68. Уравнения с четырьмя и более неизвестными . Теперь ясны следующие соображения: одно уравнение с четырьмя неизвестными имеет бесконечно много решений, причем можно давать произвольные значения трем неизвестным, два уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать двум неизвестным, три уравнения с 4 неизвестными имеют бесконечно много решений, причем произвольные значения можно давать одному неизвестному, четыре уравнения с 4 неизвестными имеют лишь одно решение (конечно, если ни одно из этих уравнений не есть следствие остальных и не противоречит остальным).
Такие соображения можно продолжить и дальше. Например, 5 уравнений с 8-ю неизвестными имеют бесконечно много решений, причем произвольные значения можно давать трем неизвестным и т. п.
Решать системы уравнений с большим числом неизвестных приходится редко. Следует при этом решении пользоваться по возможности всеми особенностями уравнений, чтобы упростить решение.
Рассмотрим 2 примера. Пример 1:
x + y + 2z – t = 9
x + y – 2z + t = 7
x – y + z + 2t = –9
x – y – z – 2t = 5
Сложив 1-е и 2-е уравнения по частям, мы получим очень простое уравнение только с двумя неизвестными, а именно
2x + 2y = 16 или x + y = 8.
Сложив по частям 3-е и 4-е уравнения, получим:
2x – 2y = –4 или x – y = –2.
Теперь легко решить 2 полученных уравнения (x + y = 8 и x – y = –2), и тогда найдем x = 3 и y = 5.
Подставляя эти значения в 1-е и в 3-е уравнения, получим:
3 + 5 + 2z – t = 9 или 2z – t = 1
3 – 5 + z + 2t = –9 или z + 2t = –7
Подстановка этих значений во 2-е и 4-е уравнения приведет к таким же точно уравнениям.
Теперь остается решить 2 уравнения с 2 неизвестными:
Видео:Линейное уравнение с двумя переменными. 7 класс.Скачать
Решить систему из 4-х уравнений с 4-мя неизвестными онлайн
Воспользовавшись этим онлайн калькулятором, вы легко найдёте решение системы линейных уравнений. Вы можете вводите не только 4 уравнения, но и меньше. Калькулятор всё равно посчитает быстро и правильно.
Видео:Система с тремя переменнымиСкачать
Калькулятор
Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
Инструкция
Примечание: π записывается как pi ; корень квадратный как sqrt() .
Шаг 1. Заполните все необходимые поля коэффициентами при неизвестных.
Шаг 2. Нажмите кнопку “Решить систему”.
Шаг 3. Получите развёрнутый результат.
Числа можно вводить в виде целых чисел, десятичных или дробей (1/2).
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Что такое линейная система уравнений
Как правило, если в линейной системе 4 уравнения, её решают методом Гаусса. Это классический метод решения систем линейных уравнений. В основе системы лежат элементарные преобразования – сложение, вычитание, умножение на коэффициенты. Суть данного метода – последовательное исключение неизвестных.
Видео:ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать
Решение СЛАУ 4-го порядка методом Гаусса
В данной статье мы продолжим знакомиться с решениями СЛАУ методом Гаусса.
Теперь мы рассмотрим пример решения матрицы четвёртого порядка, то есть системы уравнений, состоящей из четырёх неизвестных.
Если вы ещё не знаете, как решать этим методом матрицы третьего порядка, то вам необходимо обязательно прочитать эту статью. В ней мы изложили суть данного метода и подробным образом расписали решение подобного задания.
Для того чтобы решить матрицу четвёртого порядка, мы должны воспользоваться тем же алгоритмом решения, что и для матриц третьего порядка.
Необходимо постепенно трансформировать начальную матрицу путём элементарных преобразований с целью получения единичной матрицы из первых четырёх столбцов, в то время как в пятом столбце свободных членов мы получим значения x, y, z, c соответственно. Приступим к практике.
Дана система уравнений:
1. Составим матрицу:
2. Преобразуем матрицу:
2.1. Из второй строки вычитаем первую строку:
2.2. Из третьей строки вычитаем первую строку, умноженную на 3:
2.3. Из четвертой строки вычитаем первую строку, умноженную на 2:
2.4. Из четвертой строки вычитаем вторую строку:
2.5. Прибавляем к третьей строке вторую строку, умноженную на 4:
2.6. Делим третью строку на -3:
2.7. Прибавляем к четвертой строке третью строку, умноженную на 6:
2.8. Делим четвертую строку на 51:
2.9. Вычитаем из первой строки вторую строку:
2.10. Вычитаем из первой строки третью строку:
2.11. Вычитаем из второй строки третью строку:
2.12. Вычитаем из третьей строки четвертую строку, умноженную на 9:
2.13. Прибавляем ко второй строке четвертую строку, умноженную на 13:
2.14. Прибавляем к первой строке четвертую строку, умноженную на 2:
Можете заметить, решение матриц четвёртого порядка является достаточно простым и понятным, если расписывать каждое действие по отдельности. Промежуточные действия можете делать на черновике.
Однако есть вероятность допущения арифметических ошибок. В этих случаях советуем пользоваться калькулятором.
💥 Видео
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Линейное уравнение с одной переменной. 6 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать
Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать
Как решать линейные уравнения #математика #математика7классСкачать
Решение системы линейных уравнений с двумя переменными способом подстановки. 6 класс.Скачать
Как решить уравнение #россия #сша #америка #уравненияСкачать
Метод Крамера за 3 минуты. Решение системы линейных уравнений - bezbotvyСкачать
Как решать линейные уравнения Решите уравнение 5 класс 6 класс 7 класс Как решать простое уравнениеСкачать
Одно уравнение и 3 неизвестныхСкачать
7 класс, 4 урок, Линейное уравнение с одной переменнойСкачать
Система уравнений. Метод алгебраического сложенияСкачать
Решение системы линейных уравнений графическим методом. 7 класс.Скачать
Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать