68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).
Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.
Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.
Рассмотрим 2 примера. Пример 1:
x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5
Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно
2x + 2y = 16 или x + y = 8.
Сложив по частям 3-е и 4-е уравнения, получим:
2x – 2y = –4 или x – y = –2.
Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.
Подставляя эти значения в 1-е и в 3-е уравнения, получим:
3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7
Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.
Теперь остается решить 2 уравнения с 2 неизвестными:
Видео:Система с тремя переменнымиСкачать
Решить систему из 4-х уравнений с 4-мя неизвестными онлайн
Воспользовавшись этим онлайн калькулятором, вы легко найдёте решение системы линейных уравнений. Вы можете вводите не только 4 уравнения, но и меньше. Калькулятор всё равно посчитает быстро и правильно.
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Калькулятор
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Инструкция
Примечание: π записывается как pi ; корень квадратный как sqrt() .
Шаг 1. Заполните все необходимые поля коэффициентами при неизвестных.
Шаг 2. Нажмите кнопку “Решить систему”.
Шаг 3. Получите развёрнутый результат.
Числа можно вводить в виде целых чисел, десятичных или дробей (1/2).
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Что такое линейная система уравнений
Как правило, если в линейной системе 4 уравнения, её решают методом Гаусса. Это классический метод решения систем линейных уравнений. В основе системы лежат элементарные преобразования – сложение, вычитание, умножение на коэффициенты. Суть данного метода – последовательное исключение неизвестных.
Видео:Линейное уравнение с одной переменной. 6 класс.Скачать
Решение СЛАУ 4-го порядка методом Гаусса
В данной статье мы продолжим знакомиться с решениями СЛАУ методом Гаусса.
Теперь мы рассмотрим пример решения матрицы четвёртого порядка, то есть системы уравнений, состоящей из четырёх неизвестных.
Если вы ещё не знаете, как решать этим методом матрицы третьего порядка, то вам необходимо обязательно прочитать эту статью. В ней мы изложили суть данного метода и подробным образом расписали решение подобного задания.
Для того чтобы решить матрицу четвёртого порядка, мы должны воспользоваться тем же алгоритмом решения, что и для матриц третьего порядка.
Необходимо постепенно трансформировать начальную матрицу путём элементарных преобразований с целью получения единичной матрицы из первых четырёх столбцов, в то время как в пятом столбце свободных членов мы получим значения x, y, z, c соответственно. Приступим к практике.
Дана система уравнений:
1. Составим матрицу:
2. Преобразуем матрицу:
2.1. Из второй строки вычитаем первую строку:
2.2. Из третьей строки вычитаем первую строку, умноженную на 3:
2.3. Из четвертой строки вычитаем первую строку, умноженную на 2:
2.4. Из четвертой строки вычитаем вторую строку:
2.5. Прибавляем к третьей строке вторую строку, умноженную на 4:
2.6. Делим третью строку на -3:
2.7. Прибавляем к четвертой строке третью строку, умноженную на 6:
2.8. Делим четвертую строку на 51:
2.9. Вычитаем из первой строки вторую строку:
2.10. Вычитаем из первой строки третью строку:
2.11. Вычитаем из второй строки третью строку:
2.12. Вычитаем из третьей строки четвертую строку, умноженную на 9:
2.13. Прибавляем ко второй строке четвертую строку, умноженную на 13:
2.14. Прибавляем к первой строке четвертую строку, умноженную на 2:
Можете заметить, решение матриц четвёртого порядка является достаточно простым и понятным, если расписывать каждое действие по отдельности. Промежуточные действия можете делать на черновике.
Однако есть вероятность допущения арифметических ошибок. В этих случаях советуем пользоваться калькулятором.
💡 Видео
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решать линейные уравнения #математика #математика7классСкачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать
Система уравнений. Метод алгебраического сложенияСкачать
Одно уравнение и 3 неизвестныхСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать