п.1. Метод подстановки
Вариант 1
Шаг 1. Из одного уравнения выразить y через x: y(x).
Шаг 2. Подставить полученное выражение во второе уравнение и найти x.
Шаг 3. Подставить найденный x в y(x) и найти y.
Шаг 4. Записать полученные пары решений. Работа завершена.
Вариант 2
Шаг 1. Из одного уравнения выразить x через y: x(y).
Шаг 2. Подставить полученное выражение во второе уравнение и найти y.
Шаг 3. Подставить найденный y в x(y) и найти x.
Шаг 4. Записать полученные пары решений. Работа завершена.
п.2. Метод сложения
п.3. Метод замены переменных
Иногда удобно ввести новые переменные и решить систему для них.
А затем, вернуться к исходным переменным и найти их значения.
п.4. Графический метод
Графический метод подробно рассмотрен в §15 данного справочника.
п.5. Примеры
Пример 1. Решите систему уравнений:
а) ( left< begin mathrm & \ mathrm & endright. )
Решаем методом подстановки: ( left< begin mathrm & \ mathrm & endright. )
Для нижнего уравнения: ( mathrm )
Подставляем в верхнее уравнение: ( mathrm )
б) ( left< begin mathrm & \ mathrm & endright. )
Замена переменных: ( left< begin mathrm & \ mathrm & endright. )
Выразим (x 2 + y 2 ) через a и b:
x 2 + y 2 = (x 2 + y 2 + 2xy) – 2xy = (x + y) 2 – 2xy = a 2 – 2b
Подставляем: ( left< begin mathrm & \ mathrm & endright.Rightarrow left< begin mathrm & \ mathrm & endright. )
Решаем нижнее уравнение: 2b 2 – 9b + 10 = 0 $$ mathrm< D=9^2-4cdot 2cdot 10=1, b=frac> = left[begin mathrm & \ mathrm & endright. $$ Возвращаемся к исходным переменным: ( left[begin left<begin mathrm & \ mathrm & endright.& \ left<begin mathrm & \ mathrm & endright. endright. )
Видео:Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать
Системы уравнений
Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:
x — 4y = 2 | |
3x — 2y = 16 |
Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.
Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.
Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать
Способ подстановки
Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.
Рассмотрим решение системы уравнений:
x — 4y = 2 | |
3x — 2y = 16 |
Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:
Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:
3x | — 2y = 16; |
3( 2 + 4y ) | — 2y = 16. |
Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.
3(2 + 4y) — 2y = 16; |
6 + 12y — 2y = 16; |
6 + 10y = 16; |
10y = 16 — 6; |
10y = 10; |
y = 10 : 10; |
y = 1. |
Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:
x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.
Видео:Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать
Способ сравнения
Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.
Например, для решение системы:
x — 4y = 2 | |
3x — 2y = 16 |
найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):
x — 4y = 2 | 3x — 2y = 16 |
-4y = 2 — x | -2y = 16 — 3x |
y = (2 — x) : — 4 | y = (16 — 3x) : -2 |
Составляем из полученных выражений уравнение:
2 — x | = | 16 — 3x |
-4 | -2 |
Решаем уравнение, чтобы узнать значение x:
| ||||||
2 — x = 32 — 6x | ||||||
—x + 6x = 32 — 2 | ||||||
5x = 30 | ||||||
x = 30 : 5 | ||||||
x = 6 |
Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:
x — 4y = 2 | 3x — 2y = 16 |
6 — 4y = 2 | 3 · 6 — 2y = 16 |
-4y = 2 — 6 | -2y = 16 — 18 |
-4y = -4 | -2y = -2 |
y = 1 | y = 1 |
Видео:Решение сложных уравнений 4-5 класс.Скачать
Способ сложения или вычитания
Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.
x — 4y = 2 | |
3x — 2y = 16 |
Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:
x — 4y = 2 | |
-6x + 4y = -32 |
Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:
+ | x — 4y = 2 |
-6x + 4y = -32 | |
-5x = -30 |
Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.
Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.
Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:
(x — 4y) · 3 = 2 · 3
3x — 12y = 6 | |
3x — 2y = 16 |
Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:
— | 3x — 12y = 6 |
3x — 2y = 16 | |
-10y = -10 |
Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:
3x — 2y = 16 |
3x — 2 · 1 = 16 |
3x — 2 = 16 |
3x = 16 + 2 |
3x = 18 |
x = 18 : 3 |
x = 6 |
Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:
Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.
Видео:Решение уравнений на умножение и деление.Скачать
Простые уравнения на умножение и деление. 2 класс.
Большие затруднения для младшего школьника вызывает умение решать данный вид уравнений.
Мы уже знаем, что простые уравнения – это равенства, где есть одна переменная (неизвестное число).
Во 2 классе дети учатся решать простые уравнения на умножение и деление (5 • х = 10, х: 3 = 12, 12 : х = 4)
Для решения этих уравнений правила о части и целом использовать нельзя, потому что второй множитель (х • 3 = 12) — это не часть, а число равных частей, на которое разбили целое.
Сегодня мы рассмотрим несколько вариантов решения:
- Как никогда не путаться в выборе действий.
Если вы видите уравнение х: 4 = 8 и сомневаетесь, нужно х = 8 • 4 или х = 8 : 4, поступайте так: пишите на черновике простой пример на то действие, которое хочет вас запутать. Действие у нас – деление. Давайте напишем 6 : 2 = 3 и закроем число, которое в нашем уравнении неизвестно — это первое число, значит, закрываем число 6. И как шестерку найти, имея 2 и 3? Надо – перемножить тройку с двойкой. Значит, и в нашем уравнении нужно перемножать числа, но никак не делить:
Этот способ выручает, когда мы решаем вот такие уравнения: 4857 + у = 10208.
Большие числа часто пугают, а они живут по тем же законам, что и маленькие числа. Поэтому пишем, например 4 + 1 = 5. И закрываем число 1. Чтобы его найти, нужно из 5-и вычесть 1. Значит, 10208 – 4857:
у = 10208 — 4857
у = 5351
2. Зная правила нахождения стороны и площади прямоугольника.
3. Используя взаимосвязи между компонентами действий.
Этот способ необходим при ответе у доски.
Ученики младших классов обязаны овладеть математической речью, а для этого нужно знать, как называются компоненты при различных действиях:
Слагаемое, слагаемое, сумма.
Уменьшаемое, вычитаемое, разность.
Множитель, множитель, произведение.
Делимое, делитель, частное.
Например, в решении уравнения x • 3 = 6 объясняем так: чтобы найти первый множитель, надо значение произведения разделить на второй множитель.
В уравнении неизвестно слагаемое:
чтобы найти второе слагаемое, надо из суммы вычесть первое слагаемое:
4. Использование памятки:
х + 6 = 124 х – 3 = 71 х × 3 = 183 х : 2 = 15 | Если переменная х находится вначале уравнения, то находи ее действием, противоположным тому, что в уравнении. То есть для сложения – вычитанием и наоборот. Для умножения – делением и наоборот. |
12 + х = 138 146 – х = 59 30 × х = 3000 500 : х = 4 | Если х находится посередине уравнения, то или вычитай, или дели. |
Использовать памятку – самый простой и легкий способ решать простые уравнения правильно.
Данная памятка – результат многолетней работы в школе.
Поэтому вы можете ее скачать, распечатать и постоянно ей пользоваться.
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.9 / 5. Количество оценок: 75
🔍 Видео
Сложные уравнения. Как решить сложное уравнение?Скачать
РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать
Простые уравнения. Как решать простые уравнения?Скачать
Умножение, деление и сложение дробей #математика #алгебра #дроби #5классСкачать
Решение систем уравнений методом сложенияСкачать
Уравнения со скобками - 5 класс (примеры)Скачать
Теория: Как решать простые уравнение с одним неизвестным (умножение)Скачать
УРАВНЕНИЕ 4 КЛАСС МАТЕМАТИКА УЧИМСЯ РЕШАТЬ УРАВНЕНИЯ МЕТОДИКА ОБУЧЕНИЯ РЕШАЕМ УРАВНЕНИЯ #уравнениеСкачать
Раскрытие скобок. 6 класс.Скачать
Уравнения. 5 классСкачать
Математика 3 класс (Урок№45 - Уравнения на основе связи между результатами и компонентами "." и ":")Скачать
Сложение и вычитание многочленов. Алгебра, 7 классСкачать
Уравнение. 5 класс.Скачать
Решение систем уравнений методом сложенияСкачать
Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать