Как решать уравнения с треугольниками

Уравнения сторон треугольника

Как составить уравнение сторон треугольника по координатам его вершин?

Зная координаты вершин треугольника, можно составить уравнение прямой, проходящей через 2 точки.

Дано: ΔABC, A(-5;1), B(7;-4), C(3;7)

Составить уравнения сторон треугольника.

1) Составим уравнение прямой AB, проходящей через 2 точки A и B.

Для этого в уравнение прямой y=kx+b подставляем координаты точек A(-5;1), B(7;-4) и из полученной системы уравнений находим k и b:

Как решать уравнения с треугольниками

Таким образом, уравнение стороны AB

Как решать уравнения с треугольниками

2) Прямая BC проходит через точки B(7;-4) и C(3;7):

Как решать уравнения с треугольниками

Отсюда уравнение стороны BC —

Как решать уравнения с треугольниками

3) Прямая AC проходит через точки A(-5;1) и C(3;7):

Видео:Подобие треугольников. Признаки подобия треугольников (часть 1) | МатематикаСкачать

Подобие треугольников. Признаки подобия треугольников (часть 1) | Математика

Решить треугольник Онлайн по координатам

1) длины и уравнения сторон, медиан, средних линий, высот, серединных перпендикуляров, биссектрис;

2) система линейных неравенств, определяющих треугольник;

2) уравнения прямых, проходящих через вершины параллельно противолежащим сторонам;

3) внутренние углы по теореме косинусов;

4) площадь треугольника;

5) точка пересечения медиан (центроид) и точки пересечения медиан со сторонами;

10) параметры вписанной и описанной окружностей и их уравнения.

Внимание! Этот сервис не работает в браузере IE (Internet Explorer).

Запишите координаты вершин треугольника и нажмите кнопку.

A ( ; ), B ( ; ), C ( ; )

Примечание: дробные числа записывайте
через точку, а не запятую.

Округлять до -го знака после запятой.

Видео:Уравнения стороны треугольника и медианыСкачать

Уравнения стороны треугольника и медианы

Решение задач по геометрии 7 класс, объяснение тем, объяснение задач

В 7 классе ученики начинают изучать новый предмет — геометрию. До этого они уже знакомились с некоторыми геометрическими понятиями, но не так подробно. Чтобы в дальнейшем не возникали трудности с усвоением информации, следует с самого начала усвоить основные моменты: уметь различать типы фигур, знать основные их свойства, выучить теоремы, признаки фигур. В 7 классе изучаются простейшие объекты: точка, луч, отрезок, прямая и т.д. Кроме этого, в учебниках подробно рассматривается треугольник.

Чтобы помочь ученику с усвоением основных тем по геометрии, ниже рассмотрено их содержание, представлены рисунки фигур и задачи по темам треугольников.

Видео:Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие ТреугольниковСкачать

Как ПОНЯТЬ ГЕОМЕТРИЮ за 5 минут — Подобие Треугольников

Основные темы по геометрии 7 класс

Ученику 7 класса предстоит познакомиться со следующими основными разделами учебника по геометрии:

Видео:КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | МатематикаСкачать

КАК РЕШАТЬ ЗАДАЧИ ПО ГЕОМЕТРИИ? | Математика

Геометрия 7 класс объяснение основных тем, понятно для детей

первые геометрические объекты

Начать стоит с самого понятия «геометрия». С древнегреческого слово переводится как земля и измерение. Эта древнейшая наука, которая появилась в связи с необходимостью строить здания, дороги, измерять объекты и прокладывать границы.

Как решать уравнения с треугольниками

Как решать уравнения с треугольниками

О равных треугольниках. Равнобедренный треугольник

Треугольником принято считать фигуру, которая состоит из 3-х точек. Причем точки эти не должны лежать на одной прямой, а соединяются они отрезками.

Сумма всех углов в треугольнике равняется 180º. Знание этого факта пригодится при решении задач на нахождение углов.

Треугольники можно различать по двум признакам: размеру сторон и размеру углов.

Как решать уравнения с треугольниками
Если один треугольник (назовем его CFD) наложить на другой (C1F1D1) и они будут соответствовать друг другу, то треугольники равны. У равных фигур все элементы равны.

Чтобы понять, равны ли треугольники, познакомимся с признаками равенства этих фигур.

Как решать уравнения с треугольниками

Как решать уравнения с треугольниками

Как решать уравнения с треугольниками

Остановимся отдельно на равнобедренных треугольниках. Если 2 стороны треугольники равны, то его называют равнобедренным.

На заметку! Если равны все стороны, а не только две, то треугольник уже равносторонний, а не равнобедренный.

Как решать уравнения с треугольниками

Как решать уравнения с треугольникамиИсходя из этого, можно выделить признаки равнобедренного треугольника. Треугольник равнобедренный, если:

  • 2 угла в нем равны;
  • биссектриса одновременно является высотой и медианой;
  • медиана — биссектриса и высота;
  • высота, соответственно — медиана и биссектриса.

Как решать уравнения с треугольникамиЕсли взять треугольник неравнобедренный, то эти три составляющие (высота, биссектриса и медиана) не будут совпадать (это четко прослеживается на рисунке ниже).

Как решать уравнения с треугольниками

параллельные прямые

Как решать уравнения с треугольникамиЕсли на тетрадном листе кажется, что прямые параллельны, но имеется небольшой уклон, то вполне вероятно, что за пределами листа (ведь они бесконечны), прямые пересекутся.

Чтобы понять, параллельны ли прямые, нужно усвоить 3 основных признака.

Как решать уравнения с треугольникамиПоказать параллельность прямых а и б можно так: а ΙΙ б.

прямоугольный треугольник и его свойства

Прямоугольным называют треугольник, в котором один из углов равен 90º. Рассмотрим название сторон такой фигуры.

Как решать уравнения с треугольниками

Как решать уравнения с треугольниками

Видео:Признаки равенства треугольников | теорема пифагора | Математика | TutorOnlineСкачать

Признаки равенства треугольников | теорема пифагора | Математика | TutorOnline

Геометрия 7 класс задача по теме треугольники, пояснение решения задач

Решим несколько задач про треугольники:

  • нахождение периметра;
  • доказательство равенства треугольников.

Как решать уравнения с треугольникамиЧтобы найти периметр в представленной задаче, нашли сперва неизвестные стороны. Потом просто сложили полученные значения.

Как решать уравнения с треугольникамиДля этой задачи понадобилось знание признаков равенства треугольников.

Как решать уравнения с треугольникамиДля решения задачи понадобится знание признаков равнобедренного треугольника. Так, можно утверждать, что в треугольнике сторона АС и АВ равны, как и СМ и МВ. Поскольку периметр — это сумма всех сторон, получается, что сумму периметра АВМ можно записать сложением АВ, ВМ и АМ (ее как раз нужно найти).

Сумму периметра АВС также записали с помощью сложения сторон. Затем упростили это сложение, записав: 32 = 2 АВ + 2 ВМ (так как АВ и АС равны — равнобедренный треугольник; ВМ и СМ тоже равны). Потом эту запись сократили, разделив на 2.

Вышло, что сумма двух сторон равна 16 см. Остается найти третью сторону (АМ). Она входит в треугольник АВМ, периметр которого равен 24 см. Тогда, чтобы найти третью сторону (АМ, нужно просто 24 отнять 16, вышло 8 см. В примере подставили в уравнение, чтобы не запутаться.

Решим задачу на нахождение угла в треугольнике.

Чтобы найти угол С в задаче потребовалось узнать, чему равен угол В. По условиям известно, что внешний В равняется 110º. Знаем, что развернутый угол равняется 180º (это внешний и внутренний угол В в сумме). Поэтому от 180 отнимаем 110. Получается угол В = 70º.

Треугольник равнобедренный, значит углы при основании одинаковые ⇒ угол В = углу А = 70º.

Поскольку сумма углов треугольника равна 180º (по правилу), значит угол С = 180 — углы А и В = 180 — 70 — 70 = 40°.

Как решать уравнения с треугольниками

Как решать уравнения с треугольникамиЗадачи на второй и третий признак равенства треугольников подробно представлено в видео-уроке.

Видео:Треугольники. Практическая часть - решение задачи. 7 класс.Скачать

Треугольники. Практическая часть - решение задачи. 7 класс.

Геометрия 7 класс тест по теме треугольник

Закрепим материал по треугольникам, решив несколько тестовых заданий.

  1. Как называется сумма всех сторон в треугольнике?

а) площадь;
б) периметр;
в) медиана

2. Треугольник называется равнобедренным, если:

а) у него есть основание;
б) все стороны равны;
в) две стороны равны

3. Если в равнобедренном треугольнике к основанию провести высоту, то чем еще она будет являться?

а) биссектрисой;
б) медианой;
в) медианой и биссектрисой;
г) только высотой

4. Сколько всего признаков равенства треугольников?

5. В треугольнике можно провести ___ медиан (-ы)

а) одну;
б) множество;
в) три;
г) две

6. Как называются стороны прямоугольного треугольника, которые образуют угол 90º?

а) гипотенузы;
б) катеты;
в) высоты

7. Про что гласит 3-й признак равенства треугольников?

а) про стороны;
б) про сторону и углы;
в) про угол и стороны

8. Под каким углом в любом треугольнике проходит высота?

а) это зависит от вида треугольника
б) под углом 45 градусов;
в) 90 градусов

9. По каким признакам различаются виды треугольников?

а) по размеру сторон;
б) по размеру углов;
в) по размеру сторон и углов;
г) по периметру и площади

10. Чему равна сумма двух острых углов прямоугольного треугольника?

а) 90 градусов;
б) 180 градусов;
в) 60 градусов

Ответы: 1 — б; 2 — в; 3 — в; 4 — б; 5 — в; 6 — б; 7 — а; 8 — в; 9 — в; 10 — а.

Видео:Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnlineСкачать

Равнобедренный треугольник. Свойства равнобедренного треугольника | Математика | TutorOnline

7 класс геометрия сложная тема, разъяснить подробно для детей

Решим более сложную задачу, где есть и доказательство равенства треугольников, и поиск углов. Алгоритм решения задачи:

Шаг 1. Начертим, согласно условиям. Дается треугольник АВС, в котором провели медиану (вспоминаем, что медиана делит сторону пополам). В нашей задаче медиана AD уходит за пределы треугольника, создавая дополнительный отрезок DE (он равен AD). Получился треугольник, из которого проведена медиана.

Шаг 2. Первая задача — доказать равенство треугольников ABD и ECD: соединим точку Е и С, чтобы получился треугольник.

Шаг 3. По условиям AD и DE равны (одна сторона треугольника равна другой стороне ⇒ AD = DE

Шаг 4. Получается BD = DC, так как медиана разделила BC пополам (выходит, еще одни стороны треугольников равны).

Шаг 5. Рассмотрим углы между сторонами (на рис. обозначены цифрами 1 и 2). Они вертикальные, так как образовались двумя прямыми. Следовательно, они равны.

Из первого признака равенства треугольников знаем, что если 2 стороны и угол между этими сторонами одного треугольника равен этим показателям во втором, то они равные. Пункт а доказан. Переходим к б.

Шаг 1. Нам нужно найти угол АСЕ. Из рисунка видно, что он состоит из 2-х маленьких углов, получается: угол АСЕ равен сумме углов DCA и DCE.

Шаг 2. По условиям мы знаем, чему равен DCA, осталось найти второй. Так как равенство треугольников доказали, значит воспользуемся правилом: напротив равных сторон треугольников лежат и равные углы. AD напротив ABD; DE напротив DCE. Выходит: угол ABD = углу DCE = 40 градусам (по условию).

Шаг 3. Маленькие углы известны, найдем тот, который требуется: угол ACE = 56º + 40º = 96º.

Равенство доказали, угол нашли. Задание выполнено.

Как решать уравнения с треугольниками

Еще пара видеороликов про решение задачи с прямоугольным треугольником, а также вся геометрия за 7 класс в одной задаче.

🎥 Видео

Задача, которую исключили из экзамена в АмерикеСкачать

Задача, которую исключили из экзамена в Америке

ТРЕУГОЛЬНИК ПАСКАЛЯ, В УРАВНЕНИЯХСкачать

ТРЕУГОЛЬНИК ПАСКАЛЯ, В УРАВНЕНИЯХ

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnlineСкачать

Все про прямоугольный треугольник. Решаем задачи | Математика | TutorOnline

9 класс, 15 урок, Решение треугольниковСкачать

9 класс, 15 урок, Решение треугольников

Как подготовиться к профилю за 5 месяцев? | Дмитрий НадежныйСкачать

Как подготовиться к профилю за 5 месяцев? | Дмитрий Надежный

Подобие треугольников (ч.2) | Математика | TutorOnlineСкачать

Подобие треугольников (ч.2) | Математика | TutorOnline

Советская олимпиада, которую сегодня решить только 2 школьниковСкачать

Советская олимпиада, которую сегодня решить только 2 школьников

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | МатематикаСкачать

ТЕОРЕМА СИНУСОВ И ТЕОРЕМА КОСИНУСОВ. Тригонометрия | Математика

Синус, косинус, тангенс, котангенс за 5 МИНУТСкачать

Синус, косинус, тангенс, котангенс за 5 МИНУТ

Сумма углов треугольника. Геометрия 7 класс | МатематикаСкачать

Сумма углов треугольника. Геометрия 7 класс | Математика

Решение задач на тему "Подобные треугольники". 8 классСкачать

Решение задач на тему "Подобные треугольники". 8 класс

Признаки равенства треугольников. Практическая часть. 7 класс.Скачать

Признаки равенства треугольников. Практическая часть. 7 класс.

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построениеСкачать

7 класс Атанасян. Вся геометрия за 100 минут. Треугольник, окружность, задачи на построение
Поделиться или сохранить к себе: