акустическом слое с гибкими стенками в случае разрыва упругих свойств на одной из стенок // Математика. Механика: Сб. науч. тр. Саратов: Изд-во Сарат. ун-та, 2010. Вып.12. С. 136-140.
- Вельмисова А.И., Вильде М.В., Кириллова И.В. Распространение и отражение гармонических волн в плоском акустическом слое с кусочно-неоднородными гибкими стенками // Известия Саратовского университета. Новая серия. Серия: Математика. Механика. Информатика. 2011. Т.11. №4. С. 68-73.
Видео:7. Линейные дифференциальные уравнения первого порядка. Метод Бернулли.Скачать
Цитировать
Зинина, А.И. Использование Wolfram Mathematica в решении дифференциальных уравнений / А.И. Зинина. — Текст : электронный // NovaInfo, 2016. — № 55. — С. 5-9. — URL: https://novainfo.ru/article/8754 (дата обращения: 24.02.2022).
Видео:Решение физических задач с помощью дифференциальных уравненийСкачать
Поделиться
Электронное периодическое издание зарегистрировано в Федеральной службе по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор), свидетельство о регистрации СМИ — ЭЛ № ФС77-41429 от 23.07.2010 г.
Соучредители СМИ: Долганов А.А., Майоров Е.В.
📽️ Видео
Вольфрам альфаСкачать
Линейное неоднородное дифференциальное уравнение второго порядка с постоянными коэффициентамиСкачать
Как решить любую задачу студенту? : Интеллектуальный поисковик wolframalpha.comСкачать
ТОП приложение для СТУДЕНТОВ в изучении математики! ChatGPT больше не нужен? Эта программа решит всеСкачать
Дифференциальные уравнения, 2 урок, Дифференциальные уравнения с разделяющимися переменнымиСкачать
2. Дифференциальные уравнения с разделяющимися переменными. Часть 1.Скачать
Задача Коши ➜ Частное решение линейного однородного дифференциального уравненияСкачать