Как решать уравнения с разностью кубов и кубом разности

Видео:Возведение в квадрат и в куб суммы и разности двух выражений. Алгебра, 7 классСкачать

Возведение в квадрат и в куб суммы и разности двух выражений.  Алгебра, 7 класс

Сумма и разность кубов двух выражений

Формула суммы кубов

Возьмём формулу куба суммы (см. §23 данного справочника):

и найдём из неё сумму двух кубов:

$$ a^3+b^3 = (a+b)^3-3a^2 b-3ab^2 = (a+b)^3-3ab(a+b) = $$

Скобка $(a^2-ab+b^2 )$ называется неполным квадратом разности.

Полный квадрат разности – это $ (a^2-2ab+b^2 ) = (a-b)^2 $

Мы получили формулу для разложения суммы двух кубов на множители:

Сумма кубов двух выражений равна произведению суммы этих выражений на неполный квадрат их разности.

Формула разности кубов

Возьмём формулу куба разности (см. §23 данного справочника):

и найдём из неё разность двух кубов:

$$ a^3-b^3 = (a-b)^3+3a^2 b-3ab^2 = (a-b)^3+3ab(a-b) = $$

Скобка $(a^2+ab+b^2 )$ называется неполным квадратом суммы.

Полный квадрат суммы – это $(a^2+2ab+b^2 ) = (a+b)^2$

Мы получили формулу для разложения разности двух кубов на множители:

Разность кубов двух выражений равна произведению разности этих выражений на неполный квадрат их суммы.

Примеры

Пример 1. Разложите на множители:

в) $ 8a^3+1 = (2a)^3+1^3 = (2a+1)(4a^2-2a+1) $

г) $125-64y^3 = 5^3-(4y)^3 = (5-4y)(25+20y+16y^2 )$

Пример 2. Докажите что выражения $19^3-11^3$ кратно 8

Что и требовалось доказать.

Пример 3*. Дайте геометрическое объяснение формуле суммы кубов (аналогичная задача – см. Пример 5 §23 данного справочника).

Как решать уравнения с разностью кубов и кубом разности

Рассмотрим куб со стороной (a+b), в противоположные углы которого вписаны кубы со сторонами a и b.
Объемы кубов: $V_ = (a+b)^3, V_a = a^3, V_b = b^3$
Объём фигуры, закрашенной оранжевым: $V_ = a(a+b)^2-V_a = a(a^2+2ab+b^2 )-a^3$ $= 2a^2 b+ab^2$
Объём фигуры, закрашенной синим: $V_ = b(a+b)^2-V_b = b(a^2+2ab+b^2 )-b^3$ $= a^2 b+2ab^2$

$$ (a+b)^3 = a^3+b^3+2a^2 b+ab^2+a^2 b+2ab^2 $$

$$ a^3+b^3 = (a+b)^3-3a^2 b-3ab^2 = (a+b)^3-3ab(a+b) = $$

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:Сумма и разность кубов двух выражений. 7 класс.Скачать

Сумма и разность кубов двух выражений. 7 класс.

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:Алгебра 7 класс (Урок№31 - Куб суммы. Куб разности.)Скачать

Алгебра 7 класс (Урок№31 - Куб суммы. Куб разности.)

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:7 класс, 24 урок, Формулы сокращённого умноженияСкачать

7 класс, 24 урок, Формулы сокращённого умножения

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:Алгебра 7 класс (Урок№30 - Сумма кубов. Разность кубов.)Скачать

Алгебра 7 класс (Урок№30 - Сумма кубов. Разность кубов.)

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Видео:Сумма и разность кубов двух выражений - 7 класс алгебраСкачать

Сумма и разность кубов двух выражений - 7 класс алгебра

Формулы сокращённого умножения. Разность кубов и сумма кубов

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как решать уравнения с разностью кубов и кубом разности

На данном уроке мы продолжим изучать формулы сокращенного умножения, а именно рассмотрим формулы разности и суммы кубов. Кроме того, мы решим различные типовые задачи на применение данных формул.

Если у вас возникнет сложность в понимании темы, рекомендуем посмотреть урок «Упрощение выражений»

🎦 Видео

Квадрат суммы и квадрат разности двух выражений. 7 класс.Скачать

Квадрат суммы и квадрат разности двух выражений. 7 класс.

Разность квадратов двух выражений. 7 класс.Скачать

Разность квадратов двух выражений. 7 класс.

Разложение на множители суммы и разности кубов. Алгебра, 7 классСкачать

Разложение на множители суммы и разности кубов. Алгебра, 7 класс

СУММА И РАЗНОСТЬ КУБОВ. ФСУ. §18 Алгебра 7 классСкачать

СУММА И РАЗНОСТЬ КУБОВ. ФСУ. §18 Алгебра 7 класс

Квадрат суммы и квадрат разности двух выражений - 7 класс алгебраСкачать

Квадрат суммы и квадрат разности двух выражений - 7 класс алгебра

Решить уравнения, используя формулы сокращенного умножения.Сумма и квадрат разности. Алгебра 7 классСкачать

Решить уравнения, используя формулы сокращенного умножения.Сумма и квадрат разности. Алгебра 7 класс

Формулы сокращенного умножения | Математика | TutorOnlineСкачать

Формулы сокращенного умножения | Математика | TutorOnline

Алгебра 7 класс (Урок№29 - Разность квадратов.)Скачать

Алгебра 7 класс (Урок№29 - Разность квадратов.)

Сумма и разность кубов двух выражений. Практическая часть. 7 класс.Скачать

Сумма и разность кубов двух выражений. Практическая часть. 7 класс.

МЕРЗЛЯК-7. СУММА И РАЗНОСТЬ КУБОВ ДВУХ ВЫРАЖЕНИЙ. ПАРАГРАФ-18Скачать

МЕРЗЛЯК-7. СУММА И РАЗНОСТЬ КУБОВ ДВУХ ВЫРАЖЕНИЙ. ПАРАГРАФ-18

РАЗНОСТЬ КУБОВ В ЕГЭ ЧАСТЬ I #математика #егэ #огэ #shorts #разностькубовСкачать

РАЗНОСТЬ КУБОВ В ЕГЭ ЧАСТЬ I  #математика #егэ #огэ #shorts #разностькубов

7 класс. Куб суммы и куб разностиСкачать

7 класс. Куб суммы и куб разности

Сумма и разность кубов. Алгебра 7 класс. Разложение на множители.Скачать

Сумма и разность кубов. Алгебра 7 класс. Разложение на множители.
Поделиться или сохранить к себе: