54. Задачи на составление уравнений с одним неизвестным :
Мы можем применить умение решать уравнение к решению задач. Нижеследующие примеры укажут, как это делать.
Задача 1 . Продавался дом. У одного покупателя была сумма денег, равная ¾ его стоимости, а у другого — равная 5/6 его стоимости. Если бы они сложились вместе, то у них оказался бы излишек в 7000 руб. Какова стоимость дома?
Положим, что дом стоит x рублей. Тогда (в согласии с началом задачи) первый покупатель имел (x · ¾) руб. или, что тоже самое, 3x/4 руб., а второй имел 5x/6 руб. Следующая фраза условия задачи, а именно — «если бы они сложились вместе, то у них оказался бы излишек в 7000 руб.» — является уравнением, выраженным словами: надо выразить его теперь не словами, а математическими знаками. Сначала возьмем подобную же фразу в упрощенной форме: «если сложить числа a и b, то полученная сумма даст излишек m против числа c» — эту фразу можно переписать математическими знаками так: a + b = c + m.
Совершенно так же можно записать и то уравнение, которое имеется в нашей задаче: если сложить числа 3x/4 и 5x/6, то полученная сумма даст излишек 7000 над числом x, или
3x/4 + 5x/6 = x + 7000.
Полученное уравнение должно упростить: 1) умножим обе части уравнения на общего знаменателя 12 — получим
9x + 10x = 12x + 84000
2) Перенесем неизвестные члены в левую часть:
9x + 10x – 12x = 84000
Теперь мы можем дать ответ на задачу:
Стоимость дома составляла 12000 руб.
Задача 2 . В понедельник в классе отсутствовало 13 учеников, а во вторник 5 учеников. Отношение числа присутствующих учеников в понедельник к числу присутствующих во вторник равнялось 7/9. Сколько всего учеников было в этом классе?
Положим, что всего в классе числилось x учеников. Тогда в понедельник присутствовало (x – 13) учеников, а во вторник (x – 5) учеников. Фраза «отношение числа присутствующих учеников в понедельник к числу присутствующих во вторник равнялась 7/9» является уравнением, выраженным словами, и может быть переписана математическими знаками:
(x – 13) / (x – 5) = 7/9.
Решим это уравнение:
9(x – 13) = 7(x – 5) или 9x – 117 = 7x – 35.
Отсюда получим: 2x = 82 и x = 41.
Итак, в этом классе числились 41 ученик.
Задача 3 . Найти дробь, знаменатель которой на 3 больше числителя и которая обращается в 4/5, если из ее числителя и знаменателя вычесть по 1.
Эта задача несколько отличается от предыдущих. В ней требуется «найти дробь», но нельзя было бы начать решение задачи так, как это делали в 1-ый и 2-ой задаче: положим, что искомая дробь равна x. Нельзя было бы так начать потому, что в задаче речь идет отдельно о числителе и отдельно о знаменателе: приходится вычитать 1 отдельно из числителя и отдельно из знаменателя. Поэтому надо так обозначить дробь, чтобы были видны и ее числитель и ее знаменатель. Так как сказано, что знаменатель на 3 больше числителя, то можно обозначить буквою x или числителя или знаменателя, — тогда легко найти выражение для другого члена дроби и для самой дроби.
Вот решение задачи.
Положим, что числитель искомой дроби равен x. Тогда ее знаменатель равен x + 3, и искомая дробь равна x/(x+3). Фраза, «которая (т. е. дробь) обращается в 4/5, если из ее числителя и знаменателя вычесть по 1», является уравнением и может быть написана математически:
(x – 1) / (x + 3 – 1) = 4/5 или (x – 1) / (x + 2) = 4/5.
5(x – 1) = 4(x + 2); 5x – 5 = 4x + 8; 5x – 4x = 5 + 8; x = 13.
Тогда знаменатель дроби равен 16 и искомая дробь 13/16.
Задача 4 . Один брат старше другого на 14 лет, а через 6 лет он будет в 2 раза старше. Сколько лет каждому брату?
Здесь надо дать два ответа: сколько лет младшему брату и сколько лет старшему, но решать задачу можно при помощи уравнения с 1 неизвестным, так как сказано, что старший брат на 14 лет старше младшего. Решим задачу так:
Положим, что младшему брату x лет; тогда старшему (x + 14) лет.
Через 6 лет будет младшему брату (x + 6) лет, а старшему (x + 14 + 6) лет или (x + 20) лет.
Сказано, что старший будет тогда (через 6 лет) в 2 раза старше младшего, т. е. число x + 20 должно быть в 2 раза больше x + 6, а это можно записать в виде
(x + 20) / (x + 6) = 2 или x + 20 = 2 (x + 6) или (x + 20) / 2 = x + 6.
Наиболее естественная запись — первая: узнавать, во сколько раз одно число больше другого, надо делением; нам надо узнать, во сколько раз число (x + 20) больше числа (x + 6) — для этого надо (x + 20) разделить на (x + 6), и нам сказать ответ « в два раза». Поэтому пишем, что от этого деления получится число 2, т. е. (x + 20) / (x + 6) = 2.
Вторая запись может быть объяснена так: нам сказано, что число (x + 20) должно быть в 2 раза больше числа (x + 6). Чтобы сравнять эти числа, надо, следовательно, меньшее из них, т. е. x + 6, умножить на 2. Тогда x + 20 = 2(x + 6).
Тогда запись объясняется так: чтобы сравнять числа x + 20 и x + 6, надо большее из них уменьшить в 2 раза, и тогда (x + 20) / 2 = x + 6.
Если мы возьмем 1-ую запись
и умножим обе части уравнения на x + 6, то получим
т. е. вторую запись. Легко также из 3-ей записи получить 2-ую или 1-ую и т. д.
Во всяком случае, после освобождения уравнения от дробей, получим
и легко решим уравнение:
x + 20 = 2x + 12; 20 – 12 = 2x – x; 8 = x или x = 8.
Итак, младшему брату 8 лет, а старшему 8 + 14 = 22 года.
Задача 5 . Купили сахару и кофе, всего 28 фунтов; за фунт сахару платили 15 коп., а за фунт кофе 80 коп., за всю же покупку заплатили 12 рублей. Сколько купили сахару и сколько купили кофе?
Здесь затруднение может быть в том, что в условии задачи даны числа то в копейках, то в рублях. Должно заранее установить, в каких единицах, в рублях или копейках, будет вестись решение. Решим задачу в рублях. Тогда решение таково:
Положим, что купили x фунтов сахару. Тогда кофе купили (28 – x) фунтов.
За сахар заплатили (15x) копеек или (3/20)x рублей (так как 15 коп. равны 3/20 рубля), а за кофе заплатили 80(28 – x) коп. или 4/5 (28 – x) руб. (так как 80 коп. = 4/5 рубля).
Фраза «за всю покупку заплатили 12 руб.» может быть записана:
3x/20 + 4(28x – x)/5 = 12
[Если бы решали в копейках, то уравнение было бы 15x + 80(28 – x) = 1200].
Освободим уравнение от дробей, для чего обе части умножим на 20, — получим:
3x + 16(28 – x) = 240
3x + 448 – 16x = 240
3x – 16x = 240 – 448
Итак, сахару купили 16 фунтов, а кофе 12 фунтов (28 – 16 = 12).
Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать
Решение задач с помощью линейных уравнений с одной переменной
Алгоритм решения текстовой задачи с помощью уравнения
Алгоритм решения текстовой задачи с помощью уравнения:
- Проанализировать условие задачи, обозначить неизвестное буквой и составить уравнение.
- Решить полученное уравнение.
- Истолковать результат в соответствии с условием задачи.
Задачи с решениями
Задача 1. Одна сторона треугольника в два раза больше другой и на 3 см меньше третьей. Найдите стороны треугольника, если его периметр равен 43 см.
Пусть сторона AB=x.
Периметр треугольника: P = AB+AC+BC = x+2x+(2x+3) = 43
$$5x+3 = 43 iff 5x = 40 iff x = 40:5 = 8$$
AB = x = 8 см, AC = 2x = 16 см, BC = 2x+3 = 19 см
Ответ: 8 см, 16 см и 19 см
Задача 2. Расстояние между двумя станциями поезд может пройти со скоростью 70 км/ч на полчаса быстрее, чем со скоростью 60 км/ч. Найдите это расстояние.
Пусть x – расстояние между станциями.
По условию разность затраченного времени:
Решаем: $ frac — frac = frac | times 420 iff 7x-6x = 210 iff x = 210 $
Расстояние между станциями 210 км
Задача 3. Бригада должна была изготовить детали за 5 дней, но выполнила работу за 4 дня, т.к. изготавливала каждый день на 12 деталей больше. Сколько деталей изготовила бригада?
Пусть x — количество изготовленных деталей.
Количество деталей в день, шт./дни
Количество дней, дни
По условию разность между количествами деталей в день:
Решаем: $ frac — frac = 12 | times 20 iff 5x-4x = 240 iff x = 240 $
Бригада изготовила 240 деталей.
Ответ: 240 деталей
Задача 4. Сумма двух чисел равна 90. Если большее из них разделить на меньшее, то частное равно 3 и в остатке 6. Найдите эти числа.
Пусть x — меньшее число. Тогда большее равно 90-x. По условию: 90-x = 3x+6
$$ 90-6 = 3x+x iff 4x = 84 iff x = 21 $$
Меньшее число x = 21, большее число 90-x = 69.
Задача 5. Матери 37 лет, а дочери 13 лет. Когда дочь была или будет втрое младше матери? А вдвое?
Пусть x — число прошедших лет. Возраст матери станет 37+x, дочери 13+x.
$$ frac = 3 iff 37+x = 3(13+x) iff 37+x = 39+3x iff 37-39 = 3x-x iff $$
$$ iff 2x = -2 iff x = -1 $$
Дочь была втрое младше матери 1 год тому назад.
$$ frac = 2 iff 37+x = 2(13+x) iff 37+x = 26+2x iff 37-26 = 2x-x iff $$
Дочь будет вдвое младше матери через 11 лет.
Ответ: год назад; через 11 лет
Задача 6. Сколько лет отцу и сыну, еcли в позапрошлом году сын был младше в 5 раз, а в следующем будет младше в 4 раза?
Пусть x — возраст сына в этом году.
Возраст сына, лет
Возраст отца, лет
И для отца, и для сына пройдёт три года:
$$ 4(x+1)-5(x-2) = 3 iff 4x+4-5x+10 = 3 iff 4x-5x = 3-14 iff -x = -11 $$ $$ x = 11 $$
Сейчас сыну 11 лет.
В следующем году отцу будет 4(x+1)=4∙12=48 лет. Значит, сейчас отцу 47 лет.
Ответ: 11 лет и 47 лет.
Задача 7. Сумма цифр данного двузначного числа равна 7. Если эти цифры поменять местами, то получится двузначное число на 9 больше данного. Найдите данное число.
Пусть x — первая цифра данного числа, число десятков.
По условию разность чисел:
$$ (70-10x+x)-(10x+7-x) = 9 iff 70-9x-9x-7 = 9 iff $$ $$ iff -18x = 9-63 iff -18x = -54 iff x = 3 $$
Первая цифра x = 3, вторая цифра 7-x = 4.
Данное число 34.
Задача 8. По расписанию автобус должен ехать от посёлка до станции со скоростью 32 км/ч и приезжать на станцию за полчаса до отхода поезда. Но из-за ненастной погоды автобус ехал со скоростью на 7 км/ч меньше и опоздал к поезду на 12 мин. Чему равно расстояние от посёлка до станции?
Пусть x – расстояние от посёлка до станции.
Разность по времени между расписанием и фактическим прибытием:
30 мин+12 мин = 42 мин = $frac$ ч = 0,7 ч
$ frac- frac = 0,7 | times 32 cdot 25 $
$ 32x-25x = frac cdot 32 cdot 25 = 7 cdot 16 cdot 5 $
$ 7x = 7 cdot 16 cdot 5 iff x = 16 cdot 5 = 80 $
Расстояние 80 км.
Задача 9*. Если к двузначному числу приписать справа и слева цифру 4, то получится число в 54 раза больше исходного. Найдите исходное двузначное число.
Пусть x — исходное число.
Если приписать по 4 слева и справа, в полученном четырёхзначном числе первая 4 указывает на количество тысяч, число x — на количество десятков, последняя 4 – на количество единиц. Соотношение чисел:
Решаем: $ 4004+10x = 54x iff 4004=44x iff x = frac = frac = 91 $
Исходное число x = 91.
Задача 10. Для проведения экзамена закуплены тетради. Если их сложить в пачки по 45 штук, останется одна лишняя тетрадь, а если сложить в пачки по 50 штук, то в одной пачке не будет хватать 4 тетради. Сколько тетрадей было куплено, если пачек по 45 тетрадей получается на одну больше, чем пачек по 50 тетрадей?
Видео:Алгебра 7 класс (Урок№44 - Решение задач с помощью линейных уравнений.)Скачать
Решение задач с помощью уравнений
Тема урока: § 6. Решение задач с помощью уравнений. Приведены все необходимые и достаточные сведения для решения текстовых задач с помощью составления уравнений.
Видео:Решение задач с помощью уравнений.Скачать
Введение
В школьной математике есть целый кладезь текстовых задач, которые решаются универсальным методом построения уравнения (модели) исходя из условия.
Сам факт того, что огромное количество самых разнообразных задач поддаются решению с помощью составления линейного уравнения, говорит нам, что метод решений является действительно универсальным.
Обычно условия задач удается перевести на математический язык. Полученное уравнение — это следствие перевода нашего условия с русского языка на язык алгебры. Зачастую фактической стороной повествования задачи является описание реальной ситуации, какого либо процесса, события.
Чтобы получить ответ — уравнение нужно решить, полученный корень уравнения будет являться решением, разумеется необходимо еще проверить, не является ли результат противоречивым относительно условия.
Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать
Алгоритм решения текстовых задач с помощью уравнений
Для решения задачи с помощью уравнения делают следующие действия:
- Обозначают некоторое неизвестное буквой и, пользуясь условием, составляют уравнение.
- Решают уравнение.
- Истолковывают результат.
Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать
Примеры решений
Задача 1.
В мешке было в 3 раза меньше монет, чем в сундуке. После того как из мешка переложили 24 монеты, в сундуке их стало в 7 раз больше, чем в мешке. Сколько было монет в мешке и сколько в сундуке?
Пусть $x$ — количество монет в мешке, а значит в сундуке: $3x$ монет. После того, как из мешка переложили $24$ монеты, в сундуке стало: $3x+24$, а в мешке $x-24$. И если в сундуке их стало в $7$ раз больше чем в мешке, то имеем: $3x+24=7(x-24)$.
Ну вот мы и составили уравнение (математическую модель), осталось решить уравнение относительно $x$ и записать ответ.
Решим полученное уравнение: $3x+24=7(x-24)$. Легко увидеть, что уравнение является линейным (узнать как решаются линейные уравнения можно тут.)
Раскроем скобки в правой части уравнения: $3x+24=7x-7cdot 24$. Перенесём все слагаемые содержащие переменную в правую часть, а всё что не содержит $x$ в левую, получим: $24+7cdot 24=7x-3x$. После упрощения получили $192=4x$, разделим обе части уравнения на коэффициент при неизвестном, т.е на $4$, тогда получим $x=48$.
Осталось истолковать ответ.
За переменную $x$ мы обозначали количество монет в мешке, значит в сундуке в три раза больше т.е $3x$.
Монет в мешке: $48$
Монет в сундуке: $48cdot 3=144$
Задача 2.
Купили 3600 кг муки и высыпали её в три мешка. В первый мешок муки вошло в 3 раза больше, чем во второй, а в третий мешок насыпали 800 кг муки. Сколько муки насыпали в первый и сколько во второй мешок?
Пусть в первый мешок насыпали $3x$ кг муки, тогда во второй мешок насыпали $x$ кг. Если сложим количество кг в каждом мешке, то получим $3600$ кг муки. Имеем: $3x+x+800=3600$, решим уравнение классическим методом.
Все слагаемые содержащие $x$ оставим слева, а всё остальное перенесём в правую часть равенства: $3x+x=3600-800$, упростим обе части; $4x=2800$ поделим обе части равенства на $4$ и получим ответ: $x=700$.
Ответ.
За переменную $x$ мы обозначали количество муки во втором мешке, по условию в первом в три раза больше.
Муки в первом мешке: $700cdot 3=2100$ кг.
Муки во втором мешке: $700$ кг.
Задача 3.
В первом мешке в 4 раза больше картофеля, чем во втором. После того, как из одного мешка взяли 40 кг картофеля, а во второй насыпали ещё 5 кг, в обоих мешках картофеля стало поровну. Сколько килограммов картофеля было во втором мешке.
Пусть во втором мешке $x$ кг картофеля, тогда в первом мешке $4x$ кг. Из первого взяли $40$ кг, тогда в первом стало: $4x-40$. Во второй мешок насыпали $5$ кг и теперь в нём: $x+5$ кг картошки. Нам известно, что после этих изменений количество картофеля в мешках стало поровну, запишем это с помощью линейного уравнения:
Решим это линейное уравнение. Все слагаемые содержащие переменную перенесём влево, а свободные члены вправо и получим:
Избавимся от коэффициента при неизвестном и получим ответ:
Ответ.
За переменную $x$ мы обозначали количество кг картошки во втором мешке, по условию в первом в четыре раза больше.
Картошки в первом мешке: $15cdot 4=60$ кг.
Картошки во втором мешке: $15$ кг.
Задача 4.
По шоссе едут две машины с одной и той же скоростью. Если первая увеличит скорость на 20 км/ч, а вторая уменьшит скорость на 20 км/ч, то первая за 2 часа пройдёт то же самое расстояние, что и вторая за 4 часа. Найдите первоначальную скорость машин.
Пусть машины едут со скоростью $v$ км/ч, тогда после ускорения первой машины её скорость стала: $v+20$ км/ч, а скорость второй машины после замедления стала: $v-20$ км/ч. Нам известно по условию, что после изменения скоростей машин, первая проходит за два часа ровно столько, сколько вторая за четыре, тогда имеем:
По известной нам формуле $S=vt$ ($S$ — расстояние, $v$ — скорость, $t$ — время)
Сократим обе части равенства на $2$, тогда получим: $v+20=2(v-20)$. Раскроем скобки в правой части уравнения и сгруппируем все переменные в правой части равенства.
Ответ.
В качестве неизвестной величины в задаче мы взяли $v$ (первоначальную скорость машин).
Первоначальная скорость машин: $v=60$ км/ч.
Задача 5.
В первую бригаду привезли раствора цемента на 50 кг меньше, чем во вторую. Каждый час работы первая бригада расходовала 150 кг раствора, а вторая – 200кг. Через 3 ч работы в первой бригаде осталось раствора в 1,5 раза больше, чем во второй. Сколько раствора привезли в каждую бригаду?
Пусть во вторую бригаду привезли $x$ кг раствора цемента, тогда в первую бригаду привезли $x-50$ кг. Через 3 часа работы у первой бригады осталось $x-50-3cdot 150$ кг цемента, а у второй $x-3cdot 200$ кг.
По условию известно, что через 3 часа работы в первой бригаде осталось в 1,5 раза больше цемента, чем во второй, тогда имеем:
$$x-50-3cdot 150=1,5(x-3cdot 200)$$
Осталось решить данное уравнение относительно $x$ и истолковать ответ.
Упростим и раскроем скобки в правой части, тогда получим:
Если вам неудобно работать с десятичными дробями, то вы всегда можете их переводить в рациональный вид: $1,5=frac=frac$.
Запишем с учётом перевода дробей и упростим:
Перенесём слагаемые содержащие переменную в правую сторону, а всё остальное в левую:
Домножим обе части на 2 и получим ответ:
Ответ.
В качестве переменной в задаче мы взяли $x$ (кол-во кг цемента который привезли во вторую бригаду), по условию в первую привезли на 50 кг меньше, а значит $x-50$
Кол-во цемента в первой бригаде: $800-50=750$ кг.
Кол-во цемента во второй бригаде: $800$ кг.
Видео:Алгебра 7 класс (Урок№43 - Решение линейных уравнений с одним неизвестным.)Скачать
Задачи для самостоятельного решения
По контракту работникам причитается 48 франков за каждый отработанный день, а за каждый неотработанный день с них вычитается по 12 франков. Через 30 дней выяснилось, что работникам ничего не причитается. Сколько дней они отработали в течение этих 30 дней?
Пусть работники отработали $n$ дней, тогда $30-n$ дней они не отработали.
В итоге мы понимаем, что за $n$ рабочих дней они зарабатывают $48n$ франков и с них вычитается за $30-n$ не отработанных дней по $12(30-n)$ франков. Тогда ясно, что: $48n-12(30-n)=0$
Ответ: Рабочие отработали 6 дней.
Кирпич весит фунт и полкирпича. Сколько фунтов весит кирпич?
Пусть целый кирпич весит весит $k$ фунтов, тогда имеем:
1 фунт и половина кирпича = целый кирпич.
Бутылка с пробкой стоит 10 копеек, причем бутылка на 9 копеек дороже пробки. Сколько стоит бутылка без пробки?
Пусть бутылка стоит $b$ копеек, а пробка $p$ копеек, тогда:
$b+p=10$ и $b=p+9$, подставив значение $b$ в первое равенство — получим:
Т.е пробка стоит пол копейки, тогда бутылка $9,5$ копеек.
Ответ: 9,5 копеек стоит бутыка без пробки.
На свитер, шапку и шарф израсходовали 555 г шерсти, причем на шапку ушло в 5 раз меньше шерсти, чем на свитер, и на 5 г больше, чем на шарф. Сколько шерсти израсходовали на каждое изделие?
Пусть на свитер потратили $5x$ г шерсти, тогда на шапку ушло $x$ г и на шарф потребовалось $x-5$ г, имеем:
Ответ: На шапку ушло $80$ г, на свитер $5cdot 80=400$ г, на шарф $80-5=75$ г.
Три пионерских звена собрали для школьной библиотеки 65 книг. Первое звено собрало на 10 книг меньше, чем второе, а третье — 30% того числа книг, которое собрали первое и второе звено вместе. Сколько книг собрало каждое звено?
Пусть второе звено собрало $x$ книг, тогда первое собрало $x-10$ книг, а третье $0,3(2x-10)$, имеем:
$$2x-10+0,3cdot 2x-0,3cdot 10=65$$
$$2x+0,3cdot 2x=65+10+0,3cdot 10$$
Ответ: Первое звено собрало $30-10=20$ книг, второе $30$ книг, третье $0,3(60-10)=15$ книг.
🎥 Видео
Как Решать Задачи по Химии // Задачи с Уравнением Химической Реакции // Подготовка к ЕГЭ по ХимииСкачать
Решение задач с помощью уравнений. Видеоурок 29. Математика 6 классСкачать
ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать
РЕШЕНИЕ ЗАДАЧ С ПОМОЩЬЮ УРАВНЕНИЙ. §3 алгебра 7 классСкачать
Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать
Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Алгебра 7 Линейное уравнение с одной переменнойСкачать
Линейное уравнение с двумя переменными. 7 класс.Скачать
Линейное уравнение с одной переменной. 6 класс.Скачать
Как решать дробно-рациональные уравнения? | МатематикаСкачать
Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать
Линейное уравнение с одним неизвестным.Скачать
АЛГЕБРА 7 класс : Решение задач с помощью уравнений | ВидеоурокСкачать
Алгебра.7 класс (Урок№42 - Уравнения первой степени с одним неизвестным.)Скачать