Как решать уравнения с пропорциями 6 класс с 2 иксами

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Видео:Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.Скачать

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 2 часть. 6 класс.

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Видео:Решение уравнений, 6 классСкачать

Решение уравнений, 6 класс

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Оба уравнения также равносильны.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.Скачать

Пропорция. Основное свойство пропорции. Практическая часть - решение задачи. 1 часть. 6 класс.

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео:Решение уравнений, имеющих вид пропорции, с использованием основного свойства пропорции Математика 6Скачать

Решение уравнений, имеющих вид пропорции, с использованием основного свойства пропорции Математика 6

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

Видео:Пропорции, 6 классСкачать

Пропорции, 6 класс

Как решать уравнения с пропорциями с двумя иксами

Видео:КАК РЕШАТЬ ПРОПОРЦИИ?Скачать

КАК РЕШАТЬ ПРОПОРЦИИ?

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Видео:Метод пропорции ⚖️Скачать

Метод пропорции ⚖️

Определение

Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

Ниже приведены несколько примеров:

Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

Видео:6 класс - Математика - Пропорции. Решение уравнений с помощью пропорцийСкачать

6 класс - Математика - Пропорции. Решение уравнений с помощью пропорций

Решение задач

Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

Для наглядности объяснений подберем корни для выражения: y-x = 6.

При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

Приведем исходное равенство к следующему виду:

В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

Оба равенства равносильны.

Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

Оба уравнения также равносильны.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:ПРОПОРЦИЯ 6 класс математика отношения и пропорцииСкачать

ПРОПОРЦИЯ 6 класс математика отношения и пропорции

Система уравнений с двумя неизвестными

Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

Решить подобные системы уравнений можно, применяя следующие методы.

Метод подстановки

  1. Выражаем неизвестное из любого равенства через вторую переменную.
  2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
  3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

Метод сложения

  1. Приводим к равенству модули чисел при каком-либо неизвестном.
  2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
  3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

Графический метод

  1. Выражаем в каждом равенстве одну переменную через другую.
  2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
  3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
  4. Делаем проверку, подставив полученные значения в исходную систему равенств.

При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

Видео:Пропорции, 6 класс. Решение задач.Скачать

Пропорции, 6 класс. Решение задач.

Видео

Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

Видео:6 класс, 21 урок, ПропорцииСкачать

6 класс, 21 урок, Пропорции

Как решать пропорции — правила, методы и примеры вычислений

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:Пропорция. Основное свойство пропорции. 6 класс.Скачать

Пропорция. Основное свойство пропорции. 6 класс.

Общие сведения

Изучение какого-либо термина в математике начинается с определения. Пропорцией вида x / y = v / z (x: y = v: z) называется равенство отношений двух чисел. Она представлена в виде правильной дроби, и состоит из следующих элементов, которые называются крайними (x и z) и средними (y и v) членами.

Следует отметить, что в некоторых сферах пропорциональная зависимость может быть представлена в немного другом виде. В этом случае знак равенства не указывается. Для удобства используется символ деления «:». Записывается в таком виде: a: b: c. Объяснение такой записи очень простое: для приготовления какого-либо вещества нужно использовать «а» частей одного компонента, b — другого и с — третьего.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Знак равенства не имеет смысла указывать, поскольку этот тип пропорциональной зависимости является абстрактным. Неизвестно, какой результат получится на выходе. Если взять за единицу измерения массу в кг, то и конечный результат получится в кг. В этом случае решать пропорцию не нужно — достаточно просто подставить данные, и получить результат.

Бывают случаи, когда следует посчитать пропорцию в процентах. Пример — осуществление некоторых финансовых операций.

Сферы применения

Пропорция получила широкое применение в физике, алгебре, геометрии, высшей и прикладной математике, химии, кулинарии, фармацевтике, медицине, строительстве и т. д. Однако ее нужно применять только в том случае, когда элементы соотношения не подчиняются какому-либо закону (методика исследования величин такого типа будет рассмотрена ниже), и не являются неравенствами.

В алгебре существует класс уравнений, представленных в виде пропорции. Они бывают простыми и сложными. Для решения последних существует определенный алгоритм. Кроме того, в геометрии встречается такие термин, как «гомотетия» или коэффициент подобия. Он показывает, во сколько раз увеличена или уменьшена фигура относительно оригинала.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Масштаб в географии является также пропорцией, поскольку он показывает количество см или мм, которые содержатся в какой-либо единице, зависящей от карты (например, в 1 см = 10 км). Специалисты применяютправило пропорции в высшей и прикладной математике. Расчет количества реактивов, вступающих в реакцию, для получения другого вещества применяется также пропорциональная зависимость.

Каждая хозяйка также применяет это соотношение для приготовления различных блюд и консерваций. В этом случае пропорция имеет немного другой вид: 1:2. Все компоненты берутся частями с одинаковыми размерностями или единицами измерения. Например, на 1 кг клубники необходимо 2 кг сахара. Расшифровывается такое соотношение следующим образом: 1 часть одного и 2 части другого компонентов.

В фармацевтике она также применяется, поскольку необходимо очень точно рассчитать массовую долю для каждого компонента лекарственного препарата. В медицине используется пропорциональная зависимость для назначения лекарства больному, дозировка которого зависит от массы тела человека.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Для приготовления различных строительных смесей она также используется, однако у нее такой же вид, как и для кулинарии. Например, для приготовления бетона М300 необходимы такие компоненты: цемент (Ц), щебень (Щ), песок (П) и вода (В). Далее следует воспользоваться таким соотношением, в котором единицей измерения является ведро: 1: 5: 3: 0,5. Запись расшифровывается следующим образом: для приготовления бетонной смеси необходимо 1 ведро цемента, 5 щебня, 3 песка и 0,5 воды.

Основные свойства

Для решения различных задач нужно знать основные свойства пропорции. Они действуют только для соотношения x / y = v / z. К ним можно отнести следующие формулы:

  1. Обращение или обратное пропорциональное соотношение: [x / y = v / z] = [y / x = z / v].
  2. Перемножение «крест-накрест»: x * z = y * v.
  3. Перестановка: x / v = y / z и v / x = z / y.
  4. Увеличение или уменьшение: x + у / y = v + z / z и x — у / y = v — z / z.
  5. Составление через арифметические операции сложения и вычитания: (x + v) / (y + z) = x / y = v / z и (x — v) / (y — z) = x / y = v / z.

Первое свойство позволяет перевернуть правильные дроби соотношений двух величин. Это следует делать одновременно для левой и правой частей. Умножение по типу «крест-накрест» считается главным соотношением. С помощью его решаются уравнения и упрощаются выражения, в которых нужно избавиться от дробных частей. Найти неизвестный член пропорции можно также с помощью второго свойства, формулировка которого следующая: произведение крайних эквивалентно произведению средних элементов (членов).

Как решать уравнения с пропорциями 6 класс с 2 иксами

Очень часто члены соотношения необходимо переставить для оптимизации вычислений. Для этого применяется свойство перестановки. При этом следует внимательно подставлять значения в формулу, поскольку неправильные действия могут существенно исказить результат решения. Этого можно не заметить. Для осуществления проверки следует подставить значение неизвестной в исходную пропорцию. Если равенство соблюдается, то получен верный результат. В противном случае необходимо найти ошибку или повторить вычисления.

Увеличение или уменьшение пропорции следует производить по четвертому свойству. Основной принцип: равенство сохраняется в том случае, когда уменьшение или увеличение числителя происходит на значение, которое находится в знаменателе. Нельзя отнимать от пропорции (от числителя и знаменателя равные числовые значения), поскольку соотношение не будет выполняться. Это является распространенной ошибкой, которая влечет за собой огромные погрешности при расчетах или неверное решение экзаменационных заданий.

Составить пропорцию можно с помощью вычитания и сложения. Этот прием применяется редко, но в некоторых заданиях может использоваться. Суть его заключается в следующем: отношение суммы крайнего и среднего элемента к суммарному значению других крайнего и среднего членов, которое равно отношению крайнего к среднему значению. Однако не ко всем выражениям можно применять свойства пропорции. Следует рассмотреть методику их определения.

Видео:Решение уравнений ( подобные слагаемые ) . 6 класс .Скачать

Решение уравнений ( подобные слагаемые ) . 6 класс .

Методика исследования

Пропорция применима только к линейным законам изменения величин. Примером этого является поведение простой тригонометрической функции z = sin (p). Величина «z» — зависимая переменная, которая называется значением функции. Переменная «p» — независимая величина или аргумент. В данном контексте она принимает значения углов в градусах. Для демонстрации того, что пропорция «не работает» необходимо подставить некоторые данные.

Кроме того, нужна таблица значений тригонометрических функций некоторых углов. Необходимо предположить, что p = 30, тогда z = sin (30) = 0,5. По свойству пропорции можно найти значение функции при р = 60, не используя таблицу. Для этого нужно составить пропорцию с неизвестным: 30 / 0,5 = 60 / х. Чтобы найти х («икс»), нужно воспользоваться свойством умножения «крест-накрест»: 60 * 0,5 = 30 * х. Уравнение решается очень просто: х = 60 * 0,5 / 30 = 30 / 30 = 1. Ответ получен очень быстро, и нет необходимости смотреть табличное значение.

Как решать уравнения с пропорциями 6 класс с 2 иксами

В этом случае не так все просто. Если воспользоваться вышеописанной таблицей, то z = sin (60) = [3^(½)] / 2. Полученное значение не равно 1. Причина несоответствия — нелинейность функции. Математики для облегчения вычислений предлагают методику определения нелинейных выражений. Она состоит из следующих положений:

  1. Записать функцию.
  2. Рассмотреть составные части.
  3. Если простой тип, перейти к 5 пункту.
  4. Сложная — разложить на простые элементы, а затем перейти к 5 пункту.
  5. Определить тип зависимости ее значения от аргумента: линейная или нелинейная. Если получен второй тип, то свойства пропорции применить невозможно.
  6. Определить тип линейности, построив график.

По таким правилам были исследовано огромное количество функций. К нелинейным относятся следующие: прямые и обратные тригонометрические, гиперболические, показательные, логарифмические и сложные математические, состоящие из нелинейных зависимостей.

К прямым тригонометрическим относятся sin (p), cos (p), tg (p) и ctg (p), а к обратным — arcsin (p), arccos (p), arctg (p) и arcctg (p). Следует отметить, что гиперболическими являются sh, ch, th, cth, sech и csch. Показательная — z = a^y, а логарифмической — функция, имеющая операцию логарифмирования. Простые линейные могут объединяться с нелинейными. В таких случаях правило пропорции также не соблюдается.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)Скачать

Математика 6 класс (Урок№51 - Решение задач с помощью уравнений. Часть 1.)

Универсальный алгоритм

Алгоритм позволяет решать уравнения, и найти неизвестный член пропорции. Для его реализации следует знать теорию о пропорциях, и методику обнаружения нелинейных функций. Он состоит из нескольких шагов, которые помогут правильно вычислить необходимую величину:

  1. Записать соотношение пропорции.
  2. Проанализировать выражение в пункте под первым номером на наличие нелинейных функций и составляющих.
  3. Применить свойство умножения «крест-накрест».
  4. Перенести неизвестные в левую сторону, а известные — в правую. Необходимо обратить внимание на знаки: умножение — деление, сложение — вычитание и положительная величина становится отрицательной.
  5. Решить уравнение.

Существуют различные приложения, позволяющие решить пропорцию. Онлайн-калькулятор позволяет вычислить неизвестный компонент очень быстро. Кроме того, результат вычислений отображается после проведения расчетов. Для реализации последнего пункта необходимо рассмотреть некоторые типы равенств с неизвестными.

Видео:6 класс, 42 урок, Решение уравненийСкачать

6 класс, 42 урок, Решение уравнений

Уравнения с пропорцией

Существуют уравнения в виде обыкновенной дроби, в которых необходимо найти неизвестную величину. Для этого нужно рассмотреть основные их виды:

Как решать уравнения с пропорциями 6 класс с 2 иксами

Различаются они степенным показателем. У первого типа степень переменной соответствует 1, второго — двойке, третьего — тройке и четвертого — четверке. При решении таких типов нужно выписать знаменатели отдельно, и решить их. Такие корни не являются решением исходной пропорции, поскольку знаменатели должны быть отличны от нулевого значения.

Решение линейного типа сводится к применению правила «крест-накрест». После чего нужно руководствоваться четвертым пунктом универсального алгоритма. Квадратное уравнение (ap 2 + bp + c = 0) решается при помощи разложения на множители (существует высокая вероятность сокращения степени с последующим упрощением выражения) или с использованием дискриминанта (D = b 2 — 4ac). Корни зависят от его значения:

  1. Два корня, когда D > 0: р1 = (-b — [D]^(½)) / 2a и р2 = (-b + [D]^(½)) / 2a.
  2. При D равном 0 (один): р = (-b) / 2a.
  3. Если D 2 — t — 5t + 5 =t 2 -5t -2t + 10. Перенести все слагаемые в левую сторону с противоположными знаками: t 2 — t — 5t + 5 + 5t — t 2 — 10 + 2t = 0. Приведя подобные слагаемые, выражение будет иметь такой вид: t = 5. Решением пропорции является значение t = 5.

Таким образом, для решения пропорций необходимо знать основные свойства, определение типа выражения по методике и алгоритм расчета.

Видео:Решить уравнение - Математика - 6 классСкачать

Решить уравнение - Математика - 6 класс

Калькулятор пропорций онлайн

Вводить можно целые числа, десятичные дроби, правильные и неправильные дроби -5, 5, 0.25, -1.25, 10/8, -1/2 и.т.д.

Если вам необходимо ввести смешанное число то предварительно его нужно преобразовать в неправильную дробь. Т.е. 3 целые 1/3 нужно будет записать как 10/3

Поле которое необходимо рассчитать можно оставить пустым или ввести любую букву латинского(английского) алфавита.

В расчётное поле можно также вводить значения с переменными вида: 5x, 1.2x, 5/x, x/5, 3x/2, 2/3x. Т.е. если вам надо посчитать (2/3)*х то нужно записать как 2x/3. Если надо посчитать (1/2)*(1/x) то нужно будет ввести 1/2x.

Видео:Решение уравнений - математика 6 классСкачать

Решение уравнений - математика 6 класс

Как решать пропорции — правила, методы и примеры вычислений

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:6 кл.Пропорция.Решение уравненияСкачать

6 кл.Пропорция.Решение уравнения

Общие сведения

Изучение какого-либо термина в математике начинается с определения. Пропорцией вида x / y = v / z (x: y = v: z) называется равенство отношений двух чисел. Она представлена в виде правильной дроби, и состоит из следующих элементов, которые называются крайними (x и z) и средними (y и v) членами.

Следует отметить, что в некоторых сферах пропорциональная зависимость может быть представлена в немного другом виде. В этом случае знак равенства не указывается. Для удобства используется символ деления «:». Записывается в таком виде: a: b: c. Объяснение такой записи очень простое: для приготовления какого-либо вещества нужно использовать «а» частей одного компонента, b — другого и с — третьего.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Знак равенства не имеет смысла указывать, поскольку этот тип пропорциональной зависимости является абстрактным. Неизвестно, какой результат получится на выходе. Если взять за единицу измерения массу в кг, то и конечный результат получится в кг. В этом случае решать пропорцию не нужно — достаточно просто подставить данные, и получить результат.

Бывают случаи, когда следует посчитать пропорцию в процентах. Пример — осуществление некоторых финансовых операций.

Сферы применения

Пропорция получила широкое применение в физике, алгебре, геометрии, высшей и прикладной математике, химии, кулинарии, фармацевтике, медицине, строительстве и т. д. Однако ее нужно применять только в том случае, когда элементы соотношения не подчиняются какому-либо закону (методика исследования величин такого типа будет рассмотрена ниже), и не являются неравенствами.

В алгебре существует класс уравнений, представленных в виде пропорции. Они бывают простыми и сложными. Для решения последних существует определенный алгоритм. Кроме того, в геометрии встречается такие термин, как «гомотетия» или коэффициент подобия. Он показывает, во сколько раз увеличена или уменьшена фигура относительно оригинала.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Масштаб в географии является также пропорцией, поскольку он показывает количество см или мм, которые содержатся в какой-либо единице, зависящей от карты (например, в 1 см = 10 км). Специалисты применяютправило пропорции в высшей и прикладной математике. Расчет количества реактивов, вступающих в реакцию, для получения другого вещества применяется также пропорциональная зависимость.

Каждая хозяйка также применяет это соотношение для приготовления различных блюд и консерваций. В этом случае пропорция имеет немного другой вид: 1:2. Все компоненты берутся частями с одинаковыми размерностями или единицами измерения. Например, на 1 кг клубники необходимо 2 кг сахара. Расшифровывается такое соотношение следующим образом: 1 часть одного и 2 части другого компонентов.

В фармацевтике она также применяется, поскольку необходимо очень точно рассчитать массовую долю для каждого компонента лекарственного препарата. В медицине используется пропорциональная зависимость для назначения лекарства больному, дозировка которого зависит от массы тела человека.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Для приготовления различных строительных смесей она также используется, однако у нее такой же вид, как и для кулинарии. Например, для приготовления бетона М300 необходимы такие компоненты: цемент (Ц), щебень (Щ), песок (П) и вода (В). Далее следует воспользоваться таким соотношением, в котором единицей измерения является ведро: 1: 5: 3: 0,5. Запись расшифровывается следующим образом: для приготовления бетонной смеси необходимо 1 ведро цемента, 5 щебня, 3 песка и 0,5 воды.

Основные свойства

Для решения различных задач нужно знать основные свойства пропорции. Они действуют только для соотношения x / y = v / z. К ним можно отнести следующие формулы:

  1. Обращение или обратное пропорциональное соотношение: [x / y = v / z] = [y / x = z / v].
  2. Перемножение «крест-накрест»: x * z = y * v.
  3. Перестановка: x / v = y / z и v / x = z / y.
  4. Увеличение или уменьшение: x + у / y = v + z / z и x — у / y = v — z / z.
  5. Составление через арифметические операции сложения и вычитания: (x + v) / (y + z) = x / y = v / z и (x — v) / (y — z) = x / y = v / z.

Первое свойство позволяет перевернуть правильные дроби соотношений двух величин. Это следует делать одновременно для левой и правой частей. Умножение по типу «крест-накрест» считается главным соотношением. С помощью его решаются уравнения и упрощаются выражения, в которых нужно избавиться от дробных частей. Найти неизвестный член пропорции можно также с помощью второго свойства, формулировка которого следующая: произведение крайних эквивалентно произведению средних элементов (членов).

Как решать уравнения с пропорциями 6 класс с 2 иксами

Очень часто члены соотношения необходимо переставить для оптимизации вычислений. Для этого применяется свойство перестановки. При этом следует внимательно подставлять значения в формулу, поскольку неправильные действия могут существенно исказить результат решения. Этого можно не заметить. Для осуществления проверки следует подставить значение неизвестной в исходную пропорцию. Если равенство соблюдается, то получен верный результат. В противном случае необходимо найти ошибку или повторить вычисления.

Увеличение или уменьшение пропорции следует производить по четвертому свойству. Основной принцип: равенство сохраняется в том случае, когда уменьшение или увеличение числителя происходит на значение, которое находится в знаменателе. Нельзя отнимать от пропорции (от числителя и знаменателя равные числовые значения), поскольку соотношение не будет выполняться. Это является распространенной ошибкой, которая влечет за собой огромные погрешности при расчетах или неверное решение экзаменационных заданий.

Составить пропорцию можно с помощью вычитания и сложения. Этот прием применяется редко, но в некоторых заданиях может использоваться. Суть его заключается в следующем: отношение суммы крайнего и среднего элемента к суммарному значению других крайнего и среднего членов, которое равно отношению крайнего к среднему значению. Однако не ко всем выражениям можно применять свойства пропорции. Следует рассмотреть методику их определения.

Видео:Решение задач на проценты способом пропорции. 6 класс.Скачать

Решение задач на проценты способом пропорции. 6 класс.

Методика исследования

Пропорция применима только к линейным законам изменения величин. Примером этого является поведение простой тригонометрической функции z = sin (p). Величина «z» — зависимая переменная, которая называется значением функции. Переменная «p» — независимая величина или аргумент. В данном контексте она принимает значения углов в градусах. Для демонстрации того, что пропорция «не работает» необходимо подставить некоторые данные.

Кроме того, нужна таблица значений тригонометрических функций некоторых углов. Необходимо предположить, что p = 30, тогда z = sin (30) = 0,5. По свойству пропорции можно найти значение функции при р = 60, не используя таблицу. Для этого нужно составить пропорцию с неизвестным: 30 / 0,5 = 60 / х. Чтобы найти х («икс»), нужно воспользоваться свойством умножения «крест-накрест»: 60 * 0,5 = 30 * х. Уравнение решается очень просто: х = 60 * 0,5 / 30 = 30 / 30 = 1. Ответ получен очень быстро, и нет необходимости смотреть табличное значение.

Как решать уравнения с пропорциями 6 класс с 2 иксами

В этом случае не так все просто. Если воспользоваться вышеописанной таблицей, то z = sin (60) = [3^(½)] / 2. Полученное значение не равно 1. Причина несоответствия — нелинейность функции. Математики для облегчения вычислений предлагают методику определения нелинейных выражений. Она состоит из следующих положений:

  1. Записать функцию.
  2. Рассмотреть составные части.
  3. Если простой тип, перейти к 5 пункту.
  4. Сложная — разложить на простые элементы, а затем перейти к 5 пункту.
  5. Определить тип зависимости ее значения от аргумента: линейная или нелинейная. Если получен второй тип, то свойства пропорции применить невозможно.
  6. Определить тип линейности, построив график.

По таким правилам были исследовано огромное количество функций. К нелинейным относятся следующие: прямые и обратные тригонометрические, гиперболические, показательные, логарифмические и сложные математические, состоящие из нелинейных зависимостей.

К прямым тригонометрическим относятся sin (p), cos (p), tg (p) и ctg (p), а к обратным — arcsin (p), arccos (p), arctg (p) и arcctg (p). Следует отметить, что гиперболическими являются sh, ch, th, cth, sech и csch. Показательная — z = a^y, а логарифмической — функция, имеющая операцию логарифмирования. Простые линейные могут объединяться с нелинейными. В таких случаях правило пропорции также не соблюдается.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Видео:Прямо пропорциональная и обратно пропорциональная зависимость. 6 класс.Скачать

Прямо пропорциональная и обратно пропорциональная зависимость. 6 класс.

Универсальный алгоритм

Алгоритм позволяет решать уравнения, и найти неизвестный член пропорции. Для его реализации следует знать теорию о пропорциях, и методику обнаружения нелинейных функций. Он состоит из нескольких шагов, которые помогут правильно вычислить необходимую величину:

  1. Записать соотношение пропорции.
  2. Проанализировать выражение в пункте под первым номером на наличие нелинейных функций и составляющих.
  3. Применить свойство умножения «крест-накрест».
  4. Перенести неизвестные в левую сторону, а известные — в правую. Необходимо обратить внимание на знаки: умножение — деление, сложение — вычитание и положительная величина становится отрицательной.
  5. Решить уравнение.

Существуют различные приложения, позволяющие решить пропорцию. Онлайн-калькулятор позволяет вычислить неизвестный компонент очень быстро. Кроме того, результат вычислений отображается после проведения расчетов. Для реализации последнего пункта необходимо рассмотреть некоторые типы равенств с неизвестными.

Уравнения с пропорцией

Существуют уравнения в виде обыкновенной дроби, в которых необходимо найти неизвестную величину. Для этого нужно рассмотреть основные их виды:

Как решать уравнения с пропорциями 6 класс с 2 иксами

Различаются они степенным показателем. У первого типа степень переменной соответствует 1, второго — двойке, третьего — тройке и четвертого — четверке. При решении таких типов нужно выписать знаменатели отдельно, и решить их. Такие корни не являются решением исходной пропорции, поскольку знаменатели должны быть отличны от нулевого значения.

Решение линейного типа сводится к применению правила «крест-накрест». После чего нужно руководствоваться четвертым пунктом универсального алгоритма. Квадратное уравнение (ap 2 + bp + c = 0) решается при помощи разложения на множители (существует высокая вероятность сокращения степени с последующим упрощением выражения) или с использованием дискриминанта (D = b 2 — 4ac). Корни зависят от его значения:

  1. Два корня, когда D > 0: р1 = (-b — [D]^(½)) / 2a и р2 = (-b + [D]^(½)) / 2a.
  2. При D равном 0 (один): р = (-b) / 2a.
  3. Если D 2 — t — 5t + 5 =t 2 -5t -2t + 10. Перенести все слагаемые в левую сторону с противоположными знаками: t 2 — t — 5t + 5 + 5t — t 2 — 10 + 2t = 0. Приведя подобные слагаемые, выражение будет иметь такой вид: t = 5. Решением пропорции является значение t = 5.

Таким образом, для решения пропорций необходимо знать основные свойства, определение типа выражения по методике и алгоритм расчета.

Задачи на пропорции

Как решать уравнения с пропорциями 6 класс с 2 иксами

О чем эта статья:

5 класс, 7 класс, 8 класс

Понятие пропорции

Чтобы решать задачи на тему пропорции, вспомним главное определение.

Пропорция в математике — это равенство между отношениями двух или нескольких пар чисел или величин.

Главное свойство пропорции:

Произведение крайних членов равно произведению средних.

Как решать уравнения с пропорциями 6 класс с 2 иксами

где a, b, c, d — члены пропорции, a, d — крайние члены, b, c — средние члены.

Как решать уравнения с пропорциями 6 класс с 2 иксами

Вывод из главного свойства пропорции:

  • Крайний член равен произведению средних, которые разделены на другой крайний. То есть для пропорции a/b = c/d:
    Как решать уравнения с пропорциями 6 класс с 2 иксами
  • Средний член равен произведению крайних, которые разделены на другой средний. То есть для пропорции a/b = c/d:
    Как решать уравнения с пропорциями 6 класс с 2 иксами

Решить пропорцию — значит найти неизвестный член. Свойство пропорции — главный помощник в решении.

Рассмотрим легкие и сложные задачи, которые можно решить с помощью пропорции. 5, 6, 7, 8 класс — неважно, всем школьникам полезно проанализировать занимательные задачки.

Задачи на пропорции с решением и ответами

Свойства пропорции придумали не просто так! С их помощью можно найти любой из членов пропорции, если он неизвестен. Решим 10 задач на пропорцию.

Задание 1. Найти неизвестный член пропорции: x/2 = 3/1

В этом примере неизвестен крайний член, поэтому умножим средние члены и разделим полученный результат на известный крайний член:

Задание 2. Найти неизвестный член: 1/3 = 5/y

Задача 3. Решить пропорцию: 30/x = 5/8

Задание 4. Решить: 7/5 = y/10

Задание 5. Известно, что 21x = 14y. Найти отношение x — к y

    Сначала сократим обе части равенства на общий множитель 7: 21x/7 = 14y/7.

  • Теперь разделим обе части на 3y, чтобы в левой части убрать множитель 3, а в правой части избавиться от y: 3x/3y = 2y/3y.
  • После сокращения отношений получилось: x/y = 2/3.
  • На следующем примере мы узнаем как составить пропорцию по задаче💡

    Задание 6. Из 300 подписчиков в инстаграм 108 человек — поставили лайк под постом. Какой процент всех подписчиков составляют те, кому понравился пост и они поставили лайк?

      Примем всех подписчиков за 100% и запишем условие задачи кратко:

  • Составим пропорцию: 300/108 = 100/x.
  • Найдем х: (108 * 100) : 300 = 36.
  • Ответ: 36% всех подписчиков поставили лайк под постом.

    Задание 7. Подруга Гарри Поттера при варке оборотного зелья использовала водоросли и пиявки в отношении 5 к 2. Сколько нужно водорослей, если есть только 450 грамм пиявок?

    • Составим пропорцию: 5/2 = x/450.
    • Найдем х: (5 * 450) : 2 = 1125.

    Ответ: на 450 грамм пиявок нужно взять 1125 гр водорослей.

    Задание 8. Известно, что арбуз состоит на 98% из воды. Сколько воды в 5 кг арбуза?

    Вес арбуза (5 кг) составляет 100%. Вода — 98% или х кг.

    Ответ: в 5 кг арбуза содержится 4,9 кг воды.

    Перейдем к примерам посложнее. Рассмотрим задачу на пропорции из учебника по алгебре за 8 класс.

    Задание 9. Папин автомобиль проезжает от одного города до другого за 13 часов со скоростью 75 км/ч. Сколько времени ему понадобится, если он будет ехать со скоростью 52 км/ч?

    Скорость и время связаны обратно пропорциональной зависимостью: чем больше скорость, тем меньше времени понадобится.

      Составим пропорцию: v1/v2 = t2/t1.

    Соотношения равны, но перевернуты относительно друг друга.

    Подставим известные значения: 75/52 = t2/13

    t2 = (75 * 13)/52 = 75/4 = 18 3/4 = 18 ч 45 мин

    Ответ: 18 часов 45 минут.

    Задание 10. 24 человека за 5 дней раскрутили канал в телеграм. За сколько дней выполнят ту же работу 30 человек, если будут работать с той же эффективностью?

    1. В заполненном столбце стрелку ставим в направлении от большего числа к меньшему.

    2. Чем больше людей, тем меньше времени нужно для выполнения определенной работы (раскрутки канала). Значит, это обратно пропорциональная зависимость.

    3. Поэтому направим вторую стрелку в противоположную сторону. Обратная пропорция выглядит так:

    Как решать уравнения с пропорциями 6 класс с 2 иксами

      Пусть за х дней могут раскрутить канал 30 человек. Составляем пропорцию:

    Чтобы найти неизвестный член пропорции, нужно произведение средних членов разделить на известный крайний член:

  • Значит, 30 человек раскрутят канал за 4 дня.
  • Онлайн-подготовка к ОГЭ по математике — отличный способ снять стресс и закрепить знания перед экзаменом.

    Поделиться или сохранить к себе: