Как решать уравнения с шестой степенью

Решение уравнений высших степеней

В общем случае уравнение, имеющее степень выше 4 , нельзя разрешить в радикалах. Но иногда мы все же можем найти корни многочлена, стоящего слева в уравнении высшей степени, если представим его в виде произведения многочленов в степени не более 4 -х. Решение таких уравнений базируется на разложении многочлена на множители, поэтому советуем вам повторить эту тему перед изучением данной статьи.

Чаще всего приходится иметь дело с уравнениями высших степеней с целыми коэффициентами. В этих случаях мы можем попробовать найти рациональные корни, а потом разложить многочлен на множители, чтобы потом преобразовать его в уравнение более низкой степени, которое будет просто решить. В рамках этого материала мы рассмотрим как раз такие примеры.

Видео:Изящное решение сурового уравнения 6 степени. Возвратное степенное уравнение. Задачи на даче-14Скачать

Изящное решение сурового уравнения 6 степени. Возвратное степенное уравнение. Задачи на даче-14

Уравнения высшей степени с целыми коэффициентами

Все уравнения, имеющие вид a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 , мы можем привести к уравнению той же степени с помощью умножения обеих частей на a n n — 1 и осуществив замену переменной вида y = a n x :

a n x n + a n — 1 x n — 1 + . . . + a 1 x + a 0 = 0 a n n · x n + a n — 1 · a n n — 1 · x n — 1 + … + a 1 · ( a n ) n — 1 · x + a 0 · ( a n ) n — 1 = 0 y = a n x ⇒ y n + b n — 1 y n — 1 + … + b 1 y + b 0 = 0

Те коэффициенты, что получились в итоге, также будут целыми. Таким образом, нам нужно будет решить приведенное уравнение n-ной степени с целыми коэффициентами, имеющее вид x n + a n x n — 1 + … + a 1 x + a 0 = 0 .

Видео:Уравнение 6 степени | Профильная математикаСкачать

Уравнение 6 степени | Профильная математика

Схема решения уравнения

Вычисляем целые корни уравнения. Если уравнение имеет целые корни, нужно искать их среди делителей свободного члена a 0 . Выпишем их и будем подставлять в исходное равенство по очереди, проверяя результат. Как только мы получили тождество и нашли один из корней уравнения, то можем записать его в виде x — x 1 · P n — 1 ( x ) = 0 . Здесь x 1 является корнем уравнения, а P n — 1 ( x ) представляет собой частное от деления x n + a n x n — 1 + … + a 1 x + a 0 на x — x 1 .

Подставляем остальные выписанные делители в P n — 1 ( x ) = 0 , начав с x 1 , поскольку корни могут повторяться. После получения тождества корень x 2 считается найденным, а уравнение может быть записано в виде ( x — x 1 ) ( x — x 2 ) · P n — 2 ( x ) = 0 .Здесь P n — 2 ( x ) будет частным от деления P n — 1 ( x ) на x — x 2 .

Продолжаем и дальше перебирать делители. Найдем все целые корни и обозначим их количество как m . После этого исходное уравнение можно представить как x — x 1 x — x 2 · … · x — x m · P n — m ( x ) = 0 . Здесь P n — m ( x ) является многочленом n — m -ной степени. Для подсчета удобно использовать схему Горнера.

Если у нас исходное уравнение имеет целые коэффициенты, мы не можем получить в итоге дробные корни.

У нас в итоге получилось уравнение P n — m ( x ) = 0 , корни которого могут быть найдены любым удобным способом. Они могут быть иррациональными или комплексными.

Покажем на конкретном примере, как применяется такая схема решения.

Условие: найдите решение уравнения x 4 + x 3 + 2 x 2 — x — 3 = 0 .

Решение

Начнем с нахождений целых корней.

У нас есть свободный член, равный минус трем. У него есть делители, равные 1 , — 1 , 3 и — 3 . Подставим их в исходное уравнение и посмотрим, какие из них дадут в итоге тождества.

При x , равном единице, мы получим 1 4 + 1 3 + 2 · 1 2 — 1 — 3 = 0 , значит, единица будет корнем данного уравнения.

Теперь выполним деления многочлена x 4 + x 3 + 2 x 2 — x — 3 на ( х — 1 ) в столбик:

Как решать уравнения с шестой степенью

Значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

Перебираем возможные делители дальше, но подставляем их в равенство x 3 + 2 x 2 + 4 x + 3 = 0 :

1 3 + 2 · 1 2 + 4 · 1 + 3 = 10 ≠ 0 ( — 1 ) 3 + 2 · ( — 1 ) 2 + 4 · — 1 + 3 = 0

У нас получилось тождество, значит, мы нашли еще один корень уравнения, равный — 1 .

Делим многочлен x 3 + 2 x 2 + 4 x + 3 на ( х + 1 ) в столбик:

Как решать уравнения с шестой степенью

x 4 + x 3 + 2 x 2 — x — 3 = ( x — 1 ) ( x 3 + 2 x 2 + 4 x + 3 ) = = ( x — 1 ) ( x + 1 ) ( x 2 + x + 3 )

Подставляем очередной делитель в равенство x 2 + x + 3 = 0 , начиная с — 1 :

— 1 2 + ( — 1 ) + 3 = 3 ≠ 0 3 2 + 3 + 3 = 15 ≠ 0 ( — 3 ) 2 + ( — 3 ) + 3 = 9 ≠ 0

Равенства, полученные в итоге, будут неверными, значит, у уравнения больше нет целых корней.

Оставшиеся корни будут корнями выражения x 2 + x + 3 .

D = 1 2 — 4 · 1 · 3 = — 11 0

Из этого следует, что у данного квадратного трехчлена нет действительных корней, но есть комплексно сопряженные: x = — 1 2 ± i 11 2 .

Уточним, что вместо деления в столбик можно применять схему Горнера. Это делается так: после того, как мы определили первый корень уравнения, заполняем таблицу.

x iкоэффициенты многочлена
112— 1— 3
111 + 1 · 1 = 22 + 2 · 1 = 4— 1 + 4 · 1 = 3— 3 + 3 · 1 = 0

В таблице коэффициентов мы сразу можем увидеть коэффициенты частного от деления многочленов, значит, x 4 + x 3 + 2 x 2 — x — 3 = x — 1 x 3 + 2 x 2 + 4 x + 3 .

После нахождения следующего корня, равного — 1 , мы получаем следующее:

x iкоэффициенты многочлена
1243
112 + 1 · ( — 1 ) = 14 + 1 · ( — 1 ) = 33 + 3 · ( — 1 ) = 0

Далее мы приходим к разложению x — 1 x + 1 x 2 + x + 3 = 0 . Потом, проверив оставшиеся делители равенства x 2 + x + 3 = 0 , вычисляем оставшиеся корни.

Ответ: х = — 1 , х = 1 , x = — 1 2 ± i 11 2 .

Условие: решите уравнение x 4 — x 3 — 5 x 2 + 12 = 0 .

Решение

У свободного члена есть делители 1 , — 1 , 2 , — 2 , 3 , — 3 , 4 , — 4 , 6 , — 6 , 12 , — 12 .

Проверяем их по порядку:

1 4 — 1 3 — 5 · 1 2 + 12 = 7 ≠ 0 ( — 1 ) 4 — ( — 1 ) 3 — 5 · ( — 1 ) 2 + 12 = 9 ≠ 0 2 4 · 2 3 — 5 · 2 2 + 12 = 0

Значит, x = 2 будет корнем уравнения. Разделим x 4 — x 3 — 5 x 2 + 12 на х — 2 , воспользовавшись схемой Горнера:

x iкоэффициенты многочлена
1— 1— 5012
21— 1 + 1 · 2 = 1— 5 + 1 · 2 = — 30 — 3 · 2 = 312 — 6 · 2 = 0

В итоге мы получим x — 2 ( x 3 + x 2 — 3 x — 6 ) = 0 .

Проверяем делители дальше, но уже для равенства x 3 + x 2 — 3 x — 6 = 0 , начиная с двойки.

2 3 + 2 2 — 3 · 2 — 6 = 0

Значит, 2 опять будет корнем. Разделим x 3 + x 2 — 3 x — 6 = 0 на x — 2 :

x iкоэффициенты многочлена
11— 3— 6
211 + 1 · 2 = 3— 3 + 3 · 2 = 3— 6 + 3 · 2 = 0

В итоге получим ( x — 2 ) 2 · ( x 2 + 3 x + 3 ) = 0 .

Проверка оставшихся делителей смысла не имеет, поскольку равенство x 2 + 3 x + 3 = 0 быстрее и удобнее решить с помощью дискриминанта.

Решим квадратное уравнение:

x 2 + 3 x + 3 = 0 D = 3 2 — 4 · 1 · 3 = — 3 0

Получаем комплексно сопряженную пару корней: x = — 3 2 ± i 3 2 .

Ответ: x = — 3 2 ± i 3 2 .

Условие: найдите для уравнения x 4 + 1 2 x 3 — 5 2 x — 3 = 0 действительные корни.

Решение

x 4 + 1 2 x 3 — 5 2 x — 3 = 0 2 x 4 + x 3 — 5 x — 6 = 0

Выполняем домножение 2 3 обеих частей уравнения:

2 x 4 + x 3 — 5 x — 6 = 0 2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0

Заменяем переменные y = 2 x :

2 4 · x 4 + 2 3 x 3 — 20 · 2 · x — 48 = 0 y 4 + y 3 — 20 y — 48 = 0

В итоге у нас получилось стандартное уравнение 4 -й степени, которое можно решить по стандартной схеме. Проверим делители, разделим и получим в итоге, что оно имеет 2 действительных корня y = — 2 , y = 3 и два комплексных. Решение целиком здесь мы не будем приводить. В силу замены действительными корнями данного уравнения будут x = y 2 = — 2 2 = — 1 и x = y 2 = 3 2 .

Ответ: x 1 = — 1 , x 2 = 3 2

Советуем также ознакомиться с материалами, посвященными решению кубических уравнений и уравнений четвертой степени.

Видео:ОГЭ . Математика. Задание 21. Уравнение с 6-ой степенью.Скачать

ОГЭ . Математика. Задание 21. Уравнение с 6-ой степенью.

Об уравнениях высших степеней

Как решать уравнения с шестой степенью

Как правило в физике, информатике и экономике мы сталкиваемся с простейшими линейными, или дробно-рациональными уравнениями, реже с квадратными. А что до уравнений третьей и четвёртой степени? Если вам интересно, то прошу под кат.

Для начала рассмотрим понятие уравнения высшей степени. Уравнением высшей степени, называется уравнение вида:

Как решать уравнения с шестой степенью
В этой статье я рассмотрю:

1. Кубические уравнения.
2. Возвратные кубические.
3. Применение схемы Горнера и теоремы Безу.
4. Возвратные биквадратные уравнения.

Видео:Сможешь решить уравнение пятой степени?Скачать

Сможешь решить уравнение пятой степени?

Кубические уравнения

Кубические уравнения, это уравнения, в которых у неизвестной при старшем члене степень равна 3. Кубические уравнения имеют следующий вид:

Как решать уравнения с шестой степенью

Решать такие уравнения можно по разному, однако мы воспользуемся знаниями базовой школы, и решим кубическое уравнение методом группировки:

Как решать уравнения с шестой степенью

В данном примере используется метод группировки, группируем первые два и последние два члена, получая равные скобки, снова выносим, получая уравнение из двух скобок.

Произведение равно нулю тогда, и только тогда, если хотя бы один из множителей равен нулю, на основании этого мы каждый множитель (скобку) приравниваем к нулю, получая неполное квадратное и линейное уравнения.

Также стоит отметить, что максимальное количество корней уравнения, равно степени неизвестной при главном члене, так в кубическом уравнении может быть не более трёх корней, в биквадратном (4-ой степени) не более четырёх корней и. т. д.

Видео:Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | НаучпопСкачать

Можно ли решить уравнение 5-й степени? – математик Алексей Савватеев | Научпоп

Возвратные кубические уравнения

Возвратные кубические уравнения имеют вид:

Как решать уравнения с шестой степенью

Возвратными они называются потому что коэффициенты будут зеркально повторяться. Подобные уравнения тоже решаются школьными методами, но чуть хитрее:

Как решать уравнения с шестой степенью

Сначала производится группировка, потом при помощи формул сокращённого умножения мы раскладываем получаемое на множители. Снова получаем 2 равные скобки, «выносим их». Получаем два множителя (скобки) и решаем их как два различных уравнения.

Видео:Как решать уравнения высших степеней, очень лёгкий способ!!!Скачать

Как решать уравнения высших степеней, очень лёгкий способ!!!

Теорема Безу и схема Горнера

Теорема Безу была открыта, как ни удивительно, Этьеном Безу, французским математиком, занимавшимся в основном алгеброй. Теорему Безу, можно сформулировать следующим образом:

Как решать уравнения с шестой степенью

Давайте разберёмся. P(x) — это какой-либо многочлен от x, (x — a) — это двучлен в котором a — это один из целых корней уравнения, который мы находим среди делителей свободного члена.

Три точки, это оператор обозначающий что одно выражение делится на другое. Из этого следует что найдя хотя бы один корень данного уравнения, мы сможем применить к нему эту теорему. Но зачем нужна эта теорема, каково её действие? Теорема Безу — это универсальный инструмент, если вы хотите понизить степень многочлена. Например, при её помощи, кубическое уравнение, можно превратить в квадратное, биквадратное, в кубическое и т. д.

Но одно дело понять, а как поделить? Можно конечно, делить и в столбик, однако этот метод доступен далеко не всем, да и вероятность ошибиться очень высока. Поэтому есть и иной путь, это схема Горнера. Её работу я поясню на примере. Предположим:

Как решать уравнения с шестой степенью

И так, нам дан многочлен, и мы возможно заранее нашли один из корней. Теперь мы рисуем небольшую табличку из 6 столбцов и 2 строк, в каждый столбец первой строки (кроме первого), мы вносим коэффициенты уравнения. А в первый столбец 2 строки мы вносим значение a (найденный корень). Потом первый коэффициент, в нашем случае 5, мы просто сносим вниз. Значения последующих столбиков мы рассчитываем так:

Как решать уравнения с шестой степенью

(Картинка позаимствована здесь)
Далее поступаем точно так же и с остальными столбцами. Значение последнего столбца (2 строки) будет остатком от деления, в нашем случае 0, если получается число отличное от 0, значит надо избрать другой подход. Пример для кубического уравнения:

Как решать уравнения с шестой степенью

Видео:Уравнение четвертой степениСкачать

Уравнение четвертой степени

Возвратные биквадратные уравнения

Выше мы так же рассматривали возвратные кубические уравнения, а теперь разберём биквадратные. Их общий вид:

Как решать уравнения с шестой степенью

В отличие от кубического возвратного уравнения, в биквадратном пары, относительно коэффициентов, есть не у всех, однако в остальном они очень схожи. Вот алгоритм решения таких уравнений:

Как решать уравнения с шестой степенью

Как видно, решать такие уравнения совсем не просто. Но я всё равно разберу и этот случай. Начинается решение с деления всего уравнения на x^2. Далее мы группируем, здесь я специально ввёл дополнительную строку для ясности. После этого мы совершаем хитрость, и вводим в первую скобку 2, которую мы сначала прибавляем, а после вычитаем, сумма всё равно не изменится, зато теперь мы можем свернуть эту скобку в квадрат суммы.

Уберём -2 из скобки, предварительно домножив его на a, после чего вводим новую переменную, t и получаем квадратное уравнение.

А теперь перейдём к примеру:

Как решать уравнения с шестой степенью

Основная часть так же как и в обобщённом алгоритме, делим на x^2, группируем, сворачиваем в полный квадрат, выполняем подстановку переменной и решаем квадратное уравнение. После этого полученные корни подставляем обратно, и решаем ещё 2 квадратных уравнения (с умножением на x).

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Область применения

В виду своей громоздкости и специфичности уравнения высших степеней редко находят себе применение. Однако примеры всё же есть, уравнение Пуассона для адиабатических процессов в Физике.

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

«Решение уравнений высших степеней». 9-й класс

Разделы: Математика

Класс: 9

Учебная:

  • Углубить знания учащихся по теме “ Решение уравнений высших степеней” и обобщить учебный материал.
  • Познакомить учащихся с приёмами решения уравнений высших степеней.
  • Научить учащихся применять теорию делимости при решения уравнений высших степеней.
  • Научить учащихся выполнять деление “уголком” многочлена на многочлен.
  • Развивать умения и навыки работы с уравнениями высших степеней.
  • Развивающая:

    1. Развитие внимания учащихся.
    2. Развитие умения добиваться результатов труда.
    3. Развитие интереса к изучению алгебры и навыков самостоятельной работы.

    Воспитывающая:

  • Воспитание чувства коллективизма.
  • Формирование чувства ответственности за результат работы.
  • Формирование у учащихся адекватной самооценки при выборе отметки за работу на уроке.
  • Оборудование: компьютер, проектор.

    1 этап работы. Организационный момент.

    2 этап работы. Мотивация и выход на постановку проблемы

    Уравнение Как решать уравнения с шестой степеньюодно из важнейших понятий математики. Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры.

    В школьном курсе изучения математики очень много внимания уделяется решению различного вида уравнений. До девятого класса мы умели решать только линейные и квадратные уравнения. Уравнения третьей, четвёртой и т.д. степеней называются уравнениями высших степеней. В девятом классе мы познакомились с двумя основными приёмами решения некоторых уравнений третьей и четвёртой степеней: разложение многочлена на множители и использование замены переменной.

    А можно ли решить уравнения более высоких степеней? На этот вопрос мы постараемся сегодня найти ответ.

    3 этап работы. Повторить ранее изученный материал. Ввести понятие уравнения высших степеней.

    1) Решение линейного уравнения.

    Линейным называется уравнение вида Как решать уравнения с шестой степенью, где Как решать уравнения с шестой степеньюпо определению. Такое уравнение имеет единственный корень Как решать уравнения с шестой степенью.

    2) Решение квадратного уравнения.

    Квадратным называется уравнение вида Как решать уравнения с шестой степенью, где Как решать уравнения с шестой степенью. Количество корней и сами корни определяются дискриминантом уравнения Как решать уравнения с шестой степенью. Для Как решать уравнения с шестой степеньюуравнение корней не имеет, для Как решать уравнения с шестой степеньюимеет один корень (два одинаковых корня)

    Как решать уравнения с шестой степенью, для Как решать уравнения с шестой степеньюимеет два различных корня Как решать уравнения с шестой степенью.

    Из рассмотренных линейных и квадратных уравнений видим, что количество корней уравнения не более его степени. В курсе высшей алгебры доказывается, что уравнение Как решать уравнения с шестой степенью-й степени Как решать уравнения с шестой степеньюимеет не более n корней. Что касается самих корней, то тут ситуация намного сложнее. Для уравнений третьей и четвёртой степеней известны формулы для нахождения корней. Однако эти формулы очень сложны и громоздки и практического применения не имеют. Для уравнений пятой и более высоких степеней общих формул не существует и существовать не может (как было доказано в XIX в. Н. Абелем и Э. Галуа).

    Будем называть уравнения третьей, четвёртой и т.д. степеней уравнениями высших степеней. Некоторые уравнения высоких степеней удаётся решить с помощью двух основных приёмов: разложением многочлена Как решать уравнения с шестой степеньюна множители или с использованием замены переменной.

    3) Решение кубического уравнения.

    Решим кубическое уравнение Как решать уравнения с шестой степенью

    Сгруппируем члены многочлена, стоящего в левой части уравнения, и разложим на множители. Получим:

    Как решать уравнения с шестой степенью

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три линейных уравнения:

    Как решать уравнения с шестой степенью

    Итак, данное кубическое уравнение имеет три корня: Как решать уравнения с шестой степенью; Как решать уравнения с шестой степенью;Как решать уравнения с шестой степенью.

    4) Решение биквадратного уравнения.

    Очень распространены биквадратные уравнения, которые имеют вид Как решать уравнения с шестой степенью(т.е. уравнения, квадратные относительно Как решать уравнения с шестой степенью). Для их решения вводят новую переменную Как решать уравнения с шестой степенью.

    Решим биквадратное уравнение Как решать уравнения с шестой степенью.

    Введём новую переменную Как решать уравнения с шестой степеньюи получим квадратное уравнение Как решать уравнения с шестой степенью, корнями которого являются числа Как решать уравнения с шестой степеньюи 4.

    Вернёмся к старой переменной Как решать уравнения с шестой степеньюи получим два простейших квадратных уравнения:

    Как решать уравнения с шестой степенью(корни Как решать уравнения с шестой степеньюи Как решать уравнения с шестой степенью)

    Как решать уравнения с шестой степенью(корни Как решать уравнения с шестой степеньюи Как решать уравнения с шестой степенью)

    Итак, данное биквадратное уравнение имеет четыре корня:

    Как решать уравнения с шестой степенью; Как решать уравнения с шестой степенью;Как решать уравнения с шестой степенью.

    Попробуем решить уравнение Как решать уравнения с шестой степеньюиспользуя выше изложенные приёмы.

    4 этап работы. Привести некоторые утверждения о корнях многочлена вида Как решать уравнения с шестой степенью, где Как решать уравнения с шестой степеньюмногочлен n-й степени

    Как решать уравнения с шестой степенью

    Приведём некоторые утверждения о корнях многочлена вида Как решать уравнения с шестой степенью:

    1) Многочлен Как решать уравнения с шестой степенью-й степени Как решать уравнения с шестой степеньюимеет не более Как решать уравнения с шестой степеньюкорней (с учётом их кратностей). Например, многочлен третьей степени не может иметь четыре корня.

    2) Многочлен нечётной степени имеет хотя бы один корень. Например, многочлены первой, третьей, пятой и т.д. степени имеют хотя бы один корень. Многочлены чётной степени корней могут и не иметь.

    3) Если на концах отрезка Как решать уравнения с шестой степеньюзначения многочлена имеют разные знаки (т.е. ,Как решать уравнения с шестой степенью), то на интервале Как решать уравнения с шестой степеньюнаходится хотя бы один корень. Это утверждение широко используется для приближенного вычисления корней многочлена.

    4) Если число Как решать уравнения с шестой степеньюявляется корнем многочлена вида Как решать уравнения с шестой степенью, то этот многочлен можно представить в виде произведения Как решать уравнения с шестой степенью, где Как решать уравнения с шестой степеньюмногочлен (Как решать уравнения с шестой степенью-й степени. Другими словами, многочлена вида Как решать уравнения с шестой степеньюможно разделить без остатка на двучлен Как решать уравнения с шестой степенью. Это позволяет уравнение Как решать уравнения с шестой степенью-й степени сводить к уравнению (Как решать уравнения с шестой степенью-й степени (понижать степень уравнения).

    5) Если уравнение Как решать уравнения с шестой степеньюсо всеми целыми коэффициентами (причём свободный член Как решать уравнения с шестой степенью) имеет целый корень Как решать уравнения с шестой степенью, то этот корень является делителем свободного члена Как решать уравнения с шестой степенью. Такое утверждение позволяет подобрать целый корень многочлена (если он есть).

    5 этап работы. Показать как применяется теория делимости для решения уравнений высших степеней. Рассмотреть примеры решения уравнений высших степеней , в которых для разложения левой части на множители используется способ деления многочлена на многочлен “уголком”.

    Пример 1. Решим уравнение Как решать уравнения с шестой степенью.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (-1), т.е. равняется одному из чисел: Как решать уравнения с шестой степенью. Проверка показывает, что корнем уравнения является число -1. Значит, многочлен Как решать уравнения с шестой степеньюможно представить в виде произведения Как решать уравнения с шестой степенью, т.е. многочлен Как решать уравнения с шестой степеньюможно без остатка разделить на двучлен Как решать уравнения с шестой степенью. Выполним такое деление “уголком”:

    Как решать уравнения с шестой степенью

    Таким образом, мы фактически разложили левую часть уравнения на множители:

    Как решать уравнения с шестой степенью

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем два уравнения:

    Как решать уравнения с шестой степенью

    Итак, данное уравнение имеет три корня:

    Как решать уравнения с шестой степенью

    Пример 2. Решим уравнение Как решать уравнения с шестой степенью.

    Если это уравнение имеет целый корень, то он является делителем свободного члена (9),т.е. равняется одному из чисел: Как решать уравнения с шестой степенью;Как решать уравнения с шестой степенью. Проверим:

    Как решать уравнения с шестой степенью

    Значит, многочлен Как решать уравнения с шестой степеньюможно представить в виде произведения Как решать уравнения с шестой степенью, т.е. многочлен Как решать уравнения с шестой степеньюможно без остатка разделить на двучлен Как решать уравнения с шестой степенью. Выполним такое деление “уголком”:

    Как решать уравнения с шестой степенью

    Таким образом, мы разложили левую часть уравнения на множители:

    Как решать уравнения с шестой степенью

    Аналогичным образом поступим и с многочленом Как решать уравнения с шестой степенью.

    Если это уравнение Как решать уравнения с шестой степеньюимеет целый корень, то он является делителем свободного члена (9), т.е. равняется одному из чисел: Как решать уравнения с шестой степенью;Как решать уравнения с шестой степенью. Проверим:

    Как решать уравнения с шестой степенью

    Значит, многочлен Как решать уравнения с шестой степеньюможно представить в виде

    произведения Как решать уравнения с шестой степенью, т.е. многочлен Как решать уравнения с шестой степеньюможно без остатка разделить на двучлен Как решать уравнения с шестой степенью. Выполним такое деление “уголком”:

    Как решать уравнения с шестой степенью

    Таким образом, мы разложили левую часть исходного уравнения на множители:

    Как решать уравнения с шестой степенью

    Произведение множителей равно нулю, если один из множителей равен нулю. Получаем три уравнения:

    Как решать уравнения с шестой степенью

    Итак, данное уравнение имеет четыре корня:

    Как решать уравнения с шестой степенью

    6 этап работы. Закрепление изученного материала.

    Решите уравнения высших степеней, используя способ деления многочлена на многочлен “уголком”.

    Как решать уравнения с шестой степенью

    7 этап работы. Вывод урока.

    Решить уравнения высших степеней можно следующим образом:

    • используя формулы для нахождения корней (если они известны);
    • используя замену переменной;
    • раскладывая многочлен в левой части уравнения на множители, используя способ деления многочлена на многочлен “уголком”.

    8 этап работы. Домашнее задание.

    Дома решить уравнения высших степеней, используя способ деления многочлена на многочлен “уголком” (раздать листы с заданиями).

    🎥 Видео

    Все про уравнения для задания 9 на ОГЭ 2024 по математикеСкачать

    Все про уравнения для задания 9 на ОГЭ 2024 по математике

    ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

    ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

    ПРОСТЕЙШИЙ способ решения Показательных УравненийСкачать

    ПРОСТЕЙШИЙ способ решения Показательных Уравнений

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ. | МатематикаСкачать

    Cистемы уравнений. Разбор задания 6 и 21 из ОГЭ.  | Математика

    Все типы задания 6 | Математика ОГЭ 2023 | УмскулСкачать

    Все типы задания 6 | Математика ОГЭ 2023 | Умскул

    8 класс. Алгебра. Решение уравнений четвертой степени.Скачать

    8 класс. Алгебра. Решение уравнений четвертой степени.

    Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

    Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

    Симметрическое(возвратное) уравнение седьмой степени (ДВИ + ЕГЭ)Скачать

    Симметрическое(возвратное) уравнение седьмой степени (ДВИ + ЕГЭ)

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?Скачать

    5 способов решения квадратного уравнения ➜ Как решать квадратные уравнения?

    Математика| СтепениСкачать

    Математика| Степени

    Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

    Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление
    Поделиться или сохранить к себе: