Как решение уравнения с фигурными скобками

Математика
Содержание
  1. Тестирование онлайн
  2. Система линейных уравнений
  3. Решение системы линейных уравнений способом подстановки
  4. Решение системы линейных уравнений способом сложения
  5. Решение системы линейных уравнений графическим способом
  6. Метод введения новых переменных
  7. Особые случаи
  8. Метод Гаусса*
  9. Алгебра. Урок 4. Уравнения, системы уравнений
  10. Линейные уравнения
  11. Квадратные уравнения
  12. Разложение квадратного трехчлена на множители
  13. Дробно рациональные уравнения
  14. Системы уравнений
  15. Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.
  16. Скобки в математике: их виды и предназначение
  17. Основные виды скобок, обозначения, терминология
  18. Скобки для указания порядка выполнения действий
  19. Отрицательные числа в скобках
  20. Скобки для выражений, с которыми выполняются действия
  21. Скобки в выражениях со степенями
  22. Скобки в выражениях с корнями
  23. Скобки в выражениях с тригонометрическими функциями
  24. Скобки в выражениях с логарифмами
  25. Скобки в пределах
  26. Скобки и производная
  27. Подынтегральные выражения в скобках
  28. Скобки, отделяющие аргумент функции
  29. Скобки в периодических десятичных дробях
  30. Скобки для обозначения числовых промежутков
  31. Обозначения систем и совокупностей уравнений и неравенств
  32. Фигурная скобка для обозначения кусочной функции
  33. Скобки для указания координат точки
  34. Скобки для перечисления элементов множества
  35. Скобки и координаты векторов
  36. Скобки для указания элементов матриц

Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

Тестирование онлайн

Видео:Решение систем уравнений методом подстановкиСкачать

Решение систем уравнений методом подстановки

Система линейных уравнений

Обычно уравнения системы записывают в столбик одно под другим и объединяют фигурной скобкой

Как решение уравнения с фигурными скобками

Система уравнений такого вида, где a, b, c — числа, а x, y — переменные, называется системой линейных уравнений.

При решении системы уравнений используют свойства, справедливые для решения уравнений.

Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

Решение системы линейных уравнений способом подстановки

Рассмотрим пример Как решение уравнения с фигурными скобками

1) Выразить в одном из уравнений переменную. Например, выразим y в первом уравнении, получим систему:

Как решение уравнения с фигурными скобками

2) Подставляем во второе уравнение системы вместо y выражение 3х-7:

Как решение уравнения с фигурными скобками

3) Решаем полученное второе уравнение:

Как решение уравнения с фигурными скобками

4) Полученное решение подставляем в первое уравнение системы:

Как решение уравнения с фигурными скобками

Система уравнений имеет единственное решение: пару чисел x=1, y=-4. Ответ: (1; -4), записывается в скобках, на первой позиции значение x, на второй — y.

Видео:Решение систем уравнений. Методом подстановки. Выразить YСкачать

Решение систем уравнений. Методом подстановки. Выразить Y

Решение системы линейных уравнений способом сложения

Решим систему уравнений из предыдущего примера Как решение уравнения с фигурными скобкамиметодом сложения.

1) Преобразовать систему таким образом, чтобы коэффициенты при одной из переменных стали противоположными. Умножим первое уравнение системы на «3».

Как решение уравнения с фигурными скобками

2) Складываем почленно уравнения системы. Второе уравнение системы (любое) переписываем без изменений.

Как решение уравнения с фигурными скобками

3) Полученное решение подставляем в первое уравнение системы:

Как решение уравнения с фигурными скобками

Видео:Система с тремя переменнымиСкачать

Система с тремя переменными

Решение системы линейных уравнений графическим способом

Графическое решение системы уравнений с двумя переменными сводится к отыскиванию координат общих точек графиков уравнений.

Графиком линейной функции является прямая. Две прямые на плоскости могут пересекаться в одной точке, быть параллельными или совпадать. Соответственно система уравнений может: а) иметь единственное решение; б) не иметь решений; в) иметь бесконечное множество решений.

2) Решением системы уравнений является точка (если уравнения являются линейными) пересечения графиков.

Графическое решение системы Как решение уравнения с фигурными скобками

Как решение уравнения с фигурными скобками

Видео:Уравнения со скобками - 5 класс (примеры)Скачать

Уравнения со скобками - 5 класс (примеры)

Метод введения новых переменных

Замена переменных может привести к решению более простой системы уравнений, чем исходная.

Рассмотрим решение системы Как решение уравнения с фигурными скобками

Введем замену Как решение уравнения с фигурными скобками, тогда

Как решение уравнения с фигурными скобками

Переходим к первоначальным переменным

Как решение уравнения с фигурными скобками

Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Особые случаи

Не решая системы линейных уравнений, можно определить число ее решений по коэффициентам при соответствующих переменных.

Пусть дана система Как решение уравнения с фигурными скобками

1) Если Как решение уравнения с фигурными скобками, то система имеет единственное решение.

2) Если Как решение уравнения с фигурными скобками, то система решений не имеет. В этом случае прямые, являющиеся графиками уравнений системы, параллельны и не совпадают.

Как решение уравнения с фигурными скобками

3) Если Как решение уравнения с фигурными скобками, то система имеет бесконечное множество решений. В этом случае прямые совпадают друг с другом.

Как решение уравнения с фигурными скобками

Видео:Раскрытие скобок. 6 класс.Скачать

Раскрытие скобок. 6 класс.

Метод Гаусса*

Суть метода в последовательном исключении неизвестных, приводя систему линейных уравнений к ступенчатой форме.

Видео:Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать

Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.

Алгебра. Урок 4. Уравнения, системы уравнений

Смотрите бесплатные видео-уроки на канале Ёжику Понятно по теме “Уравнения”.

Как решение уравнения с фигурными скобками

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

  • Линейные уравнения

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Линейные уравнения

Линейное уравнение – уравнение вида a x = b , где x – переменная, a и b некоторые числа, причем a ≠ 0 .

Примеры линейных уравнений:

  1. 3 x = 2
  1. 2 7 x = − 5

Линейными уравнениями называют не только уравнения вида a x = b , но и любые уравнения, которые при помощи преобразований и упрощений сводятся к этому виду.

Как же решать уравнения, которые приведены к виду a x = b ? Достаточно поделить левую и правую часть уравнения на величину a . В результате получим ответ: x = b a .

Как распознать, является ли произвольное уравнение линейным или нет? Надо обратить внимание на переменную, которая присутствует в нем. Если старшая степень, в которой стоит переменная, равна единице, то такое уравнение является линейным уравнением.

Для того, чтобы решить линейное уравнение , необходимо раскрыть скобки (если они есть), перенести «иксы» в левую часть, числа – в правую, привести подобные слагаемые. Получится уравнение вида a x = b . Решение данного линейного уравнения: x = b a .

Примеры решения линейных уравнений:

  1. 2 x + 1 = 2 ( x − 3 ) + 8

Это линейное уравнение, так как переменная стоит в первое степени.

Попробуем преобразовать его к виду a x = b :

Для начала раскроем скобки:

2 x + 1 = 4 x − 6 + 8

В левую часть переносятся все слагаемые с x , в правую – числа:

Теперь поделим левую и правую часть на число ( -2 ) :

− 2 x − 2 = 1 − 2 = − 1 2 = − 0,5

Это уравнение не является линейным уравнением, так как старшая степень, в которой стоит переменная x равна двум.

Это уравнение выглядит линейным на первый взгляд, но после раскрытия скобок старшая степень становится равна двум:

x 2 + 3 x − 8 = x − 1

Это уравнение не является линейным уравнением.

Особые случаи (в 4 задании ОГЭ они не встречались, но знать их полезно)

  1. 2 x − 4 = 2 ( x − 2 )

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 2 x = − 4 + 4

И как же здесь искать x , если его нет? После выполнения преобразований мы получили верное равенство (тождество), которое не зависит от значения переменной x . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда получается верное равенство (тождество). Значит x может быть любым числом. Запишем ответ к данном линейному уравнению.

Это линейное уравнение. Раскроем скобки, перенесем иксы влево, числа вправо:

2 x − 4 = 2 x − 16

2 x − 2 x = − 16 + 4

В результате преобразований x сократился, но в итоге получилось неверное равенство, так как . Какое бы значение x мы ни подставляли бы в исходное уравнение, в результате всегда будет неверное равенство. А это означает, что нет таких значений x , при которых равенство становилось бы верным. Запишем ответ к данному линейному уравнению.

Видео:Урок по теме СПОСОБ ПОДСТАНОВКИ 7 классСкачать

Урок по теме СПОСОБ ПОДСТАНОВКИ 7 класс

Квадратные уравнения

Квадратное уравнение – уравнение вида a x 2 + b x + c = 0, где x – переменная, a , b и c – некоторые числа, причем a ≠ 0 .

Алгоритм решения квадратного уравнения:

  1. Раскрыть скобки, перенести все слагаемые в левую часть, чтобы уравнение приобрело вид: a x 2 + b x + c = 0
  2. Выписать, чему равны в числах коэффициенты: a = … b = … c = …
  3. Вычислить дискриминант по формуле: D = b 2 − 4 a c
  4. Если D > 0 , будет два различных корня, которые находятся по формуле: x 1,2 = − b ± D 2 a
  5. Если D = 0, будет один корень, который находится по формуле: x = − b 2 a
  6. Если D 0, решений нет: x ∈ ∅

Примеры решения квадратного уравнения:

  1. − x 2 + 6 x + 7 = 0

a = − 1, b = 6, c = 7

D = b 2 − 4 a c = 6 2 − 4 ⋅ ( − 1 ) ⋅ 7 = 36 + 28 = 64

D > 0 – будет два различных корня:

x 1,2 = − b ± D 2 a = − 6 ± 64 2 ⋅ ( − 1 ) = − 6 ± 8 − 2 = [ − 6 + 8 − 2 = 2 − 2 = − 1 − 6 − 8 − 2 = − 14 − 2 = 7

Ответ: x 1 = − 1, x 2 = 7

a = − 1, b = 4, c = − 4

D = b 2 − 4 a c = 4 2 − 4 ⋅ ( − 1 ) ⋅ ( − 4 ) = 16 − 16 = 0

D = 0 – будет один корень:

x = − b 2 a = − 4 2 ⋅ ( − 1 ) = − 4 − 2 = 2

a = 2, b = − 7, c = 10

D = b 2 − 4 a c = ( − 7 ) 2 − 4 ⋅ 2 ⋅ 10 = 49 − 80 = − 31

D 0 – решений нет.

Также существуют неполные квадратные уравнения (это квадратные уравнения, у которых либо b = 0, либо с = 0, либо b = с = 0 ). Смотрите видео, как решать такие квадратные уравнения!

Видео:Как решают уравнения в России и СШАСкачать

Как решают уравнения в России и США

Разложение квадратного трехчлена на множители

Квадратный трехчлен можно разложить на множители следующим образом:

a x 2 + b x + c = a ⋅ ( x − x 1 ) ⋅ ( x − x 2 )

где a – число, коэффициент перед старшим коэффициентом,

x – переменная (то есть буква),

x 1 и x 2 – числа, корни квадратного уравнения a x 2 + b x + c = 0 , которые найдены через дискриминант.

Если квадратное уравнение имеет только один корень , то разложение выглядит так:

a x 2 + b x + c = a ⋅ ( x − x 0 ) 2

Примеры разложения квадратного трехчлена на множители:

  1. − x 2 + 6 x + 7 = 0 ⇒ x 1 = − 1, x 2 = 7

− x 2 + 6 x + 7 = ( − 1 ) ⋅ ( x − ( − 1 ) ) ( x − 7 ) = − ( x + 1 ) ( x − 7 ) = ( x + 1 ) ( 7 − x )

  1. − x 2 + 4 x − 4 = 0 ; ⇒ x 0 = 2

− x 2 + 4 x − 4 = ( − 1 ) ⋅ ( x − 2 ) 2 = − ( x − 2 ) 2

Если квадратный трехчлен является неполным, ( ( b = 0 или c = 0 ) то его можно разложить на множители следующими способами:

  • c = 0 ⇒ a x 2 + b x = x ( a x + b )
  • b = 0 ⇒ применить формулу сокращенного умножения для разности квадратов.

Видео:№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить уСкачать

№2 Квадратное уравнение со скобками (х-1)(x-2)=-6х Как избавиться от скобок в уравнении Как решить у

Дробно рациональные уравнения

Пусть f ( x ) и g ( x ) – некоторые функции, зависящие от переменной x .

Дробно рациональное уравнение – это уравнение вида f ( x ) g ( x ) = 0 .

Для того, чтобы решить дробно рациональное уравнение, надо вспомнить, что такое ОДЗ и когда оно возникает.

ОДЗ – область допустимых значений переменной.

В выражении вида f ( x ) g ( x ) = 0

ОДЗ: g ( x ) ≠ 0 (знаменатель дроби не может быть равен нулю).

Алгоритм решения дробно рационального уравнения:

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .
  2. Выписать ОДЗ: g ( x ) ≠ 0.
  3. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни.
  4. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Пример решения дробного рационального уравнения:

Решить дробно рациональное уравнение x 2 − 4 2 − x = 1.

Решение:

Будем действовать в соответствии с алгоритмом.

  1. Привести выражение к виду f ( x ) g ( x ) = 0 .

Переносим единичку в левую часть, записываем к ней дополнительный множитель, чтобы привести оба слагаемых к одному общему знаменателю:

x 2 − 4 2 − x − 1 2 − x = 0

x 2 − 4 2 − x − 2 − x 2 − x = 0

x 2 − 4 − ( 2 − x ) 2 − x = 0

x 2 − 4 − 2 + x 2 − x = 0

x 2 + x − 6 2 − x = 0

Первый шаг алгоритма выполнен успешно.

Обводим в рамочку ОДЗ, не забываем про него: x ≠ 2

  1. Приравнять числитель дроби к нулю f ( x ) = 0 и найти корни:

x 2 + x − 6 = 0 – Квадратное уравнение. Решаем через дискриминант.

a = 1, b = 1, c = − 6

D = b 2 − 4 a c = 1 2 − 4 ⋅ 1 ⋅ ( − 6 ) = 1 + 24 = 25

D > 0 – будет два различных корня.

x 1,2 = − b ± D 2 a = − 1 ± 25 2 ⋅ 1 = − 1 ± 5 2 = [ − 1 + 5 2 = 4 2 = 2 − 1 − 5 2 = − 6 2 = − 3

  1. Указать в ответе корни из числителя, исключив те корни, которые попали в ОДЗ.

Корни, полученные на предыдущем шаге:

Значит, в ответ идет только один корень, x = − 3.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Системы уравнений

Системой уравнений называют два уравнения с двумя неизвестными (как правило, неизвестные обозначаются x и y ) , которые объединены в общую систему фигурной скобкой.

Пример системы уравнений

Решить систему уравнений – найти пару чисел x и y , которые при подстановке в систему уравнений образуют верное равенство в обоих уравнениях системы.

Существует два метода решений систем линейных уравнений:

  1. Метод подстановки.
  2. Метод сложения.

Алгоритм решения системы уравнений методом подстановки:

  1. Выразить из любого уравнения одну переменную через другую.
  2. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  3. Решить уравнение с одной неизвестной.
  4. Найти оставшуюся неизвестную.

Решить систему уравнений методом подстановки

Решение:

  1. Выразить из любого уравнения одну переменную через другую.
  1. Подставить в другое уравнение вместо выраженной переменной полученное значение.
  1. Решить уравнение с одной неизвестной.

3 ( 8 − 2 y ) − y = − 4

y = − 28 − 7 = 28 7 = 4

  1. Найти оставшуюся неизвестную.

x = 8 − 2 y = 8 − 2 ⋅ 4 = 8 − 8 = 0

Ответ можно записать одним из трех способов:

Решение системы уравнений методом сложения.

Метод сложения основывается на следующем свойстве:

Идея метода сложения состоит в том, чтобы избавиться от одной из переменных, сложив уравнения.

Решить систему уравнений методом сложения

Давайте избавимся в данном примере от переменной x . Суть метода состоит в том, чтобы в первом и во втором уравнении перед переменной x стояли противоположные коэффициенты. Во втором уравнении перед x стоит коэффициент 3 . Для того, чтобы метод сложения сработал, надо чтобы перед переменной x оказался коэффициент ( − 3 ) . Для этого домножим левую и правую часть первого уравнения на ( − 3 ) .

Теперь, когда перед переменной в обоих уравнениях стоят противоположные коэффициенты, при сложении левых частей уравнений переменная x исчезнет.

( − 3 x − 6 y ) + ( 3 x − y ) = ( − 24 ) + ( − 4 )

− 3 x − 6 y + 3 x − y = − 24 − 4

y = − 28 − 7 = 28 7 = 4

Осталось найти переменную x . Для этого подставим y = 4 в любое из двух уравнений системы. Например, в первое.

Ответ можно записать одним из трех способов:

Видео:Как решать уравнения со скобками быстро и правильно. Математика 6 класс.Скачать

Как решать уравнения со скобками быстро и правильно. Математика 6 класс.

Задание №9 из ОГЭ 2020. Типовые задачи и принцип их решения.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Скобки в математике: их виды и предназначение

В данной статье рассказывается о скобках в математике и рассматриваются виды и применения, термины и методы использования при решении или для описания материала. В заключение будут решены подобные примеры с подробными комментариями.

Видео:Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

Основные виды скобок, обозначения, терминология

Для решения заданий в математике используются три вида скобок: ( ) , [ ] , . Реже встречаются скобки такого вида ] и [ , называемые обратными, или и > , то есть в виде уголка. Их применение всегда парное, то есть имеется открывающаяся и закрывающаяся скобка в любом выражении, тогда оно имеет смысл . скобки позволяют разграничить и определить последовательность действий.

Видео:Уравнение с раскрытием скобок. #математика #алгебра #уравнение #скобки #минус #simplemathСкачать

Уравнение с раскрытием скобок. #математика #алгебра #уравнение #скобки #минус #simplemath

Скобки для указания порядка выполнения действий

Основное предназначение скобок – указание порядка выполняемых действий. Тогда выражение может иметь одну или несколько пар круглых скобок. По правилу всегда выполняется первым действие в скобках, после чего умножение и деление, а позже сложение и вычитание.

Рассмотрим на примере заданное выражение. Если дан пример вида 5 + 3 — 2 , тогда очевидно, что действия выполняются последовательно. Когда это же выражение записывается со скобками, тогда их последовательность меняется. То есть при ( 5 + 3 ) — 2 первое действие выполняется в скобках. В данном случае изменений не будет. Если выражение будет записано в виде 5 + ( 3 — 2 ) , тогда в начале производятся вычисления в скобках, после чего сложение с числом 5 . На исходное значение в этом случае оно не повлияет.

Рассмотрим пример, который покажет, как при изменении положения скобок может измениться результат. Если дано выражение 5 + 2 · 4 , видно, что вначале выполняется умножение, после чего сложение. Когда выражение будет иметь вид ( 5 + 2 ) · 4 , то вначале выполнится действие в скобках, после чего произведется умножение. Результаты выражений будут отличаться.

Выражения могут содержать несколько пар скобок, тогда выполнения действий начинаются с первой. В выражении вида ( 4 + 5 · 2 ) − 0 , 5 : ( 7 − 2 ) : ( 2 + 1 + 12 ) видно, что первым делом выполняются действия в скобках, после чего деления, а в конце вычитание.

Существуют примеры, где имеются вложенные сложные скобки вида 4 · 6 — 3 + 8 : 2 и 5 · ( 1 + ( 8 — 2 · 3 + 5 ) — 2 ) ) — 4 . Тогда начинается выполнение действий с внутренних скобок. Далее производится продвижение к внешним.

Если имеется выражение 4 · 6 — 3 + 8 : 2 , тогда очевидно, что в первую очередь выполняются действия в скобках. Значит, следует отнять 3 от 6 , умножить на 4 и прибавить 8 . В конце следует разделить на 2 . Только так можно получить верный ответ.

На письме могут быть использованы скобки разных размеров. Это делается для удобства и возможности отличия одной пары от другой. Внешние скобки всегда большего размера, чем внутренние. То есть получаем выражение вида 5 — 1 : 2 + 1 2 + 3 — 1 3 · 2 · 3 — 4 . Редко встречается применение выделенных скобок ( 2 + 2 · ( 2 + ( 5 · 4 − 4 ) ) ) · ( 6 : 2 − 3 · 7 ) · ( 5 − 3 ) или применяют квадратные, например, [ 3 + 5 · ( 3 − 1 ) ] · 7 или фигурные : [ 3 + 5 + 6 : ( 5 − 2 − 1 ) ] .

Перед тем, как приступить к решению, важно правильно определить порядок действий и разобрать все необходимые пары скобок. Для этого следует добавлять разные виды скобок или менять их цвет. Пометка скобки другим цветом удобна для решения, но занимает много времени, поэтому на практике чаще всего применяют круглые, фигурные и квадратные скобки.

Видео:Как решить сложные уравненияСкачать

Как решить сложные уравнения

Отрицательные числа в скобках

Если необходимо изобразить отрицательные числа, тогда применяют круглые скобки в выражении. Такая запись, как 5 + ( − 3 ) + ( − 2 ) · ( − 1 ) , 5 + — 2 3 , 2 5 7 — 5 + — 6 7 3 · ( — 2 ) · — 3 , 5 предназначена для того, чтобы упорядочить отрицательные числа в выражении.

Скобки не ставятся для отрицательного числа того, когда оно располагается в начале любого выражения или дроби. Если имеем пример вида − 5 · 4 + ( − 4 ) : 2 , то очевидно, что знак минуса перед 5 можно не заключать в скобки, а при 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 число 2 , 2 записано вначале, значит скобки также не нужны. Со скобками можно записать выражение ( − 5 ) · 4 + ( − 4 ) : 2 или 3 — 0 , 4 — 2 , 2 · 3 + 7 + 3 — 1 : 2 . Запись, где имеются скобки, считается более строгой.

Знак минуса может находиться не только перед числом, но и перед переменными, степенями, корнями, дробями, функциями, тогда их следует заключить в скобки. Это такие записи, как 5 · ( − x ) , 12 : ( − 22 ) , 5 · — 3 + 7 — 1 + 7 : — x 2 + 1 3 , 4 3 4 — — x + 2 x — 1 , 2 · ( — ( 3 + 2 · 4 ) , 5 · ( — log 3 2 ) — ( — 2 x 2 + 4 ) , sin x · ( — cos 2 x ) + 1

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Скобки для выражений, с которыми выполняются действия

Использование круглых скобок связано с указанием в выражении действий, где имеется возведение в степень, взятие производной, функции. Они позволяют упорядочивать выражения для удобства дальнейшего решения.

Скобки в выражениях со степенями

Выражение со степенью не всегда следует заключать в скобки, так как степень располагается надстрочно. Если имеется запись вида 2 x + 3 , то очевидно, что х + 3 – это показатель степени. Когда степень записывается в виде знака ^, тогда остальное выражение следует записывать с добавлением скобок, то есть 2 ^ ( x + 3 ) . Если записать это же выражение без скобок, то получится совсем другое выражение. При 2 ^ x + 3 на выходе получим 2 x + 3 .

Основание степени не нуждается в скобках. Поэтому запись принимает вид 0 3 , 5 x 2 + 5 , y 0 , 5 . Если в основании имеется дробное число, тогда можно использовать круглые скобки. Получаем выражения вида ( 0 , 75 ) 2 , 2 2 3 32 + 1 , ( 3 · x + 2 · y ) — 3 , log 2 x — 2 — 1 2 x — 1 .

Если выражение основания степени не взять в скобки, тогда показатель может относиться ко всему выражению, что повлечет за собой неправильное решение. Когда имеется выражение вида x 2 + y , а — 2 – это его степень, то запись примет вид ( x 2 + y ) — 2 . При отсутствии скобок выражение приняло бы вид x 2 + y — 2 , что является совершенно другим выражением.

Если основанием степени является логарифм или тригонометрическая функция с целым показателем, тогда запись приобретает вид sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g , a r c c t g , log , ln или l g . При записи выражения вида sin 2 x , a r c cos 3 y , ln 5 e и log 5 2 x видим, что скобки перед функциями не меняют значения всего выражения, то есть они равноценны. Получаем записи вида ( sin x ) 2 , ( a r c cos y ) 3 , ( ln e ) 5 и log 5 x 2 . Допустимо опущение скобок.

Скобки в выражениях с корнями

Использование скобок в подкоренном выражении бессмысленно, так как выражение вида x + 1 и x + 1 являются равнозначными. Скобки не дадут изменений при решении.

Скобки в выражениях с тригонометрическими функциями

Если имеются отрицательные выражения у функций типа синус, косинус, тангенс, котангенс, арксинус, арккосинус, арктангенс, арккотангенс, тогда необходимо использовать круглые скобки. Это позволит правильно определить принадлежность выражения к имеющейся функции. То есть получим записи вида sin ( − 5 ) , cos ( x + 2 ) , a r c t g 1 x — 2 2 3 .

При записи sin , cos , t g , c t g , a r c sin , a r c cos , a r c t g и a r c c t g при имеющемся числе скобки не используют. Когда в записи присутствует выражение, тогда имеет смысл их поставить. То есть sin π 3 , t g x + π 2 , a r c sin x 2 , a r c t g 3 3 с корнями и степенями, cos x 2 — 1 , a r c t g 3 2 , c t g x + 1 — 3 и подобные выражения.

Если в выражении содержатся кратные углы типа х , 2 х , 3 х и так далее, скобки опускаются. Разрешено записывать в виде sin 2 x , c t g 7 x , cos 3 α . Во избежание двусмысленности скобки можно добавить в выражение. Тогда получаем запись вида sin ( 2 · x ) : 2 вместо sin 2 · x : 2 .

Скобки в выражениях с логарифмами

Чаще всего все выражения логарифмической функции заключаются в скобки для дальнейшего правильного решения. То есть получаем ln ( e − 1 + e 1 ) , log 3 ( x 2 + 3 · x + 7 ) , l g ( ( x + 1 ) · ( x − 2 ) ) . Опущение скобок разрешено в том случае, когда однозначно понятно, к какому выражению относится сам логарифм. Если есть дробь, корень или функция можно записывать выражения в виде log 2 x 5 , l g x — 5 , ln 5 · x — 5 3 — 5 .

Скобки в пределах

При имеющихся пределах используют скобки для представления выражения самого предела. То есть при суммах, произведениях, частных или разностях принято записывать выражения в скобках. Получаем, что lim n → 5 1 n + n — 2 и lim x → 0 x + 5 · x — 3 x — 1 x + x + 1 : x + 2 x 2 + 3 . Опущение скобок предполагается, когда имеется простая дробь или очевидно, к какому выражению относится знак. Например, lim x → ∞ 1 x или lim x → 0 ( 1 + x ) 1 x .

Скобки и производная

При нахождении производной часто можно встретить применение круглых скобок. Если имеется сложное выражение, тогда вся запись берется в скобки . Например, ( x + 1 ) ‘ или sin x x — x + 1 .

Подынтегральные выражения в скобках

Если необходимо проинтегрировать выражение, то следует записать его в круглых скобках. Тогда пример примет вид ∫ ( x 2 + 3 x ) d x , ∫ — 1 1 ( sin 2 x — 3 ) d x , ∭ V ( 3 x y + z ) d x d y d z .

Скобки, отделяющие аргумент функции

При наличии функции чаще всего применяются круглые скобки для их обозначения. Когда дана функция f с переменной х , тогда запись принимает вид f ( x ) . Если имеются несколько аргументов функций, то такая функция получит вид F ( x , y , z , t ) .

Скобки в периодических десятичных дробях

Использование периода обусловлено применением скобок при записи. Сам период десятичной дроби заключается в скобки. Если дана десятинная дробь вида 0 , 232323 … тогда очевидно, что 2 и 3 мы заключаем в круглые скобки. Запись приобретает вид 0 , ( 23 ) . Это характерно для любой записи периодической дроби.

Скобки для обозначения числовых промежутков

Для того, чтобы изобразить числовые промежутки применяют скобки четырех видов: ( ) , ( ] , [ ) и [ ] . В скобках прописываются промежутки, в каких функция существует, то есть имеет решение. Круглая скобка означает, что число не входит в область определения, квадратная – входит. При наличии бесконечности принято изображать круглую скобку.

То есть при изображении промежутков получим, что ( 0 , 5 ) , [ − 0 , 5 , 12 ) , — 10 1 2 , — 5 2 3 , [ 5 , 700 ] , ( − ∞ , − 4 ] , ( − 3 , + ∞ ) , ( − ∞ , + ∞ ) . Не вся литература одинаково использует скобки. Есть случаи, когда можно увидеть запись такого вида ] 0 , 1 [ , что означает ( 0 , 1 ) или [ 0 , 1 [ , что значит [ 0 , 1 ) , причем смысл выражения не меняется.

Обозначения систем и совокупностей уравнений и неравенств

Системы уравнений, неравенств принято записывать при помощи фигурной скобки вида 0 3 x + 2 y ≤ 3 , cos x 1 2 x + π 3 = 0 2 x 2 — 4 ≥ 5 -система, состоящая из двух уравнений и одного неравенства.

Использование фигурных скобок относится к изображению пересечения множеств. При решении системы с фигурной скобкой фактически приходим к пересечению заданных уравнений. Квадратная скобка служит для объединения.

Уравнения и неравенства обозначаются [ скобкой в том случае, если необходимо изобразить совокупность. Тогда получаем примеры вида ( x — 1 ) ( x + 7 ) = 0 x — 2 = 12 + x 2 — x + 3 и x > 2 x — 5 y = 7 2 x + 3 y ≥ 1

Можно встретить выражения, где имеются и система и совокупность:

x ≥ 5 x 3 x > 4 , 5

Фигурная скобка для обозначения кусочной функции

Кусочная функция изображается при помощи одиночной фигурной скобки, где имеются формулы, определяющие функцию, содержащие необходимые промежутки. Посмотрим на примере формулы с содержанием промежутков типа x = x , x ≥ 0 — x , x 0 , где имеется кусочная функция.

Скобки для указания координат точки

Для того, чтобы изобразить координатные точки в виде промежутков, используют круглые скобки. Они могут быть расположены как на координатной прямой, так и в прямоугольной системе координат или n-мерном пространстве.

Когда координата записывается как А ( 1 ) , то означает, что точка А имеет координату со значением 1 , тогда Q ( x , y , z ) говорит о том, что точка Q содержит координаты x , y , z .

Скобки для перечисления элементов множества

Множества задаются при помощи перечисления элементов, входящих в его область. Это выполняется при помощи фигурных скобок, где сами элементы прописываются через запятую. Запись выглядит таким образом А = . Видно, что множество состоит из значений, перечисленных в скобках.

Скобки и координаты векторов

При рассмотрении векторов в системе координат используется понятие координат вектора. То есть при обозначении используют координаты, которые записаны в виде перечисления в скобках.

Учебники предлагают два вида обозначения: a → 0 ; — 3 или a → 0 ; — 3 . Обе записи равнозначны и имеют значение координат 0 , — 3 . При изображении в трехмерном пространстве добавляется еще одна координата. Тогда запись выглядит так: A B → 0 , — 3 , 2 3 или A B → 0 , — 3 , 2 3 .

Обозначение координат может быть как со значком вектора на самом векторе, так и без. Но запись координат производится через запятую в виде перечисления. Запись принимает вид a = ( 2 , 4 , − 2 , 6 , 1 2 ) , где вектор обозначается в пятимерном пространстве. Реже можно увидеть обозначение двумерного пространства в виде a = 3 — 7

Скобки для указания элементов матриц

Частое применение скобок предусмотрено в матрицах. Все элементы фиксируются при помощи круглых скобок вида A = 4 2 3 — 3 0 0 12 .

Реже можно увидеть использование квадратных скобок.
Тогда матрица приобретает вид A = 4 2 3 — 3 0 0 12 .

Поделиться или сохранить к себе: