Как решать уравнения с mod

Уравнение с модулем

Уравнение с модулем достаточно сложная тема для начинающих. Учитывая это обстоятельство, в данный урок войдут только элементарные уравнения.

Что такое уравнение с модулем и как его решить?

В уравнениях с модулем неизвестное значение содержится под знáком модуля. Например:

Уравнения с модулем бывают разными и решаются они различными методами. Нельзя сказать что какой-то метод наиболее рационален. Всё зависит от исходного уравнения.

Например, в каких-то уравнениях можно просто угадать корень, в то время как в других нужно логически мыслить, раскрывать модули, выполнять тождественные преобразования. Человек волен выбирать каким методом решения пользоваться.

К примеру, решим вышеприведённое уравнение |x − 2| = 5 . Допустим, что мы не знаем ни одного метода решения. Как бы мы его решили?

Прежде всего заметим, что правая часть данного уравнения равна числу 5. Слева же располагается модуль из выражения |x − 2| . Это означает что подмодульное выражение x − 2 должно равняться числу 5 или −5

Как решать уравнения с mod

Значит нужно выяснить при каких значениях переменной x подмодульное выражение x − 2 будет обращаться в число 5 или −5.

Искомые значения x найдутся если приравнять подмодульное выражение к числу 5 и −5, а затем поочерёдно решить каждое из уравнений:

Как решать уравнения с mod

Значит корнями уравнения |x − 2| = 5 являются числа 7 и −3.

Большинство элементарных уравнений с модулем можно решить используя правило раскрытия модуля. Для этого раскрывают модуль содержащийся в уравнении, затем получившееся выражение подставляют в исходное уравнение вместо выражения с модулем.

Раскрывать модуль нужно для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля.

Решим наше уравнение |x − 2| = 5 с помощью правила раскрытия модуля. Выпишем отдельно его модуль и раскроем его:

Как решать уравнения с mod

В этой конструкции говорится, что если подмодульное выражение x − 2 больше или равно нулю, то модуль раскроется как x − 2, и тогда исходное уравнение примет вид x − 2 = 5 , откуда x = 7

Как решать уравнения с mod

А если же подмодульное выражение x − 2 меньше нуля, то модуль раскроется как −(x − 2) . Тогда исходное уравнение примет вид −(x − 2) = 5 , откуда x = −3

Как решать уравнения с mod

Итак, уравнение |x − 2|= 5 имеет корни 7 и −3. Для проверки подстáвим числа 7 и −3 в исходное уравнение вместо x . Тогда получим верное равенство:

Как решать уравнения с mod

Подмодульное выражение как правило содержит такое x, которое может обращать всё подмодульное выражение как в положительное число, так и в отрицательное, либо вообще в ноль.

Поэтому модуль и раскрывается для каждого из случаев: когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля. Каждый из случаев будет давать независимое уравнение со своим корнем.

Вернёмся теперь к моменту, где мы раскрывали модуль:

Как решать уравнения с mod

Условия x − 2 ≥ 0 и x − 2 являются неравенствами, которые можно решить, тем самым приведя их к простому виду:

Как решать уравнения с mod

Символ ⇔ означает равносильность. В данном случае указывается, что условие x − 2 ≥ 0 равносильно условию x ≥ 2 , а условие x − 2 равносильно условию x

Такой вид записи условий позволяет однозначно сказать при каких x модуль будет раскрываться с плюсом, а при каких с минусом.

В первом случае получилось условие x ≥ 2. Это значит что при всех x бóльших либо равных 2, модуль |x − 2| будет раскрываться с плюсом. Так, при x = 7, подмодульное выражение станет равно 5

А значит дальнейшее раскрытие будет с плюсом

Таким же образом модуль |x − 2| будет вести себя и с другими значениями x на промежутке x ≥ 2 . То есть, будет раскрываться с плюсом. Примеры:

При x = 3, |3 − 2|=|1| = 1
При x = 4, |4 − 2|=|2| = 2
При x = 2, |2 − 2|=|0| = 0
При x = 13, |13 − 2|=|11| = 11

А во втором случае получилось условие x . Это значит что при всех x мéньших 2, модуль будет раскрываться с минусом. Так, при x = −3, подмодульное выражение опять же станет равно 5. Но в промежуточных вычислениях можно увидеть, что модуль раскрывается с минусом:

Модуль |x − 2| будет вести себя так же и с другими значениями x на промежутке x . Примеры:

При x = 1, |1 − 2|=|−1| = −(−1) = 1
При x = 0, |0 − 2|=|−2| = −(−2) = 2
При x = −1, |−1 − 2|=|−3| = −(−3) = 3
При x = −9,|−9 − 2|=|−11| = −(−11) = 11

Число 2 является своего рода точкой перехода, в которой модуль |x − 2| меняет свой порядок раскрытия.

Можно представить как модуль |x − 2| двигался по маршруту от минус бесконечности до числа 2, раскрываясь в каждой точке с минусом. Попав в точку 2, модуль поменял свой порядок раскрытия — а именно раскрывшись в точке 2 с плюсом, он далее стал раскрываться с плюсом, двигаясь в правую часть к плюс бесконечности.

С помощью координатной прямой это можно представить так:

Как решать уравнения с mod

Красные знаки минуса и плюса указывают, как будет раскрываться модуль |x − 2| на промежутках x и x ≥ 2 .

Точку перехода можно найти для любого модуля. Для этого нужно узнать при каких x подмодульное выражение равно нулю. Ноль это то значение, до и после которого модуль всегда сохраняет свой знак. Это следует из правила раскрытия модуля:

Как решать уравнения с mod

В этом примере в момент когда x станет равным нулю, модуль |x| раскроется с плюсом и далее при всех x , бóльших нуля, будет раскрываться с плюсом. Напротив, при всех x , мéньших нуля модуль будет раскрываться с минусом:

Как решать уравнения с mod

А например для модуля |2x + 6| точкой перехода будет число −3 , потому что при его подстановке в подмодульное выражение 2x + 6 вместо x, данное подмодульное выражение станет равно нулю. Изобразим это на рисунке:

Как решать уравнения с mod

При всех x, бóльших либо равных −3 , модуль будет раскрываться с плюсом. Примеры:

При x = −3, |2 × (−3) + 6| = |0| = 0
При x = 4, |2 × 4 + 6| = |14| = 14
При x = 5, |2 × 5 + 6| = |16| = 16

А при всех x, мéньших 3, модуль будет раскрываться с минусом. Примеры:

При x = −4, |2 × (−4) + 6| = |−2| = −(−2) = 2
При x = −5, |2 × (−5) + 6| = |−4| = −(−4) = 4
При x = −6, |2 × (−6) + 6| = |−6| = −(−6) = 6

Пример 2. Решить уравнение |x| + 3x = −2

Решение

Раскроем модуль, который содержится в левой части уравнения:

Как решать уравнения с mod

Если x ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 3x = −2 . Сразу решим это уравнение:

Как решать уравнения с mod

Теперь рассмотрим второй случай — когда xx + 3x = −2 . Решим и это уравнение:

Как решать уравнения с mod

Получили корни Как решать уравнения с modи −1.

Выполним проверку, подставив найденные корни в исходное уравнение. Проверим корень Как решать уравнения с mod

Как решать уравнения с mod

Видим, что при подстановке корня Как решать уравнения с modисходное уравнение не обращается в верное равенство. Значит Как решать уравнения с modне является корнем исходного уравнения.

Проверим теперь корень −1

Как решать уравнения с mod

Получили верное равенство. Значит из двух найденных решений только −1 является корнем уравнения.

Ответ: −1.

Здесь можно сделать важный вывод. В уравнениях с модулем найденные корни не всегда удовлетворяют исходному уравнению. Чтобы убедиться в правильности своего решения, нужно выполнять проверку, подставляя найденные корни в исходное уравнение.

Кроме того, проверить является ли найденное значение корнем уравнения можно с помощью условия, согласно которому был раскрыт модуль.

Так, в данном примере мы раскрывали модуль |x| для случаев когда подмодульное выражение больше или равно нулю, и когда подмодульное выражение меньше нуля:

Как решать уравнения с mod

Условия x≥0 и x x + 3x = −2 . Корнем этого уравнения стало число Как решать уравнения с mod. Это число не удовлетворяет условию x ≥ 0, согласно которому был раскрыт модуль |x| и согласно которому было получено уравнение x + 3x = −2 . Действительно, при подстановке числа Как решать уравнения с modв неравенство x ≥ 0 получается неверное неравенство.

А при раскрытии модуля со знаком минус, получилось уравнение −x + 3x = −2 . Корнем этого уравнения стало число −1 . Это число удовлетворяет условию x −x + 3x = −2 . Действительно, при подстановке числа −1 в неравенство x получается верное неравенство.

Пример 3. Решить уравнение |1 − 2x| − 4x = −6

Решение

Как решать уравнения с mod

При раскрытии модуля |1 − 2x| со знаком плюс, получим уравнение 1 − 2x − 4x = −6 . Решим его:

Как решать уравнения с mod

При раскрытии модуля |1 − 2x| со знаком минус, получим уравнение −1 + 2x − 4x = −6. Решим его:

Как решать уравнения с mod

Получили корни Как решать уравнения с modи Как решать уравнения с mod.

Корень Как решать уравнения с modне удовлетворяет условию Как решать уравнения с mod, значит не является корнем исходного уравнения.

Корень Как решать уравнения с modудовлетворяет условию Как решать уравнения с mod, значит является корнем исходного уравнения. Проверка также покажет это:

Как решать уравнения с mod

Ответ: Как решать уравнения с mod.

Пример 4. Решить уравнение | x 2 − 3x | = 0

Решение

Если модуль числа равен нулю, то подмодульное выражение тоже равно нулю:

Как решать уравнения с mod

То есть можно не раскрывать модуль. Достаточно узнать при каких значениях x подмодульное выражение равно нулю. В данном случае для этого нужно решить неполное квадратное уравнение:

Как решать уравнения с mod

Получили корни 0 и 3. Оба корня удовлетворяют исходному уравнению. Проверка показывает это:

Как решать уравнения с mod

Пример 5. Решить уравнение x 2 − 5|x| + 6 = 0

Выпишем отдельно модуль |x| и раскроем его:

Как решать уравнения с mod

При раскрытии модуля |x| со знаком плюс, исходное уравнение примет вид x 2 − 5x + 6 = 0 . Это квадратное уравнение. Решим его с помощью дискриминанта:

Как решать уравнения с mod

Оба корня удовлетворяют условию x ≥ 0 , значит являются корнями исходного уравнения.

При раскрытии модуля |x| со знаком минус, исходное уравнение примет вид x 2 + 5x + 6 = 0 . Это тоже квадратное уравнение. Решим его как и предыдущее:

Как решать уравнения с mod

При условии x ≥ 0 , модуль из уравнения раскрылся с плюсом, получились корни 3 и 2. Оба корня удовлетворяют условию x ≥ 0 , значит удовлетворяют и исходному уравнению.

При условии x , модуль из уравнения раскрылся с минусом, получились корни −2 и −3. Оба корня удовлетворяют условию x , значит удовлетворяют и исходному уравнению.

Ответ: 3, 2, −2 и −3.

Сведéние уравнения с модулем в совокупность

Большинство элементарных уравнений с модулем можно решить сведéнием их к так называемой совокупности уравнений.

Элементарными мы будем называть те уравнения с модулем, в которых левая часть является модулем из какого-то выражения, а правая часть — числом. Например, |x| = 3 или |2x − 1| = 3.

Решим наше самое первое уравнение |x − 2| = 5 сведéнием его к совокупности уравнений. Корнями этого уравнения были числа 7 и −3. Это уравнение тоже считается элементарным.

Если раскрыть модуль |x − 2| со знаком плюс, то уравнение |x − 2| = 5 примет вид x − 2 = 5 .

Если раскрыть модуль |x − 2| со знаком минус, то уравнение |x − 2| = 5 примет вид −(x − 2) = 5 , то есть −x + 2 = 5 .

Видим, что из уравнения |x − 2| = 5 получилось два уравнения: x − 2 = 5 и −x + 2 = 5 . Причём каждое из уравнений имеет свой собственный корень. Уравнение x − 2 = 5 имеет корень 7, а уравнение −x + 2 = 5 — корень −3

Выпишем уравнения x − 2 = 5 и −x + 2 = 5 и объединим их квадратной скобкой:

Как решать уравнения с mod

Такой вид записи называют совокупностью уравнений.

Совокупность уравнений — это несколько уравнений, объединённых квадратной скобкой, и имеющих множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Так, число 7 является решением совокупности Как решать уравнения с modпотому что это число удовлетворяет первому уравнению х − 2 = 5 .

Число −3 тоже является решением данной совокупности, поскольку удовлетворяет второму уравнению − х + 2 = 5.

Вместе же числа 7 и −3 образуют множество решений данной совокупности.

В отличие от системы уравнений, совокупность состоит из уравнений, которые не зависят друг от друга. Для каждого уравнения, входящего в совокупность, значение переменной x будет разным. А в системе уравнений значение переменной x удовлетворяет как первому уравнению, так и второму.

Решить совокупность уравнений означает найти множество решений, которые удовлетворяют хотя бы одному из уравнений, входящих в данную совокупность.

Решим каждое уравнение совокупности Как решать уравнения с modпо-отдельности. Это обычные линейные уравнения, которые легко решаются:

Как решать уравнения с mod

Символ ⇔ как было ранее сказано означает равносильность. В данном случае он указывает на то, что все получающиеся совокупности равносильны друг другу.

Итак, мы получили корни 7 и −3. Поскольку эти два числа являются решениями совокупности Как решать уравнения с mod, то значит являются и решениями уравнения |x − 2| = 5.

В исходную совокупность можно включать условия, согласно которым был раскрыт модуль. В этом случае каждое уравнение вместе со своим условием обрамляется знаком системы.

Дополним предыдущую совокупность условиями, согласно которым был раскрыт модуль. К первому уравнению x − 2 = 5 добавим условие x − 2 ≥ 0 , а ко второму уравнению −x + 2 = 5 добавим условие x − 2

Как решать уравнения с mod

Решение каждого уравнения должно удовлетворять своему условию. Поэтому условия и уравнения обрамлены знáком системы.

Решим получившуюся совокупность с условиями. Условия являются неравенствами, которые тоже можно решать:

Как решать уравнения с mod

В первом случае получили корень 7 , который удовлетворяет своему условию x ≥ 2 . Во втором случае получили корень −3 , который удовлетворяет своему условию x .

Не следует бояться таких записей. Это лишь подробное решение, показывающее что откуда взялось. Чаще всего решение можно записать покороче.

Существует схема для сведéния в совокупность уравнения вида |x| = a . Выглядит эта схема так:

Как решать уравнения с mod

Данная схема легко позволяет свести уравнение с модулем в совокупность. Эту схему можно прочитать так: « Если выражение |x| равно a, то подмодульное выражение равно a или −a »

Квадратная скобка в совокупностях заменяет собой слово «или».

Например, уравнение |x| = 5 можно свести в совокупность, рассуждая так: если выражение |x| равно 5, то подмодульное выражение равно 5 или −5 .

Как решать уравнения с mod

А применительно к нашему предыдущему примеру можно рассуждать так: если |x − 2| равно 5 , то подмодульное выражение равно 5 или −5

Как решать уравнения с mod

Это та же самая совокупность, что и в прошлый раз. Убедитесь в этом, умножив обе части второго уравнения на −1.

В уравнениях где слева модуль, а справа число, мы будем чаще использовать именно такой способ записи совокупности. Он позволяет не прибегать к правилу раскрытия модуля, а сразу получить совокупность.

Но надо помнить, что эта схема будет работать только для уравнений вида |x| = a . То есть для уравнений, у которого слева модуль, а справа число.

Пример 2. Решить уравнение |2x − 1| = 3

Решение

У этого уравнения слева модуль, а справа число. Значит его можно свести в совокупность, воспользовавшись схемой Как решать уравнения с mod

Если выражение |2x − 1| равно 3, то подмодульное выражение 2x − 1 равно 3 или −3

Как решать уравнения с mod

Теперь решим каждое уравнение совокупности по отдельности:

Как решать уравнения с mod

Ответ: 2 и −1.

Пример 3. Решить уравнение |x + 2| − 3 = 8

Решение

В некоторых случаях прежде чем свести исходное уравнение в совокупность, его следует упростить.

Так, в данном случае −3 следует перенести в правую часть, изменив знак:

Как решать уравнения с mod

Получили уравнение |x + 2| = 11 . Если выражение |x + 2| равно 11, то подмодульное выражение x + 2 равно 11 или −11

Как решать уравнения с mod

Решим данную совокупность:

Как решать уравнения с mod

Ответ: 9 и −13.

Пример 4. Решить уравнение 4|x| + 4 = 2|x| + 10

Решение

Перенесём 2|x| из правой части в левую часть, а 4 перенесём из левой части в правую часть:

Разделим обе части получившегося уравнения на 2. Тогда получится простое уравнение с модулем:

Как решать уравнения с mod

Ответ: 3 и −3.

Пример 5. Решить уравнение Как решать уравнения с mod

Решение

Если выражение |2 − 5x 2 | равно 3, то подмодульное выражение 2 − 5x 2 равно 3 или −3

Как решать уравнения с mod

В обоих уравнениях перенесём 2 в правую часть, изменив знак:

Как решать уравнения с mod

В первом уравнении разделим обе части на −5. Во втором уравнении так же разделим обе части на −5. Тогда получим два квадратных уравнения

Как решать уравнения с mod

Первое уравнение не имеет корней, потому что квадрат любого числа положителен, а в данном случае он равен отрицательному числу. Корнями второго уравнения являются числа 1 и −1, поскольку вторая степень этих чисел равна единице.

Ответ: 1 и −1.

Пример 6. Решить уравнение |x + 6| + 4x = 5

Решение

Данное уравнение не является уравнением вида |x| = a , значит не получится воспользоваться схемой Как решать уравнения с mod.

Чтобы свести данное уравнение в совокупность, нужно сначала раскрыть его модуль, затем записать совокупность из получившихся уравнения.

Раскроем модуль |x + 6|

Как решать уравнения с mod

Если x + 6 ≥ 0 , то модуль раскроется со знаком плюс и тогда исходное уравнение примет вид x + 6 + 4x = 5

Если x + 6 , то модуль раскроется со знаком минус и тогда исходное уравнение примет вид − x − 6 + 4x = 5. Получим следующую совокупность:

Как решать уравнения с mod

Дальнейшее решение элементарно:

Как решать уравнения с mod

Из найденных корней только Как решать уравнения с modявляется корнем исходного уравнения, поскольку удовлетворяет условию x ≥ −6 . А корень Как решать уравнения с modне является корнем уравнения, поскольку не удовлетворяет условию x .

Ответ: Как решать уравнения с mod

Наиболее простой вид

Наиболее простой вид уравнения с модулем выглядит так:

где x — корень уравнения, a — произвольное число, бóльшее или рáвное нулю. То есть a ≥ 0

Если условие a ≥ 0 не выполнено, то уравнение |x|= a корней не имеет. Это следует из определения модуля. Действительно, модуль всегда неотрицателен.

Приведем несколько примеров уравнений вида |x| = a

Пример 1. Решить уравнение |x| = 2

Решение

В данном случае сразу видно, что корнями являются числа 2 и −2. Ведь если вместо x подставить эти числа, то получим верное равенство: |−2| = 2 и |2| = 2. Решение для этого уравнения можно записать, сведя его в совокупность:

«Если выражение |x| равно 2, то подмодульное выражение x равно 2 или −2«

Как решать уравнения с mod

Ответ: 2 и −2

Пример 2. Решить уравнение |−x| = 4

Решение

Если выражение |−x| равно 4, то подмодульное выражение равно 4 или −4

Как решать уравнения с mod

Умножим оба уравнения на −1

Как решать уравнения с mod

Ответ: −4 и 4.

Пример 3. Решить уравнение |x| = −7

В данном случае корней нет, поскольку модуль всегда неотрицателен. А в данном случае модуль равен отрицательному числу.

Если уравнение с модулем не имеет корней, обычно пишут что x принадлежит пустому множеству:

Напомним, что пустым называют множество, не имеющее элементов.

Модуль внутри модуля

Как решать уравнения с mod

В этом уравнении слева располагается модуль, который в свою очередь содержит внутри себя другой модуль, а справа уравнения располагается число. Такой вид уравнения с модулем можно решить, сведя его в совокупность с помощью схемы, которую мы рассмотрели ранее:

Как решать уравнения с mod

В нашем случае если выражение Как решать уравнения с modравно 9, то подмодульное выражение |2 + x| + 3 равно 9 или −9

Как решать уравнения с mod

В получившейся совокупности имеется два уравнения с модулем. Эти уравнения тоже в свою очередь следует свести в совокупность. Но сначала немного упростим эти уравнения. В первом и во втором уравнении перенесем 3 в правую часть, изменив знак. Тогда получим:

Как решать уравнения с mod

Теперь сведём эти уравнения в совокупности. Первое уравнение распадётся на следующую совокупность:

Как решать уравнения с mod

Сразу решим совокупность Как решать уравнения с mod. Первый корень равен 4, второй −8.

Как решать уравнения с mod

Теперь решим второе уравнение |2 + x| = −12 . Но замечаем, что его правая часть равна отрицательному числу. Это уравнение не имеет корней, потому что модуль не может равняться отрицательному числу.

Значит уравнение Как решать уравнения с modимеет корни 4 и −8 . Проверим эти корни, подставив их в исходное уравнение Как решать уравнения с mod

Как решать уравнения с mod

В данном случае оба корня удовлетворяют исходному уравнению.

Ответ: 4 и −8 .

Вообще, уравнение с модулем внутри которого содержится другой модуль, тоже решается различными способами. Какой способ использовать зависит от самогó уравнения. Решим например следующее уравнение:

Как решать уравнения с mod

Здесь уже нельзя использовать схему Как решать уравнения с modпотому что слева располагается не только модуль, но и переменная x . Конечно, переменную x можно перенести в правую часть, и тогда можно будет свести данное уравнение в совокупность:

Как решать уравнения с mod

Но тогда справа появляется переменная x, на которую нужно будет вводить дополнительное ограничение, чтобы правая часть уравнения не стала отрицательной. Такой способ решения мы рассмотрим позже. А пока решим исходное уравнение с помощью правила раскрытия модуля.

Чтобы раскрыть модули данного уравнения нужно сначала определиться где внешний и где внутренний модуль.

В уравнении Как решать уравнения с modвнешним модулем является полностью левая часть Как решать уравнения с mod, а внутренним модулем — выражение Как решать уравнения с mod

Как решать уравнения с mod

Значение внешнего модуля зависит от внутреннего модуля, и раскрываться внешний модуль будет исходя от результата который получился в результате вычисления его подмодульного содержимого.

Например, если x = 3 , то внутренний модуль |3 − x| примет значение 0, и в результате всё подмодульное выражение внешнего модуля станет равно −2 . А это значит что внешний модуль будет раскрываться с минусом.

||3 − x| − x + 1| = ||3 − 3| − 3 + 1| = ||0| − 3 + 1| = |−2| = −(−2) = 2

А если например x = −2 , то внутренний модуль |3 − x| примет значение 5, и в результате всё подмодульное выражение внешнего модуля станет равно 8. А это значит что внешний модуль будет раскрываться с плюсом:

||3 − x| − x + 1| = ||3 − (−2)| − (−2) + 1| = ||5| − (−2) + 1| = | 8 |=8

Поэтому решение будем начинать с раскрытия внутреннего модуля.

Если внутренний модуль раскроется с плюсом, то есть если 3 − x ≥ 0 (что равносильно неравенству x ≤ 3 ), то исходное уравнение примет вид:

Как решать уравнения с mod

Теперь уравнение имеет только внешний модуль. Решим его раскрыв модуль:

Как решать уравнения с mod

Если −2x + 4 ≥ 0, то:

Как решать уравнения с mod

Сейчас нас интересуют только те значения x при которых внутренний модуль раскрывается с плюсом, а это произойдет при условии x ≤ 3. Поэтому для наглядности рядом с найденным корнем указано, что он удовлетворяет условию x ≤ 3

Решаем далее. Если −2x + 4 , то:

Как решать уравнения с mod

Несмотря на то, что оба найденных корня удовлетворяют уравнению |−2x+4|=6−x , мы исключаем корень Как решать уравнения с modиз решений, потому что нас сейчас интересуют только те значения x, при которых внутренний модуль изначального уравнения раскрывается с плюсом. Поэтому рядом с корнем Как решать уравнения с modуказано, что он не удовлетворяет условию x ≤ 3 .

Итак, если внутренний модуль раскрывается с плюсом, исходное уравнение принимает вид |−2x + 4| = 6 − x и корнем этого уравнения является число −2 .

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда 3 − x (что равносильно неравенству x > 3 ). Внутренний модуль будет раскрываться с минусом при всех значениях x больших 3.

Если внутренний модуль раскроется с минусом, то исходное уравнение примет вид:

Как решать уравнения с mod

Модуль −2 равен 2 . Тогда получаем простейшее линейное уравнение, корень которого равен 4

Как решать уравнения с mod

Получили корень 4 , который удовлетворяет условию x > 3 .

В итоге корнями уравнения являются числа −2 и 4.

Ответ: 2 и 4.

Пример 3. Решить уравнение ||x − 1| − 7| = 10

Решение

Слева располагается модуль, а справа число, значит можно применить схему:Как решать уравнения с mod

В данном случае если выражение ||x − 1| 7| равно 10, то подмодульное выражение |x 1| 7 равно 10 или 10. Получится совокупность из двух уравнений:

Как решать уравнения с mod

Упростим получившиеся уравнения. Перенесём число −7 в обоих уравнениях в правую часть, изменив знак:

Как решать уравнения с mod

Второе уравнение корней не имеет. Первое уравнение распадется на совокупность Как решать уравнения с mod, корни которой 18 и −16.

Как решать уравнения с mod

Ответ: 18 и −16 .

Решим это же уравнение с помощью раскрытия модулей. Начнем с внутреннего модуля.

Если x − 1 ≥ 0 (что равносильно x ≥ 1 ), то исходное уравнение примет вид:

Как решать уравнения с mod

Решим получившееся уравнение раскрыв модуль:

Как решать уравнения с mod

Далее решаем уравнение для случаев когда x − 8 ≥ 0 и x − 8

Как решать уравнения с mod

Сейчас нас интересуют те значения, при которых внутренний модуль исходного уравнения раскрывается с плюсом. А это будет при условии, что x ≥ 1 . Этому условию удовлетворяет только значение 18 , поэтому мы пометили его зеленой галочкой для наглядности.

Теперь решим исходное уравнение для случая, когда внутренний модуль раскрывается с минусом, то есть когда x − 1 (или что равносильно неравенству x ).

Если x − 1 , то исходное уравнение примет вид:

Как решать уравнения с mod

Решим получившееся уравнение раскрыв модуль:

Как решать уравнения с mod

Далее решаем уравнение для случаев когда −x − 6 ≥ 0 и −x − 6

Как решать уравнения с mod

Из найденных корней только −16 удовлетворяет условию x .

В итоге корнями уравнения ||x − 1| − 7| = 10 являются числа 18 и −16 .

Видно, что с помощью схемы Как решать уравнения с modданное уравнение решилось легче и быстрее, чем способом раскрытия модулей.

Слева модуль, а справа выражение с переменной

Решим следующее уравнение с модулем:

Здесь так же применима схема:

Как решать уравнения с mod

То есть, если выражение |4x − 3| равно 3x, то подмодульное выражение 4x − 3 должно равняться 3x или −3x.

Как решать уравнения с mod

Но в исходном уравнении переменная x содержится не только под знáком модуля, но и в правой части. Нам пока неизвестно какое значение примет переменная x . Если x примет отрицательное значение, то правая часть станет полностью отрицательной. В этом случае корней не будет, потому что модуль не может равняться отрицательному числу.

Поэтому, если мы хотим решить данное уравнение, то при сведéнии его в совокупность, дополнительно следует ввести ограничение в виде условия 3x ≥ 0 . Это будет означать, что правая часть уравнения |4x − 3| = 3x должна быть больше либо равна нулю:

Как решать уравнения с mod

Совокупность и условие обрамлены знаком системы, потому что решения совокупности должны удовлетворять условию 3x ≥ 0.

Итак, решим совокупность. Условие 3x ≥ 0 является неравенством, которое тоже можно решить:

Как решать уравнения с mod

Получившиеся корни можно подставить в условие x ≥ 0 и посмотреть выполняется ли оно. Если выполняется, то найденные корни удовлетворяют уравнению. В данном случае при подстановке обеих корней в неравенство, оно выполняется. Проверка также показывает, что корни удовлетворяют уравнению:

Как решать уравнения с mod

Пример 2. Решить уравнение |2x − 1| = 5x − 10

Решение

Решим это уравнение таким же образом, как и предыдущее. Введём условие, требующее чтобы правая часть была больше либо равна нулю:

Как решать уравнения с mod

В данном случае только значение 3 удовлетворяет условию x ≥ 2 . Оно же является единственным корнем исходного уравнения. Проверка показывает это:

Как решать уравнения с mod

А число Как решать уравнения с modне удовлетворяет условию x ≥ 2 и не является корнем исходного уравнения. Проверка также показывает это:

Как решать уравнения с mod

Видим, что модуль стал равен отрицательному числу, а это противоречит определению модуля и нашему условию x ≥ 2 .

Пример 3. Решить уравнение Как решать уравнения с mod

Решение

Это уравнение мы решили, когда учились решать уравнения с модулем внутри которых другой модуль. Теперь данное уравнение можно решить, сведя его в совокупность.

Для начала перенесём x в правую часть, изменив знак:

Как решать уравнения с mod

Теперь сведём данное уравнение в совокупность. Дополнительно введём условие в виде неравенства 6 − x ≥ 0

Как решать уравнения с mod

В левой части первого уравнения оставим модуль, остальные члены перенесём в правую часть. Тоже самое сделаем и со вторым уравнением. Также будем решать неравенство 6 − x ≥ 0 , оно позволит в конце проверять найденные корни на соответствие:

Как решать уравнения с mod

Решим первое уравнение. Оно распадётся на следующую совокупность:

Как решать уравнения с mod

Получились корни −2 и 8 . Из них только −2 удовлетворяет условию x ≤ 6 .

Теперь решим второе уравнение. Оно является уравнением, содержащим переменную в правой части. При сведении его в совокупность дополним его условием −7 + 2x ≥ 0

Как решать уравнения с mod

Как решать уравнения с mod

При решении второго уравнения получились корни Как решать уравнения с modи 4. Прежде чем сверять их с условием x ≤ 6 следует сверить их с условием Как решать уравнения с modпод которое решалось уравнение |3 − x| = −7 + 2 x . Условию Как решать уравнения с modудовлетворяет только корень 4 .

В итоге корнями исходного уравнения Как решать уравнения с modявляются числа −2 и 4.

Пример 4. Решить уравнение |4x + 20| = −6x

Решение

На первый взгляд покажется, что данное уравнение не имеет решений, потому что правая часть отрицательна. Но это не совсем так. Правая часть содержит переменную x, которая может принять отрицательное значение или ноль, и это приведёт к тому что правая часть станет положительной либо равной нулю. А такое уравнение имеет право на существование.

В данном случае мы решим это уравнение, сведя его в совокупность. Но при этом укажем, что правая часть должна быть больше или равна нулю:

Как решать уравнения с mod

Из найденных корней только корень −2 удовлетворяет исходному уравнению. Также он удовлетворяет нашему условию x ≤ 0 .

Ответ: −2.

Когда обе части — модули

Решим следующее уравнение:

Обе части этого уравнения являются модулями. Раскроем эти модули. Будем учитывать все возможные случаи при их раскрытии.

Случай 1. Если x + 7 ≥ 0 и 1 + 3x ≥ 0 , то модули в обеих частях раскроются со знаком плюс и тогда исходное уравнение примет вид:

Это простейшее линейное уравнение. Решим его:

Как решать уравнения с mod

Случай 2. Если x + 7 и 1 + 3x то модули в обеих частях раскроются со знаком минус и тогда исходное уравнение примет вид:

Раскроем скобки, получим:

Замечаем, что если умножить обе части этого уравнения на −1 , то получается уравнение x + 7 = 1 + 3 x . А это уравнение мы получали в результате раскрытия модулей со знаком плюс.

То есть уравнения x + 7 = 1 + 3x и −x − 7 = −1 − 3x являются равносильными, а значит имеют одни и те же корни. Убедимся в этом, решив уравнение −x − 7 = −1 − 3x

Как решать уравнения с mod

Поэтому, раскрыв модули со знаком плюс, нет необходимости раскрывать их со знаком минус, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Следующий случай это когда x + 7 ≥ 0 и 1 + 3x . Тогда исходное уравнение примет вид x + 7 = −1 − 3x. Найдём корень этого уравнения:

Как решать уравнения с mod

И последний случай это когда x + 7 и 1 + 3x ≥ 0 . Тогда уравнение примет вид −x − 7 = 1 + 3 x . Если умножить это уравнение на −1 , то получим уравнение x + 7 = −1 − 3x. А это уравнение мы получали, когда рассматривали предыдущий случай (случай x + 7 ≥ 0 и 1 + 3x ).

Следовательно, уравнение −x − 7 = 1 + 3x равносильно предыдущему уравнению x + 7 = −1 − 3 x . Убедимся в этом решив уравнение −x − 7 = 1 + 3x

Как решать уравнения с mod

Значит раскрыв левую часть со знаком плюс, а правую часть со знаком минус, нет необходимости раскрывать левую часть со знаком минус, а правую часть со знаком плюс, потому что в обоих случаях получаются уравнения, имеющие одни и те же корни.

Вообще, если в уравнении обе части являются модулями как в данном примере, то это уравнение можно свести в следующую совокупность:

Как решать уравнения с mod

В этой конструкции уравнение вида |a| = |b| сведено в совокупность из двух уравнений a = b и a = −b . Видно что первое уравнение получается путем раскрытия обоих модулей со знаком плюс, а второе уравнение — путем раскрытия модуля |a| со знаком плюс, а модуля |b| — со знаком минус.

Важно. Данная схема работает только тогда, когда обе части являются модулями без посторонних членов. Проще говоря, если будет дано уравнение, например |a| = |b| + c , то приведенную схему использовать нельзя.

Пример 2. Решить уравнение |2 − 3x| = |x + 5|

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Как решать уравнения с mod

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс, во втором уравнении — модуль |2 − 3x| будет раскрыт со знаком плюс, а модуль |x + 5| со знаком минус:

Как решать уравнения с mod

Как решать уравнения с mod

Ответ: Как решать уравнения с modи Как решать уравнения с mod

Пример 3. Решить уравнение |x 2 − 13x + 35|=|35 − x 2 |

Решение

Обе части данного уравнения являются модулями. Воспользуемся схемой:

Как решать уравнения с mod

У нас получится совокупность из двух уравнений. В первом уравнении оба модуля будут раскрыты со знаком плюс. Во втором уравнении — модуль |x 2 − 13x + 35| будет раскрыт со знаком плюс, а модуль |35 − x 2 | со знаком минус:

Как решать уравнения с mod

Приведём подобные члены в обоих уравнениях:

Как решать уравнения с mod

Первое уравнение является неполным квадратным. Решим его, вынеся x за скобки. Второе уравнение решается элементарно:

Как решать уравнения с mod

Ответ: Как решать уравнения с mod, Как решать уравнения с mod, 0.

Когда решение — числовой промежуток

Нередко приходиться решать уравнения с модулем, где корнями являются не один или два числа, а числовой промежуток. Таковым, например, является уравнение:

Раскроем модуль этого уравнения:

Как решать уравнения с mod

Если раскрыть модуль со знаком плюс, то получается уравнение 5x + 3 = −5x − 3 . Решим его:

Как решать уравнения с mod

А если раскрыть модуль со знаком минус, то получится уравнение −5x − 3 = −5x − 3 . В этом уравнении обе части являются одинаковыми, а значит данное равенство является тождеством. Оно будет верно при любом значении x . Значит корнями уравнения −5x − 3 = −5x − 3 являются все числа от минус бесконечности до плюс бесконечности:

Но надо помнить про условия, согласно которым были раскрыты модули. В первом случае мы получили корень Как решать уравнения с mod. Он будет верен только при условии что Как решать уравнения с mod. Это условие соблюдено. Проверка также показывает что корень подходит:

Как решать уравнения с mod

Значит один из корней уравнений равен Как решать уравнения с mod

Во втором случае мы получили множество корней от минус бесконечности до плюс бесконечности. Но это будет верно только при условии что Как решать уравнения с mod

Например, если взять любое число из промежутка (−∞; +∞) , но которое не будет удовлетворять условию Как решать уравнения с mod, то это число не будет обращать наше уравнение в верное равенство.

Например, число 2 принадлежит промежутку (−∞; +∞), но не удовлетворяет условию Как решать уравнения с mod, а значит число 2 не является корнем исходного уравнения. Проверка также покажет это:

Как решать уравнения с mod

А если взять к примеру число −5 , то оно будет принадлежать промежутку (−∞; +∞) и удовлетворять условию Как решать уравнения с mod, а значит будет обращать исходное уравнение в верное равенство:

Как решать уравнения с mod

Поэтому ответ надо записать так, чтобы были выполнены оба условия Как решать уравнения с modи Как решать уравнения с mod. Для наглядности нарисуем координатную прямую и обозначим её как x

Как решать уравнения с modОтметим на ней наш первый корень Как решать уравнения с mod

Как решать уравнения с mod

Раскрыв модуль со знаком минус и решив получившееся уравнение, мы получили в ответе множество всех чисел от минус бесконечности до плюс бесконечности, но при этом было дано условие Как решать уравнения с mod. Значит более точным ответ в этом случае будет таким:

Корнями уравнения −5x − 3 = −5x − 3 при условии Как решать уравнения с modявляются все числа от минус бесконечности до Как решать уравнения с mod

Значит на координатной прямой нужно заштриховать область слева от числа Как решать уравнения с mod. Они будут иллюстрировать числа, меньшие Как решать уравнения с mod

Как решать уравнения с mod

Число Как решать уравнения с modтоже является верным корнем исходного уравнения. Он был получен при раскрытии модуля со знаком плюс. Поэтому на координатной прямой пустой кружок нужно закрасить. Так мы включим число Как решать уравнения с modво множество решений:

Как решать уравнения с mod

Тогда окончательный ответ будет выглядеть так:

Как решать уравнения с mod

Ответ: Как решать уравнения с mod

Также, можно решить это уравнение сведя его в совокупность, дополнительно указав, что правая часть должна быть больше либо равна нулю:

Как решать уравнения с mod

Пример 2. Решить уравнение |2x − 3| = 3 − 2x

Решение

Как решать уравнения с mod

Решим исходное уравнение для случаев когда 2x − 3 ≥ 0 и 2x − 3

Как решать уравнения с mod

Как решать уравнения с mod

Ответ: Как решать уравнения с mod

Использование координатной прямой

Рассмотрим ещё один способ решения элементарных уравнений с модулем — с помощью координатной прямой. Этот способ используется редко, но знать о нём не помешает.

Решим наше самое первое уравнение |x − 2| = 5 с помощью координатной прямой. Напомним, что корнями этого уравнения были числа 7 и −3.

Модуль есть расстояние от начала координат до точки A . Либо расстояние между двумя числами на координатной прямой.

Расстояние между двумя числами выражается в виде разности |x1x2| , где x1 — первое число, x2 — второе число.

Если внимательно посмотреть на уравнение |x − 2|= 5 , то можно увидеть что его левая часть это расстояние от x до 2 (или от 2 до x) и это расстояние равно 5. Отмéтим на координатной прямой число x и число 2

Как решать уравнения с mod

Правая часть уравнения |x − 2|= 5 говорит о том, что расстояние от x до 2 составляет пять единиц:

Как решать уравнения с mod

Если расстояние от x до 2 равно 5, то и расстояние от 2 до x тоже равно 5. Это позволяет отсчитать пять целых шагов от числа 2 к числу x и таким образом узнать значение x

Как решать уравнения с mod

Видно, что отсчитав пять шагов влево мы попали в точку с координатой −3. А это один из корней, который мы находили для уравнения |x − 2|= 5.

Но пять целых шагов от числа 2 можно отсчитать не только влево, но и вправо:

Как решать уравнения с mod

Если отсчитать пять целых шагов вправо, то попадём в точку с координатой 7. Это тоже был корень уравнения |x − 2|= 5

Как решать уравнения с mod

Несколько модулей в одной части

Решим следующее уравнение:

Это уравнение содержит два модуля в левой части. Чтобы решить данное уравнение нужно раскрыть его модули. Рассмотреть нужно каждый из случаев:

  • когда оба модуля больше либо равны нулю;
  • когда оба модуля меньше нуля;
  • когда первый модуль больше либо равен нулю, а второй модуль меньше нуля;
  • когда первый модуль меньше нуля, а второй модуль больше либо равен нулю.

Не будем комментировать каждый случай, а сразу приведём решение:

Как решать уравнения с mod

Первые два случая корней не дали. В третьем случае нашелся корень 3, но он не удовлетворяет условиям x − 5 ≥ 0 и x , поэтому не является корнем исходного уравнения.

В четвёртом случае нашёлся корень 2, который удовлетворяет условиям x − 5 и x ≥ 0 . Также он удовлетворяет исходному уравнению.

Заметно, что такой способ решения уравнения неудобен. Если модулей в уравнении будет три, четыре или более, то придётся рассматривать намного больше случаев. Человек запутавшись, может забыть рассмотреть какой-то из случаев, и получится что уравнение решено не полностью.

Поэтому такой вид уравнения как в данном примере удобнее решать методом интервалов. Об этом мы поговорим в следующем уроке.

Видео:✓ Сравнение по модулю. Арифметика остатков | Ботай со мной #034 | Борис ТрушинСкачать

✓ Сравнение по модулю. Арифметика остатков | Ботай со мной #034 | Борис Трушин

Уравнения с модулем

Эта статья посвящена приёмам решения различных уравнений и неравенств, содержащих
переменную под знаком модуля.

Если на экзамене вам попадётся уравнение или неравенство с модулем, его можно решить,
вообще не зная никаких специальных методов и пользуясь только определением модуля. Правда,
занять это может часа полтора драгоценного экзаменационного времени.

Поэтому мы и хотим рассказать вам о приёмах, упрощающих решение таких задач.

Прежде всего вспомним, что

Как решать уравнения с mod

Рассмотрим различные типы уравнений с модулем. (К неравенствам перейдём позже.)

Видео:Теория чисел. 6. Методы решения сравнений 1 й степениСкачать

Теория чисел.  6.  Методы решения сравнений 1 й степени

Слева модуль, справа число

Это самый простой случай. Решим уравнение

Есть только два числа, модули которых равны четырём. Это 4 и −4. Следовательно, уравнение
равносильно совокупности двух простых:

Второе уравнение не имеет решений. Решения первого: x = 0 и x = 5.

Видео:Как решать уравнения с модулем или Математический торт с кремом (часть 1) | МатематикаСкачать

Как решать уравнения с модулем или Математический торт с кремом (часть 1) | Математика

Переменная как под модулем, так и вне модуля

Здесь приходится раскрывать модуль по определению. . . или соображать!

Уравнение распадается на два случая, в зависимости от знака выражения под модулем.
Другими словами, оно равносильно совокупности двух систем:

Как решать уравнения с modКак решать уравнения с mod

Решение первой системы: . У второй системы решений нет.
Ответ: 1.

Первый случай: x ≥ 3. Снимаем модуль:

Как решать уравнения с mod

Как решать уравнения с mod

Число , будучи отрицательным, не удовлетворяет условию x ≥ 3 и потому не является корнем исходного уравнения.

Выясним, удовлетворяет ли данному условию число . Для этого составим разность и определим её знак:

Значит, больше трёх и потому является корнем исходного уравнения

Стало быть, годятся лишь и .

Ответ: Как решать уравнения с mod

Видео:Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравненииСкачать

Как решать уравнение с модулем Уравнение с модулями как решать Как раскрыть модуль в уравнении

Квадратные уравнения с заменой |x| = t

Поскольку , удобно сделать замену |x| = t. Получаем:

Как решать уравнения с mod

Видео:Обманул балди и решил 3 пример😱Скачать

Обманул балди и решил 3 пример😱

Модуль равен модулю

Речь идёт об уравнениях вида |A| = |B|. Это — подарок судьбы. Никаких раскрытий модуля по определению! Всё просто:

Например, рассмотрим уравнение: . Оно равносильно следующей совокупности:

Остаётся решить каждое из уравнений совокупности и записать ответ.

Видео:МодульСкачать

Модуль

Два или несколько модулей

Не будем возиться с каждым модулем по отдельности и раскрывать его по определению — слишком много получится вариантов. Существует более рациональный способ — метод интервалов.

Выражения под модулями обращаются в нуль в точках x = 1, x = 2 и x = 3. Эти точки делят числовую прямую на четыре промежутка (интервала). Отметим на числовой прямой эти точки и расставим знаки для каждого из выражений под модулями на полученных интервалах. (Порядок следования знаков совпадает с порядком следования соответствующих модулей в уравнении.)

Как решать уравнения с mod

Таким образом, нам нужно рассмотреть четыре случая — когда x находится в каждом из интервалов.

Случай 1: x ≥ 3. Все модули снимаются «с плюсом»:

Как решать уравнения с mod

Полученное значение x = 5 удовлетворяет условию x ≥ 3 и потому является корнем исходного уравнения.

Случай 2: 2 ≤ x ≤ 3. Последний модуль теперь снимается «с минусом»:

Как решать уравнения с mod

Полученное значение x также годится — оно принадлежит рассматриваемому промежутку.

Случай 3: 1 ≤ x ≤ 2. Второй и третий модули снимаются «с минусом»:

Как решать уравнения с mod

Мы получили верное числовое равенство при любом x из рассматриваемого промежутка [1; 2] служат решениями данного уравнения.

Случай 4: x ≤ 1 ≤ 1. Второй и третий модули снимаются «с минусом»:

Как решать уравнения с mod

Ничего нового. Мы и так знаем, что x = 1 является решением.

Видео:Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!Скачать

Вся суть уравнений за 1 секунду. Хватит путать знаки в уравнениях!

Модуль в модуле

Начинаем с раскрытия внутреннего модуля.

1) x ≤ 3. Получаем:

Как решать уравнения с mod

Выражение под модулем обращается в нуль при Как решать уравнения с mod. Данная точка принадлежит рассматриваемому
промежутку. Поэтому приходится разбирать два подслучая.

1.1) Как решать уравнения с modПолучаем в этом случае:

Как решать уравнения с mod

Это значение x не годится, так как не принадлежит рассматриваемому промежутку.

1.2) Как решать уравнения с mod. Тогда:

Как решать уравнения с mod

Это значение x также не годится.

Итак, при x ≤ 3 решений нет. Переходим ко второму случаю.

Как решать уравнения с mod

Здесь нам повезло: выражение x + 2 положительно в рассматриваемом промежутке! Поэтому никаких подслучаев уже не будет: модуль снимается «с плюсом»:

Как решать уравнения с mod

Это значение x находится в рассматриваемом промежутке и потому является корнем исходного уравнения.

Так решаются все задачи данного типа — раскрываем вложенные модули по очереди, начиная с внутреннего.

Читайте также о том, как решать неравенства с модулем.

Видео:Т.чисел 10. Система сравнений. Два метода решенияСкачать

Т.чисел 10. Система сравнений.  Два метода решения

Mod и остаток — не одно и то же

Как решать уравнения с mod

Приготовьтесь, вас ждёт крайне педантичная статья, которая вполне может спасти вас на собеседовании или сэкономить несколько часов при вылавливании бага в продакшне!

Я сейчас активно работаю над вторым сезоном «Руководства для самозванца» и пишу о шифре RSA для SSH, который, очевидно, является самым загружаемым фрагментом кода в истории IT.

Хочется полностью разобраться в этой истории. Кто придумал этот шифр, как он работает, почему работает и будет ли работать в будущем. Сейчас я раскопал одну чертовски интересную историю. Я не криптоманьяк и вижу, как других буквально засасывает в эту область. Но мне это тоже интересно, потому что повсюду есть маленькие норки, а меня как сороку привлекают блестящие штучки в глубоких норках. Я также очень хорош в метафорах.

В любом случае: на прошлой неделе я узнал что-то странное и хочу поделиться: оказывается, mod и остаток от деления — не одно и то же. Действительно забавно то, что некоторые читатели при этих словах выпрыгивают со своих кресел и орут: «А ведь именно это я всегда пытался сказать вам и всем остальным!»

Позовите ребят из секты «mod не остаток»! Это для вас.

Видео:6 класс. Решение уравнений с модулями.Скачать

6 класс. Решение уравнений с модулями.

Что такое mod?

Я должен был изучить это, как и в прошлый раз, когда всплыла такая тема. Это одна из тех вещей, которые ты знаешь, но не запоминаешь. Когда вы применяете mod, то делите одно число на другое и берёте остаток. Итак: 5 mod 2 будет 1, потому что 5/2=2 с остатком 1.

Термин mod означает операцию modulo, с модулем 2 в данном случае. Большинство языков программирования используют % для обозначения такой операции: 5 % 2 = 1 .

Вот где мы попадаем в странную серую область.

Видео:Теория чисел. 4. Сравнения. Свойства сравненийСкачать

Теория чисел.  4.  Сравнения. Свойства сравнений

Математика циферблата

Помню, как учил это в школе, а потом забыл. Существует тип математики, называемый «модульной арифметикой», которая имеет дело с циклическими структурами. Самый простой способ представить это — циферблат с циклом 12. Для математика циферблат — это mod 12 . Если хотите понять, можно ли равномерно разделить 253 часа на дни, то можете применить операцию 253 mod 24 , результатом будет 13, поэтому ответ «нет»! Мы можем ответить «да» только если результат 0.

Другой вопрос, который вы можете задать: «Если я выеду в 6 вечера, сколько времени будет по приезду через 16 часов?». Это будет 6 + 16 mod 12 , то есть 10.

Криптографы любят mod , потому что при использовании с действительно большими числами можно создать нечто, известное как «односторонние функции». Это специальные функции, которые позволяют легко вычислить что-то в одном направлении, но не в обратном.

Если я скажу вам, что 9 является результатом возведения в квадрат, вы можете легко определить, что на входе было 3. Перед вами весь процесс от начала до конца. Если я скажу, что 9 является результатом mod 29 , то будет сложнее понять, что на входе.

Криптографам нравится эта идея, потому что они могут использовать деление с остатком с гигантскими простыми числами для генерации криптографических ключей. Это совсем другая история: если хотите прочитать об этом, то можете купить книгу или, ещё лучше, поддержать мои усилия написать её.

Впрочем, не будем отклоняться от темы.

Видео:РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ 2 КЛАСС МАТЕМАТИКАСкачать

РЕШЕНИЕ УРАВНЕНИЙ |ПОДРОБНОЕ ОБЪЯСНЕНИЕ КАК РЕШИТЬ УРАВНЕНИЯ / ПРОСТЫЕ УРАВНЕНИЯ  2 КЛАСС МАТЕМАТИКА

Остатки и математика циферблата

Теперь переходим к сути: modulo и простой остаток одинаковы, когда числа положительны, но отличаются в случае отрицательных чисел.

Рассмотрим такую задачу:

Каково значение x ? Делим числа и получаем 7 как остаток от 12. Это верный ответ. Как насчет такого:

Используя обычную математику, мы можем умножить -12 на -1, что даёт 12, и у нас по-прежнему остаётся 7, поэтому наш ответ снова 7.

JavaScript с этим согласен:

Как решать уравнения с mod

C# тоже согласен:

Как решать уравнения с mod

Google согласен с первым утверждением, но не согласен со вторым:

Как решать уравнения с mod

Ruby согласен с Google:

Как решать уравнения с mod

Во имя Дейкстры, что здесь происходит?

Видео:Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.Скачать

Уравнения с модулем. Что такое модуль числа. Алгебра 7 класс.

Вращение часов назад

Чтобы ответить на вопрос, следует понять разницу между остатком и modulo. Программисты объединяют эти операции, но не должны этого делать, потому что они дают одинаковый результат только в случае, если делитель (в нашем случае 12) положителен. Вы можете легко отправить баги в продакшн, если делитель отрицательный.

Но почему существует разница? Рассмотрим положительный делитель 19 mod 12 на часах:

Как решать уравнения с mod

Конечный результат 7. Мы это знаем и мы можем доказать математически. Но что насчёт 19 mod -12 ? Здесь нужно использовать другие часы:

Как решать уравнения с mod

Модуль равен -12, и мы не можем игнорировать или изменить его, умножив на -1, поскольку модульная арифметика так не работает. Единственный способ правильно рассчитать результат — переставить метки на часах так, чтобы мы двигались от -12 или вращали часы против часовой стрелки, что даёт тот же результат.

Почему не начать метки с -1, двигаясь к -2, и т.д.? Потому что в таком случае мы будем двигаться назад и постоянно уменьшать результат, пока не достигнем -12, и в этот момент сделаем прыжок +12, а modulo так не работает.

Видео:Модуль числа в выражениях. Как решать уравнения с модулем. Сравнение модулей чисел. Математика 6 кл.Скачать

Модуль числа в выражениях. Как решать уравнения с модулем. Сравнение модулей чисел. Математика 6 кл.

Это известная вещь

Прежде чем назвать меня сумасшедшим и начать гуглить тему: это известный факт. На самом деле MDN (Mozilla Developer Network) даже дошла до того, чтобы назвать % операцией «остатка» (remainder), а не modulo:

Оператор remainder возвращает остаток от деления одного операнда на другой. Он всегда принимает знак делимого.

Вот что Эрик Липперт, один из богов C#, говорит о modulo в C#:

Однако это совсем не то, что оператор % реально делает в C#. Оператор % не является каноническим оператором modulus, это оператор остатка.

А как на вашем языке?

Видео:Как решать уравнения с модулем ( Математика 6 класс )Скачать

Как решать уравнения с модулем ( Математика 6 класс )

Ну и что?

Могу понять, если вы дочитали досюда, а теперь чешете голову и задаётесь вопросом, стоит ли беспокоиться. Думаю, что стоит по двум причинам:

  1. Я представляю, как этот вопрос займёт меня врасплох на собеседовании.
  2. Я представляю, как этот попадёт в продакшн, а разработчики будут несколько часов выяснять, почему математика не работает.

Это также забавный факт на случай, если рядом появится ваш педантичный друг-программист.

🌟 Видео

Как решать уравнения без применения правил?Скачать

Как решать уравнения без применения правил?

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

Сравнение по модулю (Теория и примеры)Скачать

Сравнение по модулю (Теория и примеры)

Функция div и modСкачать

Функция div и mod

Как легко выиграть в шахматы😂Скачать

Как легко выиграть в шахматы😂

Как решать уравнения с дробью? #shortsСкачать

Как решать уравнения с дробью? #shorts
Поделиться или сохранить к себе: