Как решать уравнения с радикалами

Видео:Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнемСкачать

Как решать уравнение с корнями Иррациональное уравнение Как решать уравнение с корнем х под корнем

Алгебра

План урока:

Видео:Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnlineСкачать

Как разобраться в корнях ? Квадратный корень 8 класс | Математика TutorOnline

Иррациональные уравнения

Ранее мы рассматривали целые и дробно-рациональные уравнения. В них выражение с переменной НЕ могло находиться под знаком радикала, а также возводиться в дробную степень. Если же переменная оказывается под радикалом, то получается иррациональное уравнение.

Приведем примеры иррациональных ур-ний:

Заметим, что не всякое уравнение, содержащее радикалы, является иррациональным. В качестве примера можно привести

Это не иррациональное, а всего лишь квадратное ур-ние. Дело в том, что под знаком радикала стоит только число 5, а переменных там нет.

Видео:СУПЕР ЛАЙФХАК — Как решать Иррациональные УравненияСкачать

СУПЕР ЛАЙФХАК — Как решать Иррациональные Уравнения

Простейшие иррациональные уравнения

Начнем рассматривать способы решения иррациональных уравнений. В простейшем случае в нем справа записано число, а вся левая часть находится под знаком радикала. Выглядит подобное ур-ние так:

где а – некоторое число (константа), f(x) – рациональное выражение.

Для его решения необходимо обе части возвести в степень n, тогда корень исчезнет:

Получаем рациональное ур-ние, решать которые мы уже умеем. Однако есть важное ограничение. Мы помним, что корень четной степени всегда равен положительному числу, и его нельзя извлекать из отрицательного числа. Поэтому, если в ур-нии

n – четное число, то необходимо, чтобы а было положительным. Если же оно отрицательное, то ур-ние не имеет корней. Но на нечетные n такое ограничение не распространяется.

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число (– 6), но квадратный корень (если быть точными, то арифметический квадратный корень) не может быть отрицательным. Поэтому ур-ние корней не имеет.

Ответ: корней нет.

Пример. Решите ур-ние

Решение. Теперь справа стоит положительное число, значит, мы имеем право возвести обе части в квадрат. При этом корень слева исчезнет:

Пример. Решите ур-ние

Решение. Справа стоит отрицательное число, но это не является проблемой, ведь кубический корень может быть отрицательным. Возведем обе части в куб:

Конечно, под знаком корня может стоять и более сложное выражение, чем (х – 5).

Пример. Найдите решение ур-ния

Решение. Возведем обе части в пятую степень:

х 2 – 14х – 32 = 0

Получили квадратное ур-ние, которое можно решить с помощью дискриминанта:

D = b 2 – 4ac = (– 14) 2 – 4•1•(– 32) = 196 + 128 = 324

Итак, нашли два корня: (– 2) и 16.

Несколько более сложным является случай, когда справа стоит не постоянное число, а какое-то выражение с переменной g(x). Алгоритм решения тот же самый – необходимо возвести в степень ур-ние, чтобы избавиться от корня. Но, если степень корня четная, то необходимо проверить, что полученные корни ур-ния не обращают правую часть, то есть g(x), в отрицательное число. В противном случае их надо отбросить как посторонние корни.

Пример. Решите ур-ние

Решение. Возводим обе части во вторую степень:

х – 2 = х 2 – 8х + 16

D = b 2 – 4ac = (– 9) 2 – 4•1•18 = 81 – 72 = 9

Получили два корня, 3 и 6. Теперь проверим, во что они обращают правую часть исходного ур-ния (х – 4):

при х = 3 х – 4 = 3 – 4 = – 1

при х = 6 6 – 4 = 6 – 4 = 2

Корень х = 3 придется отбросить, так как он обратил правую часть в отрицательное число. В результате остается только х = 6.

Пример. Решите ур-ние

Решение. Здесь используется кубический корень, а потому возведем обе части в куб:

3х 2 + 6х – 25 = (1 – х) 3

3х 2 + 6х – 25 = 1 – 3х + 3х 2 – х 3

Получили кубическое ур-ние. Решить его можно методом подбора корня. Из всех делителей свободного коэффициента (– 26) только двойка обращает ур-ние в верное равенство:

Других корней нет. Это следует из того факта, что функция у = х 3 + 9х – 26 является монотонной.

Заметим, что если подставить х = 2 в левую часть исходного ур-ния 1 – х, то получится отрицательное число:

при х = 2 1 – х = 1 – 2 = – 1

Но означает ли это, что число 2 НЕ является корнем? Нет, ведь кубический корень вполне может быть и отрицательным (в отличие от квадратного). На всякий случай убедимся, что двойка – это действительно корень исходного уравнения:

Видео:Как осилить уравнение с кубическими корнями? Основной способСкачать

Как осилить уравнение с кубическими корнями? Основной способ

Уравнения с двумя квадратными корнями

Ситуация осложняется, если в ур-нии есть сразу два квадратных корня. В этом случае их приходится убирать последовательно. Сначала мы переносим слагаемые через знак «=» таким образом, чтобы слева остался один из радикалов и ничего, кроме него. Возводя в квадрат такое ур-ние, мы избавимся от одного радикала, после чего мы получим более простое ур-ние. После получения всех корней надо проверить, какие из них являются посторонними. Для этого их надо просто подставить в исходное ур-ние.

Пример. Решите ур-ние

Решение. Перенесем вправо один из корней:

Возведем обе части в квадрат. Обратите внимание, что левый корень при этом исчезнет, а правый – сохранится:

Теперь снова перемещаем слагаемые так, чтобы в одной из частей не осталось ничего, кроме корня:

Снова возведем ур-ние в квадрат, чтобы избавиться и от второго корня:

(2х – 4) 2 = 13 – 3х

4х 2 – 16х + 16 = 13 – 3х

4х 2 – 13х + 3 = 0

D = b 2 – 4ac = (– 13) 2 – 4•4•3 = 169 –48 = 121

Имеем два корня: 3 и 0,25. Но вдруг среди них есть посторонние? Для проверки подставим их в исходное ур-ние. При х = 0,25 имеем:

Получилось ошибочное равенство, а это значит, что 0,25 не является корнем ур-ния. Далее проверим х = 3

На этот раз получилось справедливое равенство. Значит, тройка является корнем ур-ния.

Видео:Уравнения с корнем. Иррациональные уравнения #shortsСкачать

Уравнения с корнем. Иррациональные уравнения #shorts

Введение новых переменных

Предложенный метод последовательного исключения радикалов плохо работает в том случае, если корни не квадратные, а имеют другую степень. Рассмотрим ур-ние

Последовательно исключить корни, как в предыдущем примере, здесь не получится (попробуйте это сделать самостоятельно). Однако помочь может замена переменной.

Для начала перепишем ур-ние в более удобной форме, когда вместо корней используются степени:

х 1/2 – 10х 1/4 + 9 = 0

Теперь введем переменную t = x 1/4 . Тогда х 1/2 = (х 1/4 ) 2 = t 2 . Исходное ур-ние примет вид

Это квадратное ур-ние. Найдем его корни:

D = b 2 – 4ac = (– 10) 2 – 4•1•9 = 100 – 36 = 64

Получили два значения t. Произведем обратную замену:

х 1/4 = 1 или х 1/4 = 9

Возведем оба ур-ния в четвертую степень:

(х 1/4 ) 4 = 1 4 или (х 1/4 ) 4 = 3 4

х = 1 или х = 6561

Полученные числа необходимо подставить в исходное ур-ние и убедиться, что они не являются посторонними корнями:

В обоих случаях мы получили верное равенство 0 = 0, а потому оба числа, 1 и 6561, являются корнями ур-ния.

Пример. Решите ур-ние

х 1/3 + 5х 1/6 – 24 = 0

Решение. Произведем замену t = x 1/6 , тогда х 1/3 = (х 1/6 ) 2 = t 2 . Исходное ур-ние примет вид:

Его корни вычислим через дискриминант:

D = b 2 – 4ac = 5 2 – 4•1•(– 24) = 25 + 96 = 121

Далее проводим обратную заменуx 1/6 = t:

х 1/6 = – 8 или х 1/6 = 3

Первое ур-ние решений не имеет, а единственным решением второго ур-ния является х = 3 6 = 729. Если подставить это число в исходное ур-ние, то можно убедиться, что это не посторонний корень.

Видео:Алгебра 8 класс. Уравнения с корнямиСкачать

Алгебра 8 класс. Уравнения с корнями

Замена иррационального уравнения системой

Иногда для избавления от радикалов можно вместо них ввести дополнительные переменные и вместо одного иррационального ур-ния получить сразу несколько целых, которые образуют систему. Это один из самых эффективных методов решения иррациональных уравнений.

Пример. Решите ур-ние

Решение. Заменим первый корень буквой u, а второй – буквой v:

Исходное ур-ние примет вид

Если возвести (1) и (2) в куб и квадрат соответственно (чтобы избавиться от корней), то получим:

Ур-ния (3), (4) и (5) образуют систему с тремя неизвестными, в которой уже нет радикалов:

Попытаемся ее решить. Сначала сложим (4) и (5), ведь это позволит избавиться от переменной х:

(х + 6) + (11 – х) = u 3 + v 2

из (3) можно получить, что v = 5 – u. Подставим это в (6) вместо v:

17 = u 3 + (5 – u) 2

17 = u 3 + u 2 – 10u + 25

u 3 + u 2 – 10u + 8 = 0

Получили кубическое ур-ние. Мы уже умеем решать их, подбирая корни. Не вдаваясь в подробности решения, укажем, что корнями этого ур-ния являются числа

подставим полученные значения в (4):

x + 6 = 1 3 или х + 6 = 2 3 или х + 6 = (– 4) 3

x + 6 = 1 или х + 6 = 8 или х + 6 = – 64

х = – 5 или х = 2 или х = – 70

Итак, нашли три возможных значения х. Но, конечно же, среди них могут оказаться посторонние корни. Поэтому нужна проверка – подставим полученные результаты в исходное ур-ние. При х = – 5 получим

Корень подошел. Проверяем следующее число, х = 2:

Корень снова оказался верным. Осталась последняя проверка, для х = – 70:

Итак, все три числа прошли проверку.

Видео:8 класс, 38 урок, Иррациональные уравненияСкачать

8 класс, 38 урок, Иррациональные уравнения

Уравнения с «вложенными» радикалами

Порою в ур-нии под знаком радикала стоит ещё один радикал. В качестве примера приведем такую задачу:

При их решении следует сначала избавиться от «внешнего радикала», после чего можно будет заняться и внутренним. То есть в данном случае надо сначала возвести обе части равенства в квадрат:

Внешний радикал исчез. Теперь будем переносить слагаемые, чтобы в одной из частей остался только радикал:

Хочется поделить полученное ур-ние (1) на х, однако важно помнить, что деление на ноль запрещено. То есть, если мы делим на х, то мы должны наложить дополнительное ограничение х ≠ 0. Случай же, когда х всё же равен нулю, мы рассматриваем отдельно. Для этого подставим х = 0 сразу в исходное ур-ние:

Получили верное рав-во, значит, 0 является корнем. Теперь возвращаемся к (1) и делим его на х:

Возводим в квадрат и получаем:

х 2 + 40 = (х + 4) 2

х 2 + 40 = х 2 + 8х + 16

И снова нелишней будет проверка полученного корня:

Видео:Как упрощать выражение с радикалами?Скачать

Как упрощать выражение с радикалами?

Иррациональные неравенства

По аналогии с иррациональными ур-ниями иррациональными неравенствами называют такие нер-ва, в которых выражение с переменной находится под знаком радикала или возводится в дробную степень. Приведем примеры иррациональных нер-в:

Нет смысла решать иррациональные нер-ва, если есть проблемы с более простыми, то есть рациональными нер-вами, а также с их системами. Поэтому на всякий случай ещё раз просмотрите этот и ещё вот этот уроки.

Начнем с решения иррациональных неравенств простейшего вида, у которых в одной из частей стоит выражение под корнем, а в другой – постоянное число. Достаточно очевидно, что нер-во вида

Может быть справедливым только тогда, когда

То есть, грубо говоря, нер-ва можно возводить в степень. Однако при этом могут возникнуть посторонние решения. Дело в том, что нужно учитывать и тот факт, что подкоренное выражение должно быть неотрицательным в том случае, если степень корня является четной. Таким образом, нер-во

при четном n можно заменить системой нер-в

Пример. При каких значениях x справедливо нер-во

Решение. С одной стороны, при возведении нер-ва в квадрат мы получим такое нер-во:

х ⩽ – 5 (знак нер-ва изменился из-за того, что мы поделили его на отрицательное число)

Получили промежуток х∈(– ∞; – 5). Казалось бы, надо записать ещё одно нер-во

чтобы подкоренное выражение было неотрицательным. Однако сравните (1) и (2). Ясно, что если (1) выполняется, то справедливым будет и (2), ведь если какое-то выражение больше или равно двум, то оно автоматически будет и больше нуля! Поэтому (2) можно и не решать.

Теперь посмотрим на простейшие нер-ва с корнем нечетной степени.

Пример. Найдите решение нер-ва

Решение. Всё очень просто – надо всего лишь возвести обе части в куб:

x 2 – 7x– 8 2 – 7x– 8 = 0

D = b 2 – 4ac = (– 7) 2 – 4•1•(– 8) = 49 + 32 = 81

Далее полученные точки отмечаются на координатной прямой. Они разобьют ее на несколько промежутков, на каждом из которых функция у =x 2 – 7x– 8 сохраняет свой знак. Определить же этот самый знак можно по направлению ветвей параболы, которую рисует схематично:

Видно, что парабола располагается ниже оси Ох на промежутке (– 1; 8). Поэтому именно этот промежуток и является ответом. Нер-во строгое, поэтому сами числа (– 1) и 8 НЕ входят в ответ, то есть для записи промежутка используются круглые скобки.

Обратите внимание: так как в исходном нер-ве используется корень нечетной (третьей) степени, то нам НЕ надо требовать, чтобы он был неотрицательным. Он может быть меньше нуля.

Теперь рассмотрим более сложный случай, когда в правой части нер-ва стоит не постоянное число, а некоторое выражение с переменной, то есть оно имеет вид

Случаи, когда n является нечетным числом, значительно более простые. В таких ситуациях достаточно возвести нер-во в нужную степень.

Пример. Решите нер-во

Решение.Слева стоит кубический корень, а возведем нер-во в третью степень (при этом мы используем формулу сокращенного умножения):

И снова квадратное нер-во. Найдем нули функции записанной слева, и отметим их на координатной прямой:

D = b 2 – 4ac = (– 1) 2 – 4•1•(– 2) = 1 + 8 = 9

Нер-во выполняется при х∈(– ∞; – 1)⋃(2; + ∞). Так как мы возводили нер-во в нечетную степень, то больше никаких действий выполнять не надо.

стоит корень четной степени, то ситуация резко осложняется. Его недостаточно просто возвести его в n-ую степень. Необходимо выполнение ещё двух условий:

f(x) > 0 (подкоренное выражение не может быть отрицательным);

g(x) > 0 (ведь сам корень должен быть неотрицательным, поэтому если g(x)будет меньше нуля, то решений не будет).

Вообще говоря, в таких случаях аналитическое решение найти возможно, но это тяжело. Поэтому есть смысл решить нер-во графически – такое решение будет более простым и наглядным.

Пример. Решите нер-во

Решение. Сначала решим его аналитически, без построения графиков. Возведя нер-во в квадрат, мы получим

х 2 – 10х + 21 > 0(1)

Решением этого квадратного нер-ва будет промежуток (– ∞;3)⋃(7; + ∞). Но надо учесть ещё два условия. Во-первых, подкоренное выражение должно быть не меньше нуля:

Во-вторых, выражение 4 – х не может быть отрицательным:

Получили ограничение 2,5 ⩽ х ⩽ 4, то есть х∈[2,5; 4]. С учетом того, что при решении нер-ва(1) мы получили х∈(– ∞;3)⋃(7; + ∞), общее решение иррационального нер-ва будет их пересечением, то есть промежутком [2,5; 3):

Скажем честно, что описанное здесь решение достаточно сложное для понимания большинства школьников, поэтому предложим альтернативное решение, основанное на использовании графиков. Построим отдельно графики левой и правой части нер-ва:

Видно, что график корня находится ниже прямой на промежутке [2,5; 3). Возникает вопрос – точно ли мы построили график? На самом деле с его помощью мы лишь определили, что искомый промежуток находится между двумя точками. В первой график корня касается оси Ох, а во второй точке он пересекается с прямой у = 4 – х. Найти координаты этих точек можно точно, если решить ур-ния. Начнем с первой точки:

Итак, координата х первой точки в точности равна 2,5. Для нахождения второй точки составим другое ур-ние:

Это квадратное ур-ние имеет корни 3 и 7 (убедитесь в этом самостоятельно). Число 7 является посторонним корнем:

Подходит только число 3, значит, вторая точка имеет координату х = 3, а искомый промежуток – это [2,5; 3).

Ещё тяжелее случаи, когда в нер-ве с корнем четной степени стоит знак «>», а не « 1/2 = х – 3

Видео:Решение биквадратных уравнений. 8 класс.Скачать

Решение биквадратных уравнений. 8 класс.

Уравнения с радикалами, типы, примеры решения

Задачи и уравнения с радикалами

Разобрать примеры и записать в тетрадь

Домашнее задание. №36.19-36.20(в,г),36.21(б),36.22-36.24(в,г)

На данном уроке мы продолжим решать типовые задачи и преобразовывать различные выражения, содержащие радикалы.

Повторение теоретических фактов

Ключом к решению всех типов задач, рассматриваемых в данной теме, является определение арифметического корня и его свойства.

Еще раз напомним основное определение.

Корнем n-й степени из неотрицательного числа а называется такое неотрицательное число b, которое при возведении в степень n дает число а.

Приведем математическую запись определения:

Как решать уравнения с радикалами

Например: Как решать уравнения с радикалами, т. к. Как решать уравнения с радикалами; Как решать уравнения с радикалами, т.к. Как решать уравнения с радикалами,

Решение примеров на упрощение и вычисление

Рассмотрим более сложные примеры.

Пример 1 – упростить выражение:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Вспомним основные свойства арифметических корней:

Как решать уравнения с радикалами, при Как решать уравнения с радикалами(теорема 1)

Как решать уравнения с радикалами, при Как решать уравнения с радикалами(теорема 2)

Как решать уравнения с радикалами, при Как решать уравнения с радикалами(теорема 3)

Как решать уравнения с радикалами, при Как решать уравнения с радикалами(теорема 4)

Как решать уравнения с радикаламипри Как решать уравнения с радикалами(теорема 5)

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Пример 2 – вычислить:

Как решать уравнения с радикалами

Чтобы выполнить вычисление, нужно преобразовать числитель, для этого во второй скобке представим составные числа в виде простых:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Разложим скобку на множители способом группировки:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

После преобразований получаем дробь:

Как решать уравнения с радикалами

Имеем право сократить:

Как решать уравнения с радикалами

Несложно заметить в полученном выражении формулу разности квадратов, свернем ее:

Как решать уравнения с радикалами

Пример 3 – вычислить:

Как решать уравнения с радикалами

Сначала вычислим внутренний корень:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

После преобразования получили выражение:

Как решать уравнения с радикалами

Пример 4 – упростить выражение:

Как решать уравнения с радикалами

Важно заметить в подкоренном выражении полный квадрат:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Комментарий: для выделения полного квадрата имеем право представить а как Как решать уравнения с радикалами, т. к. в заданном выражении присутствует Как решать уравнения с радикалами, значит, а принимает неотрицательные значения.

Пример 5 – упростить выражение:

Как решать уравнения с радикалами

Выделяем полный квадрат:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Комментарий: число Как решать уравнения с радикаламиотрицательное, имеем право раскрыть модуль.

Уравнения с радикалами, типы, примеры решения

Важно уметь решать уравнения с радикалами, рассмотрим первый тип таких уравнений.

Как решать уравнения с радикалами

Чтобы не потерять при решении корни и не приобрести новых корней, следует наложить некоторые ограничения. В первую очередь ОДЗ: Как решать уравнения с радикалами. Далее:

Как решать уравнения с радикалами

Заметим, что при выполнении второго условия ОДЗ соблюдается автоматически, поэтому его отдельно можно не указывать.

Мы получили смешанную систему, в ней присутствуют уравнение и неравенство. Отметим, что неравенство решать не обязательно, достаточно решить уравнение и полученные корни подставить в неравенство – выполнить проверку, т. к. очень часто неравенство очень сложно или невозможно решить.

Второй тип уравнений:

Как решать уравнения с радикалами

Укажем область определения. ОДЗ:

Как решать уравнения с радикалами

Чтобы решить заданное уравнение, нужно возвести его в квадрат, получим:

Как решать уравнения с радикалами

Чтобы упростить нахождение области определения, можно оставить только одно из двух неравенств, т. к. два числа равны друг другу и если одно из них больше нуля, то и второе тоже. Получаем системы для решения уравнения:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Аналогично первому типу получена смешанная система, можем решить уравнение и выполнить проверку, не решая полностью неравенство.

Рассмотрим конкретные примеры уравнений.

Как решать уравнения с радикалами

Данное уравнение эквивалентно системе:

Как решать уравнения с радикалами

Решаем полученную систему:

Как решать уравнения с радикалами

Ответ: Как решать уравнения с радикалами

Данный пример можно решать другим способом. Рассмотрим две функции – выражения стоящие в правой и левой части заданного уравнения:

Как решать уравнения с радикалами

Первая функция монотонно убывает (т. к. под корнем стоит линейная убывающая функция, ее угловой коэффициент меньше нуля), вторая монотонно возрастает.

Как решать уравнения с радикалами

Рис. 1. Графики функций Как решать уравнения с радикаламии Как решать уравнения с радикалами

Поскольку одна из функций монотонно убывает, а вторая монотонно возрастает, то уравнение имеет единственное решение, если решение вообще существует. Таким образом, если мы найдем один корень заданного уравнения, это будет обоснованный ответ к задаче.

Корень существует, по рисунку мы видим, что это Как решать уравнения с радикалами, чтобы убедиться в этом, подставим найденный корень в исходное уравнение. Получаем верное числовое равенство.

Как решать уравнения с радикалами

Имеем эквивалентную систему:

Как решать уравнения с радикалами

Решаем полученную систему:

Как решать уравнения с радикалами

Ответ: Как решать уравнения с радикалами

Как решать уравнения с радикалами

В данном случае удобно выполнить замену переменных.

Обозначим Как решать уравнения с радикалами, возведем в квадрат, получаем:

Как решать уравнения с радикалами

Как решать уравнения с радикалами

Не теряем при этом ограничение: Как решать уравнения с радикалами

Решаем полученное квадратное уравнение любым способом, находим корни:

Как решать уравнения с радикаламиили Как решать уравнения с радикалами

Лишний корень отбрасываем, остается Как решать уравнения с радикалами

Таким образом, Как решать уравнения с радикалами

Итак, мы рассмотрели решение задач и уравнений, содержащих радикалы. В следующем уроке мы обобщим понятие о показателе степени.

Видео:Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.Скачать

Двойные корни. Как решать. Арифметический квадратный корень. Преобразование двойных радикалов.

Как решать иррациональные уравнения. Примеры.

Уравнения, в которых под знаком корня содержится переменная, называт иррациональными.

Методы решения иррациональных уравнений, как правило, основаны на возможности замены (с помощью некоторых преобразований) иррационального уравнения рациональным уравнением, которое либо эквивалентно исходному иррациональному уравнению, либо является его следствием. Чаще всего обе части уравнения возводят в одну и ту же степень. При этом получается уравнение, являющееся следствием исходного.

При решении иррациональных уравнений необходимо учитывать следующее:

1) если показатель корня — четное число, то подкоренное выражение должно быть неотрицательно; при этом значение корня также является неотрицательным (опредедение корня с четным показателем степени);

2) если показатель корня — нечетное число, то подкоренное выражение может быть любым действительным числом; в этом случае знак корня совпадает со знаком подкоренного выражения.

Пример 1. Решить уравнениеКак решать уравнения с радикалами

Возведем обе части уравнения в квадрат.
x 2 — 3 = 1;
Перенесем -3 из левой части уравнения в правую и выполним приведение подобных слагаемых.
x 2 = 4;
Полученное неполное квадратное уравнение имеет два корня -2 и 2.

Произведем проверку полученных корней, для этого произведем подстановку значений переменной x в исходное уравнение.
Проверка.
При x1 = -2 Как решать уравнения с радикалами— истинно:
При x2 = -2Как решать уравнения с радикалами— истинно.
Отсюда следует, что исходное иррациональное уравнение имеет два корня -2 и 2.

Пример 2. Решить уравнение Как решать уравнения с радикалами.

Это уравнение можно решить по такой же методике как и в первом примере, но мы поступим иначе.

Найдем ОДЗ данного уравнения. Из определения квадратного корня следует, что в данном уравнении одновременно должны выполнятся два условия:

а) x — 9Как решать уравнения с радикалами0;

xКак решать уравнения с радикалами9;

б) 1 — xКак решать уравнения с радикалами0;

-xКак решать уравнения с радикалами-1 ;

xКак решать уравнения с радикалами1.

ОДЗ данного уранения: xКак решать уравнения с радикаламиКак решать уравнения с радикалами.

Ответ: корней нет.

Пример 3. Решить уравнениеКак решать уравнения с радикалами=Как решать уравнения с радикалами+ 2Как решать уравнения с радикалами.

Нахождение ОДЗ в этом уравнении представляет собой достаточно трудную задачу. Возведем обе части уравнения в квадрат:
x 3 + 4x — 1 — 8Как решать уравнения с радикалами= x 3 — 1 + 4Как решать уравнения с радикаламиКак решать уравнения с радикаламиКак решать уравнения с радикалами+ 4x;
Как решать уравнения с радикаламиКак решать уравнения с радикаламиКак решать уравнения с радикалами=0;
x1=1; x2=0.
Произведя проверку устанавливаем, что x2=0 лишний корень.
Ответ: x1=1.

Пример 4. Решить уравнение x =Как решать уравнения с радикалами.

В этом примере ОДЗ найти легко. ОДЗ этого уравнения: xКак решать уравнения с радикалами[-1;Как решать уравнения с радикалами).

Возведем обе части этого уравнения в квадрат, в результате получим уравнение x 2 = x + 1. Корни этого уравнения:

x1 =Как решать уравнения с радикалами

x2 =Как решать уравнения с радикалами

Произвести проверку найденных корней трудно. Но, несмотря на то, что оба корня принадлежат ОДЗ утверждать, что оба корня являются корнями исходного уравнения нельзя. Это приведет к ошибке. В данном случае иррациональное уравнение равносильно совокупности двух неравенств и одного уравнения:

x + 1Как решать уравнения с радикалами0 и xКак решать уравнения с радикалами0 и x 2 = x + 1, из которой следует, что отрицательный корень для иррационального уравнения является посторонним и его нужно отбросить.

Ответ:Как решать уравнения с радикалами

Пример 5 . Решить уравнениеКак решать уравнения с радикалами+Как решать уравнения с радикалами= 7.

Возведем обе части уравнения в квадрат и выполним приведение подобных членов, перенес слагаемых из одной части равенства в другую и умножение обеих частей на 0,5. В результате мы получим уравнение
Как решать уравнения с радикаламиКак решать уравнения с радикаламиКак решать уравнения с радикалами= 12, (*) являющееся следствием исходного. Снова возведем обе части уравнения в квадрат. Получим уравнение (х + 5)(20 — х) = 144, являющееся следствием исходного. Полученное уравнение приводится к виду x 2 — 15x + 44 =0.

Это уравнение (также являющееся следствием исходного) имеет корни x1 = 4, х2 = 11. Оба корня, как показывает проверка, удовлетворяют исходному уравнению.

Замечание. При возведении уравнений в квадрат учащиеся нередко в уравнениях типа (*) производят перемножение подкоренных выражений, т. е. вместо уравненияКак решать уравнения с радикаламиКак решать уравнения с радикалами= 12, пишут уравнение Как решать уравнения с радикалами= 12. Это не приводит к ошибкам, поскольку уравнения являются следствиями уравнений. Следует, однако, иметь в виду, что в общем случае такое перемножение подкоренных выражений дает неравносильные уравнения.

В рассмотренных выше примерах можно было сначала перенести один из радикалов в правую часть уравнения. Тогда в левой части уравнения останется один радикал и после возведения обеих частей уравнения в квадрат в левой части уравнения получится рациональная функция. Такой прием (уединение радикала) довольно часто применяется при решении иррациональных уравнений.

Пример 6. Решить уравнениеКак решать уравнения с радикаламиКак решать уравнения с радикалами= 3.

Уединив первый радикал, получаем уравнение
Как решать уравнения с радикалами=Как решать уравнения с радикалами+ 3, равносильное исходному.

Возводя обе части этого уравнения в квадрат, получаем уравнение

x 2 + 5x + 2 = x 2 — 3x + 3 + 6Как решать уравнения с радикалами, равносильное уравнению

4x — 5 = 3Как решать уравнения с радикалами(*). Это уравнение является следствием исходного уравнения. Возводя обе части уравнения в квадрат, приходим к уравнению
16x 2 — 40x + 25 = 9(x 2 — Зх + 3), или

7x 2 — 13x — 2 = 0.

Это уравнение является следствием уравнения (*) (а значит, и исходного уравнения) и имеет корни. Первый корень x1 = 2 удовлетворяет исходному уравнению, а второй x2 =Как решать уравнения с радикалами— не удовлетворяет.

Заметим, что если бы мы сразу, не уединив один из радикалов, возводили обе части исходного уравнения в квадрат нам бы пришлось выполнить довольно громозкие преобразования.

При решении иррациональных уравнений, кроме уединения радикалов используют и другие методы. Рассмотрим пример использования метода замены неизвестного (метод введения вспомогательной переменной).

Пример 7. Решить уравнение 2x 2 — 6x +Как решать уравнения с радикалами+ 2 = 0.

Введем вспомогательную переменную. Пусть y =Как решать уравнения с радикалами, где yКак решать уравнения с радикалами0, тогда получим уравнение 2y 2 + y — 10 = 0;
y1 = 2; y2 = —Как решать уравнения с радикалами. Второй корень не удовлетворяет условию yКак решать уравнения с радикалами0.
Возвращаемся к x:
Как решать уравнения с радикалами= 2;
x 2 — 3x + 6 = 4;
x 2 -3x + 2 = 0;
x1 = 1; x2 = 2. Проверкой устанавливаем, что оба корня являются корнями иисходного уравнения.
Ответ: x1 = 1; x2 = 2.

Пример 8. Решить уравнениеКак решать уравнения с радикалами+Как решать уравнения с радикалами=Как решать уравнения с радикалами

ПоложимКак решать уравнения с радикалами= t, Тогда уравнение примет вид t +Как решать уравнения с радикалами=Как решать уравнения с радикаламиоткуда получаем следствие: 2t 2 — 5t + 2 = 0 Решая это квадратное уравнение, находим два корня: t1 = 2 t2 =Как решать уравнения с радикалами. Задача сводится теперь к решению следующих двух уравнений:
Как решать уравнения с радикалами= 2,(*)Как решать уравнения с радикалами=Как решать уравнения с радикалами(**)

Возводя обе части уравнения (*) в куб, получаем 12 — 2x = 8x — 8; x1 = 2.

Аналогично, решив (**), находим x2 =Как решать уравнения с радикалами.

Оба найденных корня удовлетворяют исходному уравнению, так как в процессе решения мы использовали (кроме замены неизвестного) только преобразование вида [f(x) = g(x)]Как решать уравнения с радикалами[f n (x) = g n (x)], а при таком преобразовании, как было отмечено выше, получается равносильное уравнение.

Ответ: х1 = 2, x2 =Как решать уравнения с радикалами.

🔥 Видео

Иррациональные уравнения и их системы. 11 класс.Скачать

Иррациональные уравнения и их системы. 11 класс.

Иррациональные уравнения Как решать уравнения с радикаламиСкачать

Иррациональные уравнения  Как решать уравнения с радикалами

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Система иррациональных уравнений #1Скачать

Система иррациональных уравнений #1

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнемСкачать

ИРРАЦИОНАЛЬНЫЕ НЕРАВЕНСТВА неравенства с корнем

Решите уравнение с корнями ★ Иррациональное уравнениеСкачать

Решите уравнение с корнями ★ Иррациональное уравнение

Как считать корни? #shortsСкачать

Как считать корни? #shorts

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис ТрушинСкачать

✓ Иррациональное уравнение | ЕГЭ-2018. Задание 12. Математика. Профильный уровень | Борис Трушин

Решение квадратных уравнений. Дискриминант. 8 класс.Скачать

Решение квадратных уравнений. Дискриминант. 8 класс.
Поделиться или сохранить к себе: