Конспект урока
Решение задач с помощью уравнений. Часть 1
Перечень рассматриваемых вопросов:
– запись условия задачи с помощью уравнения;
– решение задач с помощью уравнений.
Уравнение – это равенство, содержащее букву, значение которой надо найти.
Решить уравнение – значит найти все его корни.
Корнем уравнения называют такое число, при подстановке которого в уравнение вместо неизвестного получается верное числовое равенство.
- Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017, стр. 258.
- Чулков П. В. Математика: тематические тесты.5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина – М.: Просвещение, 2009, стр. 142.
- Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин – М.: Просвещение, 2014, стр. 95.
Теоретический материал для самостоятельного изучения
Мы уже знаем, что уравнение – это равенство, содержащее букву, значение которой надо найти. Используя уравнения, решать многие задачи проще, чем какими-либо другими способами. Сегодня мы узнаем, как составить уравнение, чтобы решать те или иные задачи.
Для решения любой задачи важно хорошо изучить её условие, определить исходные данные и найти взаимосвязь известных величин с искомыми.
Алгоритм решения задач с помощью уравнений:
1. неизвестную величину нужно обозначить буквой;
2. используя условия задачи, составить уравнение;
3. решить это уравнение;
4. ответить на вопрос задачи.
При решении уравнений можно использовать следующие приёмы:
– переносить числа из одной части уравнения в другую, меняя их знак на противоположный;
– делить или умножать обе части уравнения на одно и то же число, отличное от нуля.
Решим задачу с помощью уравнения.
Ученик задумал число, увеличил его в 2 раза, прибавил 8 и получил 10. Какое число он задумал?
Ответ: ученик задумал число 1.
Решим ещё одну задачу.
Найдите число, три пятых которого равно пятнадцати.
Ответ: 25 – искомое число.
Задача из «Арифметики» Л. Ф. Магницкого
Спросил некто учителя:
– Сколько имеешь учеников у себя в учении, ибо хочу отдать тебе в учение своего сына?
Учитель же отвечает ему:
– Если придёт ко мне ещё столько, сколько имею, да ещё половина и ещё четверть и ещё твой сын, то будет у меня 100 учеников.
Сколько учеников было у учителя?
Ответ: 36 учеников было у учителя.
Разбор заданий тренировочного модуля
Тип 1. Задумали число, прибавили к нему 10, в сумме получили 15. Какое число задумали?
Ответ: было задумано число 5.
Тип 2. Рубашка стоила 1200 рублей. В магазине, при покупке этой рубашки в выходные дни, даётся скидка 30 %. Чему равна цена рубашки со скидкой?
Ответ: цена рубашки со скидкой равна 840 руб.
Видео:Математика 6 класс. Решение задач на составление уравненийСкачать
Решение задач с помощью уравнений
Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.
Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
Введение
В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.
Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.
Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.
Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.
Видео:Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
Алгоритм решения текстовых задач с помощью уравнений
Для решения задачи с помощью уравнения делают следующие действия:
- Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
- Решают уравнение.
- Истолковывают результат.
Видео:Решение задач с помощью уравнений, 6 классСкачать
Примеры решений
Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?
Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.
Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.
Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.
Монет в мешке: $48$
Монет в сундуке: $48cdot 3=144$
Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?
Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.
Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.
Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.
Муки в первом мешке: $700cdot 3=2100$ кг.
Муки во втором мешке: $700$ кг.
Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:
Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:
Избавимся от коэффициента при неизвестном и получим ответ:
Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.
Картошки в первом мешке: $15cdot 4=60$ кг.
Картошки во втором мешке: $15$ кг.
Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.
Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:
По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)
Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.
Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).
Первоначальная скорость машин: $v=60$ км/ч.
Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?
Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.
По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:
$$x-50-3cdot 150=1,5(x-3cdot 200)$$
Осталось решить данное уравнение относительно $x$ и истолковать ответ.
Упростим и раскроем скобки в правой части, тогда получим:
Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac=frac$.
Запишем с учётом перевода дробей и упростим:
Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:
Домножим обе части на 2 и получим ответ:
Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$
Кол-во цемента в первой бригаде: $800-50=750$ кг.
Кол-во цемента во второй бригаде: $800$ кг.
Видео:Решение задач с помощью уравнений.Скачать
Задачи для самостоятельного решения
По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?
Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.
В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$
Ответ: Рабочие отработали 6 дней.
Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?
Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:
1 фунт и половина кирпича = целый кирпич.
Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?
Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:
$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:
Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.
Ответ: 9,5 копеек стоит бутыка без пробки.
На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?
Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:
Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.
Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?
Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:
$$2x-10+0,3cdot 2x-0,3cdot 10=65$$
$$2x+0,3cdot 2x=65+10+0,3cdot 10$$
Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.
Видео:РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ // МАТЕМАТИКА 6 КЛАСССкачать
Как решать задачи на составление уравнений
Видео:Математика. 6 класс. Решение текстовых задач /25.01.2021/Скачать
Решение задач с помощью уравнений
В школьном курсе математики многие задачи можно решить с помощью универсального способа, который предполагает составление уравнения, то есть математической модели, построенной согласно условиям задания.
Уравнение является равенством, содержащим неизвестное, значение которого требуется вычислить.
Решить уравнение — значит определить все его корни.
Корень уравнения — число, которое можно подставить в уравнение на место неизвестного, чтобы получить в результате верное числовое равенство.
Таким образом, множество разных примеров можно решить путем составления линейного уравнения. Для этого условие задания переводят на язык арифметики. Полученное в результате уравнение или формула являются следствием такой трансформации.
Под условием задачи может пониматься реальная ситуация, объяснение определенного процесса или какое-либо событие. Получение ответа возможно при решении уравнения, то есть определении корня. Далее ответ следует проверить, чтобы исключить его противоречивость по отношению к условию.
Видео:Решение задач с помощью уравнений. 6 классСкачать
Общий порядок, описание алгоритма
Известно, что уравнение является равенством с неизвестной величиной, обозначенной буквой, значение которой требуется вычислить. С помощью составления уравнения упрощается отработка многих задач. Перед тем как приступить к арифметическим действиям, необходимо внимательно прочитать условия задания. В результате получится определить начальные параметры и обнаружить связь между известными и неизвестными величинами.
- Обозначить с помощью буквы величину, которая является неизвестной по условию задачи.
- Составить уравнение, руководствуясь информацией из задания.
- Решить уравнение, то есть найти его корни.
- Записать ответ.
Существует несколько полезных приемов, которые пригодятся в процессе решения задачи:
- допустимо переносить числа из одной части уравнения в другую, изменяя их знак на противоположный;
- можно разделить или умножить обе части уравнения на одинаковое число, не равное нулю.
В качестве наглядного примера приведем решение пары задач.
Мальчик задумал какое-то число. Затем он увеличил его в 2 раза, суммировал с 8 и в результате получил 10. Нужно определить, какое число задумал мальчик.
Пусть искомое число будет равно х.
По условиям задачи х требуется умножить на 2. Получим 2х.
Затем нужно сложить результат с 8:
Согласно условию, данное выражение равно 10. Можно записать уравнение:
2xdiv 2 = 2div 2
Ответ: число, которое задумал мальчик, является 1.
Задумано число, три пятых от которого составляет 15. Нужно найти это число.
Предположим, что искомое число равно х.
В таком случае три пятых от этого числа можно записать, как:
Согласно условию задания:
Ответ: задуманное число равно 25.
Видео:АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
Примеры решения задач для 6 класса
Кто-то однажды задал учителю вопрос: «Сколько имеешь учеников у себя в учении, ибо хочу отдать тебе в учение своего сына?». Ответ учителя был следующим: «Если придет ко мне еще столько, сколько имею, да еще половина и еще четверть и еще твой сын, то будет у меня 100 учеников». Необходимо определить количество учеников, которые обучались у учителя.
Представим, что х — это искомое количество учеников. В таком случае половина от этого количества составит 1 2 x , четверть будет равна 1 4 x . Общее количество учеников составляет 100 человек. Исходя из условий задачи, можно записать уравнение:
х + х + 1 2 x + 1 4 x + 1 = 100
После сложения всех элементов в левой части уравнения получим:
2 3 4 x + 1 = 100
Единицу можно перенести в правую часть уравнения. При этом следует изменить знак на «-»:
2 3 4 x = 100 – 1
Далее следует разделить обе части уравнения на 2 3 4 x и л и 11 4 x :
Ответ: изначально у учителя было 36 учеников.
Необходимо вычислить, какое число было задумано, если при сложении его с 10 сумма станет равна 15.
Предположим, что х является задуманным числом. К нему необходимо прибавить 10, чтобы получить 15. Исходя из данных условий, запишем уравнение, которое требуется решить:
Допустимо перенести 10 в правую часть уравнения, меняя при этом его знак:
Ответ: задуманное число — это 5.
Цена рубашки составляет 1200 рублей. Если приобрести эту вещь в выходной день, то можно получить скидку в 30%. Необходимо вычислить стоимость рубашки с учетом скидки.
Представим, что х является стоимостью рубашки за минусом предложенной продавцом скидки. В первую очередь следует определить цену рубашки со скидкой в процентном выражении:
1200 x = 100 % 70 %
После преобразования пропорция примет вид:
x = 1200 × 70 100
Ответ: рубашка с учетом скидки стоит 840 рублей.
🎦 Видео
Линейное уравнение с одной переменной. 6 класс.Скачать
Математика 6 класс (Урок№52 - Решение задач с помощью уравнений. Часть 2.)Скачать
Решение уравнений, 6 классСкачать
РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. Контрольная № 10. 6 класс.Скачать
Решение уравнений. Видеоурок 28. Математика 6 классСкачать
Решение уравнений - математика 6 классСкачать
Алгоритм решения задач с помощью систем уравнений. Практическая часть. 9 класс.Скачать
Решение задач с помощью уравненийСкачать
6 класс, 19 урок, Текстовые задачиСкачать
МЕРЗЛЯК-6. РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. ПАРАГРАФ-42 ЧАСТЬ-1Скачать
Виленкин. 6 класс за 100 минут. Математика: теория чисел, дроби, уравненияСкачать