Как решать уравнения с двумя одинаковыми неизвестными 5 класс

Решение уравнений с двумя неизвестными

В математике большая часть задач ориентирована на решение стандартных уравнений, в которых представлена одна переменная. Однако, некоторые из них, помимо числовых выражений, содержат одновременно две неизвестные. Перед тем как приступить к решению такого уравнения, стоит изучить его определение.

Содержание
  1. Определение
  2. Решение задач
  3. Система уравнений с двумя неизвестными
  4. Метод подстановки
  5. Метод сложения
  6. Графический метод
  7. Видео
  8. Уравнения с двумя переменными (неопределенные уравнения)
  9. Урок 1.
  10. Ход урока.
  11. 1) Орг. момент.
  12. 2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида mx + ny = k, где m, n, k – числа, x, y – переменные. Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство. Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными. 1. 5x+2y=12 (2)y = -2.5x+6 Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y. Пусть x = 2, y = -2.5•2+6 = 1 x = 4, y = -2.5•4+6 =- 4 Пары чисел (2;1); (4;-4) – решения уравнения (1). Данное уравнение имеет бесконечно много решений. 3) Историческая справка Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной. В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику. Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени. 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  13. 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  14. Видео
Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Системы уравнений Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка: x — 4y = 2 3x — 2y = 16 Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет. Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием. Способ подстановки Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного. Рассмотрим решение системы уравнений: x — 4y = 2 3x — 2y = 16 Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть: Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным: 3x — 2y = 16; 3( 2 + 4y ) — 2y = 16. Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме. 3(2 + 4y) — 2y = 16; 6 + 12y — 2y = 16; 6 + 10y = 16; 10y = 16 — 6; 10y = 10; y = 10 : 10; y = 1. Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x: x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6. Способ сравнения Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного. Например, для решение системы: x — 4y = 2 3x — 2y = 16 найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x): x — 4y = 2 3x — 2y = 16 -4y = 2 — x -2y = 16 — 3x y = (2 — x) : — 4 y = (16 — 3x) : -2 Составляем из полученных выражений уравнение: 2 — x = 16 — 3x -4 -2 Решаем уравнение, чтобы узнать значение x: 2 — x · (-4) = 16 — 3x · (-4) -4 -2 2 — x = 32 — 6x —x + 6x = 32 — 2 5x = 30 x = 30 : 5 x = 6 Теперь подставляем значение x в первое или второе уравнение системы и находим значение y: x — 4y = 2 3x — 2y = 16 6 — 4y = 2 3 · 6 — 2y = 16 -4y = 2 — 6 -2y = 16 — 18 -4y = -4 -2y = -2 y = 1 y = 1 Способ сложения или вычитания Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях. x — 4y = 2 3x — 2y = 16 Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2: x — 4y = 2 -6x + 4y = -32 Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным: + x — 4y = 2 -6x + 4y = -32 -5x = -30 Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1. Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого. Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3: (x — 4y) · 3 = 2 · 3 3x — 12y = 6 3x — 2y = 16 Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным: — 3x — 12y = 6 3x — 2y = 16 -10y = -10 Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6: 3x — 2y = 16 3x — 2 · 1 = 16 3x — 2 = 16 3x = 16 + 2 3x = 18 x = 18 : 3 x = 6 Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве: Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.
  • 3) Историческая справка
  • 4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Z k0 Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений. Пример: 34x – 17y = 3. НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет. Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми. Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение. Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений: где (; ) – какое-либо решение уравнения (1), t Z Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2) m, n, x, y Z Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид 5) Домашнее задание. Решить уравнение в целых числах:
  • 9x – 18y = 5 x + y= xy Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки? Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором. Урок 2. 1) Организационный момент 2) Проверка домашнего задания 5 не делится нацело на 9, в целых числах решений нет. Методом подбора можно найти решение 3) Составим уравнение: Пусть мальчиков x, x Z, а девочек у, y Z, то можно составить уравнение 21x + 15y = 174 Многие учащиеся, составив уравнение, не смогут его решить. Ответ: мальчиков 4, девочек 6. 3) Изучение нового материала Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них. I. Метод рассмотрения остатков от деления. Пример. Решить уравнение в целых числах 3x – 4y = 1. Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая. Если y = 3m, m Z, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2. Ответ: где m Z. Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители. Пример: Решить уравнения в целых числах. Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4. y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4. y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4. y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4. Следовательно, y = 4n, тогда 4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n Ответ: , где n Z. II. Неопределенные уравнения 2-ой степени Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка. И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители. Пример: Решить уравнение в целых числах. 13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1) Рассмотрим эти случаи а) => б) => в) => г) => 4) Домашнее задание. Примеры. Решить уравнение в целых числах: а) 2x = 4 2x = 5 2x = 5 x = 2 x = 5/2 x = 5/2 y = 0 не подходит не подходит 2x = -4 не подходит не подходит x = -2 y = 0 б) в) Итоги. Что значит решить уравнение в целых числах? Какие методы решения неопределенных уравнений вы знаете? Упражнения для тренировки. 1) Решите в целых числах. а) 8x + 12y = 32 x = 1 + 3n, y = 2 — 2n, n Z б) 7x + 5y = 29 x = 2 + 5n, y = 3 – 7n, n Z в) 4x + 7y = 75 x = 3 + 7n, y = 9 – 4n, n Z г) 9x – 2y = 1 x = 1 – 2m, y = 4 + 9m, m Z д) 9x – 11y = 36 x = 4 + 11n, y = 9n, n Z е) 7x – 4y = 29 x = 3 + 4n, y = -2 + 7n, n Z ж) 19x – 5y = 119 x = 1 + 5p, y = -20 + 19p, p Z з) 28x – 40y = 60 x = 45 + 10t, y = 30 + 7t, t Z 2) Найти целые неотрицательные решения уравнения: а) 8x + 65y = 81 x = 2, y = 1 б) 17x + 23y = 183 x = 4, y = 5 3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям а) x + y = xy (0;0), (2;2) б) (1;2), (5;2), (-1;-1), (-5;-2) Число 3 можно разложить на множители: a) б) в) г) в) (11;12), (-11;-12), (-11;12), (11;-12) г) (24;23), (24;-23), (-24;-23), (-24;23) д) (48;0), (24;1), (24;-1) е) x = 3m; y = 2m, mZ ж) y = 2x – 1 x = m: y = 2m – 1, m Z з) x = 2m; y = m; x = 2m; y = -m, m Z и) решений нет 4) Решить уравнения в целых числах (-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4) (x — 3)(xy + 5) = 5 (-2;3), (2;-5), (4;0) (y + 1)(xy – 1)=3 (0;-4), (1;-2), (1;2) (-4;-1), (-2;1), (2;-1), (4;1) (-11;-12), (-11;12), (11;-12), (11;12) (-24;23), (-24;23), (24;-23), (24;23) 5) Решить уравнения в целых числах. а) (-1;0) б) (5;0) в) (2;-1) г) (2; -1) Детская энциклопедия “Педагогика”, Москва, 1972 г. Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г. Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г. Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г. Алгебра 7, Макарычев Ю.Н., “Просвещение”. Системы уравнений Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка: x — 4y = 2 3x — 2y = 16 Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет. Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием. Способ подстановки Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного. Рассмотрим решение системы уравнений: x — 4y = 2 3x — 2y = 16 Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть: Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным: 3x — 2y = 16; 3( 2 + 4y ) — 2y = 16. Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме. 3(2 + 4y) — 2y = 16; 6 + 12y — 2y = 16; 6 + 10y = 16; 10y = 16 — 6; 10y = 10; y = 10 : 10; y = 1. Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x: x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6. Способ сравнения Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного. Например, для решение системы: x — 4y = 2 3x — 2y = 16 найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x): x — 4y = 2 3x — 2y = 16 -4y = 2 — x -2y = 16 — 3x y = (2 — x) : — 4 y = (16 — 3x) : -2 Составляем из полученных выражений уравнение: 2 — x = 16 — 3x -4 -2 Решаем уравнение, чтобы узнать значение x: 2 — x · (-4) = 16 — 3x · (-4) -4 -2 2 — x = 32 — 6x —x + 6x = 32 — 2 5x = 30 x = 30 : 5 x = 6 Теперь подставляем значение x в первое или второе уравнение системы и находим значение y: x — 4y = 2 3x — 2y = 16 6 — 4y = 2 3 · 6 — 2y = 16 -4y = 2 — 6 -2y = 16 — 18 -4y = -4 -2y = -2 y = 1 y = 1 Способ сложения или вычитания Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях. x — 4y = 2 3x — 2y = 16 Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2: x — 4y = 2 -6x + 4y = -32 Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным: + x — 4y = 2 -6x + 4y = -32 -5x = -30 Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1. Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого. Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3: (x — 4y) · 3 = 2 · 3 3x — 12y = 6 3x — 2y = 16 Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным: — 3x — 12y = 6 3x — 2y = 16 -10y = -10 Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6: 3x — 2y = 16 3x — 2 · 1 = 16 3x — 2 = 16 3x = 16 + 2 3x = 18 x = 18 : 3 x = 6 Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве: Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.
  • Урок 2.
  • 1) Организационный момент
  • 2) Проверка домашнего задания
  • 3) Изучение нового материала
  • 4) Домашнее задание.
  • Системы уравнений
  • Способ подстановки
  • Способ сравнения
  • Способ сложения или вычитания
  • Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Определение

    Итак, уравнением с двумя неизвестными называют любое равенство следующего типа:

    a*x + b*y =с, где a, b, c — числа, x, y — неизвестные переменные.

    Ниже приведены несколько примеров:

    Уравнение с двумя неизвестными точно так же, как и с одной, имеет решение. Однако такие выражения, как правило, имеют бесконечное множество разных решений, поэтому в алгебре их принято называть неопределенными.

    Видео:Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?Скачать

    Решение уравнений в несколько действий. Как объяснить ребенку решение уравнений?

    Решение задач

    Чтобы решить подобные задачи, необходимо отыскать любую пару значений x и y, которая удовлетворяла бы его, другими словами, обращала бы уравнение с неизвестными x и y в правильное числовое равенство. Найти удовлетворяющую пару чисел можно при помощи метода подбора.

    Для наглядности объяснений подберем корни для выражения: y-x = 6.

    При y=5 и x=-1 равенство становится верным тождеством 5- (-1) = 6. Поэтому пару чисел (-1; 5) можно считать корнями выражения y-x = 6. Ответ: (-1; 5).

    Необходимо отметить, что записывать полученный ответ по правилам необходимо в скобках через точку с запятой. Первым указывается значение х, вторым — значение y.

    У равенств такого вида может и не быть корней. Рассмотрим такой случай на следующем примере: x+y = x+y+9

    Приведем исходное равенство к следующему виду:

    В результате мы видим ошибочное равенство, следовательно, это выражение не имеет корней.

    При решении уравнений можно пользоваться его свойствами. Первое их них: каждое слагаемое можно вынести в другую часть выражения. Вместе с этим обязательно нужно поменять знак на обратный. Получившееся равенство будет равнозначно исходному.

    Например, из выражения 20y — 3x = 16 перенесем неизвестное y в другую его часть.

    Оба равенства равносильны.

    Второе свойство: допустимо умножать или делить части выражения на одинаковое число, не равное нолю. В итоге получившиеся равенства будут равнозначны.

    Оба уравнения также равносильны.

    Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    Видео:Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2Скачать

    Математика 5 класс. 28 октября. Вынесение множителя за скобки в уравнениях #2

    Система уравнений с двумя неизвестными

    Система уравнений представляет собой некоторое количество равенств, выполняющихся одновременно. В большинстве задач приходится находить решение системы, состоящей из двух равенств с двумя переменными.

    Для решения системы уравнений необходимо найти пару чисел, обращающих оба уравнения системы в правильное равенство. Решением может служить одна пара чисел, несколько пар чисел или вовсе их отсутствие.

    Решить подобные системы уравнений можно, применяя следующие методы.

    Метод подстановки

    1. Выражаем неизвестное из любого равенства через вторую переменную.
    2. Подставляем получившееся выражение неизвестного во второе равенство и решаем его.
    3. Делаем подстановку полученного значения неизвестного и вычисляем значение второго неизвестного.

    Метод сложения

    1. Приводим к равенству модули чисел при каком-либо неизвестном.
    2. Производим вычисление одной из переменных, произведя сложение или вычитание полученных выражений.
    3. Подставляем найденное значение в какое-либо уравнение в первоначальной системе и вычисляем вторую переменную.

    Графический метод

    1. Выражаем в каждом равенстве одну переменную через другую.
    2. Строим графики двух имеющихся уравнений в одной координатной плоскости.
    3. Определяем точку их пересечения и ее координаты. На этом шаге у вас может получиться три варианта: графики пересекаются — у системы единственно верный вариант решения; прямые параллельны друг другу — система решений не имеет; графики совпадают — у системы бесконечно много решений.
    4. Делаем проверку, подставив полученные значения в исходную систему равенств.

    При нахождении корней у одной системы всеми этими способами у вас обязательно должен получиться одинаковый результат, если вы, конечно, все сделали правильно.

    В настоящее время есть возможность решения подобных задач с помощью встроенных средств офисной программы Excel, а также на специализированных онлайн-ресурсах и калькуляторах. С помощью них вы легко можете проверить правильность своих вычислений и результатов.

    Надеемся, что наша статья помогла вам в освоении этой базовой темы школьной математики. Если же вы пока не можете справиться с решением уравнений такого вида, не расстраивайтесь. Для понимания и закрепления изученной темы рекомендуется как можно больше практиковаться, и тогда у вас без труда получится решать задачи любой сложности. Желаем вам удачи в покорении математических вершин!

    Видео:Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.Скачать

    Уравнение. Практическая часть - решение задачи. 2 часть. 5 класс.

    Видео

    Из этого видео вы узнаете, как решать уравнения с двумя неизвестными.

    Видео:Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.Скачать

    Уравнение. Практическая часть - решение задачи. 1 часть. 5 класс.

    Уравнения с двумя переменными (неопределенные уравнения)

    Разделы: Математика

    Обращение автора к данной теме не является случайным. Уравнения с двумя переменными впервые встречаются в курсе 7-го класса. Одно уравнение с двумя переменными имеет бесконечное множество решений. Это наглядно демонстрирует график линейной функции, заданный в виде ax + by=c. В школьном курсе учащиеся изучают системы двух уравнений с двумя переменными. В результате из поля зрения учителя и, поэтому ученика, выпадает целый ряд задач, с ограниченными условиями на коэффициент уравнения, а также методы их решения.

    Речь идет о решении уравнения с двумя неизвестными в целых или натуральных числах.

    В школе натуральные и целые числа изучаются в 4-6-х классах. К моменту окончания школы не все ученики помнят различия между множествами этих чисел.

    Однако задача типа “решить уравнение вида ax + by=c в целых числах” все чаще встречается на вступительных экзаменах в ВУЗы и в материалах ЕГЭ.

    Решение неопределенных уравнений развивает логическое мышление, сообразительность, внимание анализировать.

    Я предлагаю разработку нескольких уроков по данной теме. У меня нет однозначных рекомендаций по срокам проведения этих уроков. Отдельные элементы можно использовать и в 7-м классе (для сильного класса). Данные уроки можно взять за основу и разработать небольшой элективный курс по предпрофильной подготовке в 9-м классе. И, конечно, этот материал можно использовать в 10-11 классах для подготовки к экзаменам.

    Цель урока:

      повторение и обобщение знаний по теме “Уравнения первого и второго порядка”
    • воспитание познавательного интереса к учебному предмету
    • формирование умений анализировать, проводить обобщения, переносить знания в новую ситуацию

    Урок 1.

    Ход урока.

    1) Орг. момент.

    2) Актуализация опорных знаний.

    Определение. Линейным уравнением с двумя переменными называется уравнение вида

    mx + ny = k, где m, n, k – числа, x, y – переменные.

    Определение. Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Уравнения с двумя переменными, имеющими одни и те же решения, называются равносильными.

    1. 5x+2y=12 Как решать уравнения с двумя одинаковыми неизвестными 5 класс(2)y = -2.5x+6

    Данное уравнение может иметь сколько угодно решений. Для этого достаточно взять любое значение x и найти соответствующее ему значение y.

    Пусть x = 2, y = -2.5•2+6 = 1

    x = 4, y = -2.5•4+6 =- 4

    Пары чисел (2;1); (4;-4) – решения уравнения (1).

    Данное уравнение имеет бесконечно много решений.

    3) Историческая справка

    Неопределенные (диофантовы) уравнения – это уравнения, содержащие более одной переменной.

    В III в. н.э. – Диофант Александрийский написал “Арифметику”, в которой расширил множество чисел до рациональных, ввел алгебраическую символику.

    Так же Диофант рассмотрел проблемы решения неопределенных уравнений и им даны методы решения неопределенных уравнений второй и третьей степени.

    4) Изучение нового материала.

    Определение: Неоднородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = k, где m, n, k, x, y Как решать уравнения с двумя одинаковыми неизвестными 5 классZ kКак решать уравнения с двумя одинаковыми неизвестными 5 класс0

    Если свободный член k в уравнении (1) не делится на наибольший общий делитель (НОД) чисел m и n, то уравнение (1) не имеет целых решений.

    Пример: 34x – 17y = 3.

    НОД (34; 17) = 17, 3 не делится нацело на 17, в целых числах решения нет.

    Пусть k делится на НОД (m, n). Делением всех коэффициентов можно добиться, что m и n станут взаимно простыми.

    Если m и n уравнения (1) взаимно простые числа, то это уравнение имеет по крайней мере одно решение.

    Если коэффициенты m и n уравнения (1) являются взаимно простыми числами, то это уравнение имеет бесконечно много решений:

    Как решать уравнения с двумя одинаковыми неизвестными 5 классгде (Как решать уравнения с двумя одинаковыми неизвестными 5 класс; Как решать уравнения с двумя одинаковыми неизвестными 5 класс) – какое-либо решение уравнения (1), t Как решать уравнения с двумя одинаковыми неизвестными 5 классZ

    Определение. Однородным диофантовым уравнением первого порядка с двумя неизвестными x, y называется уравнение вида mx + ny = 0, где (2)

    m, n, x, y Как решать уравнения с двумя одинаковыми неизвестными 5 классZ

    Если m и n – взаимно простые числа, то всякое решение уравнения (2) имеет вид Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    5) Домашнее задание. Решить уравнение в целых числах:

  • 9x – 18y = 5
  • x + y= xy
  • Несколько детей собирали яблоки. Каждый мальчик собрал по 21 кг, а девочка по 15 кг. Всего они собрали 174 кг. Сколько мальчиков и сколько девочек собирали яблоки?
  • Замечание. На данном уроке не представлены примеры решения уравнений в целых числах. Поэтому домашнее задание дети решают исходя из утверждения 1 и подбором.

    Урок 2.

    1) Организационный момент

    2) Проверка домашнего задания

    5 не делится нацело на 9, в целых числах решений нет.

    Методом подбора можно найти решение

    3) Составим уравнение:

    Пусть мальчиков x, x Как решать уравнения с двумя одинаковыми неизвестными 5 классZ, а девочек у, y Как решать уравнения с двумя одинаковыми неизвестными 5 классZ, то можно составить уравнение 21x + 15y = 174

    Многие учащиеся, составив уравнение, не смогут его решить.

    Ответ: мальчиков 4, девочек 6.

    3) Изучение нового материала

    Столкнувшись с трудностями при выполнении домашнего задания, учащиеся убедились в необходимости изучения их методов решений неопределенных уравнений. Рассмотрим некоторые из них.

    I. Метод рассмотрения остатков от деления.

    Пример. Решить уравнение в целых числах 3x – 4y = 1.

    Левая часть уравнения делится на 3, следовательно, должна делиться и правая часть. Рассмотрим три случая.

    1. Если y = 3m, m Как решать уравнения с двумя одинаковыми неизвестными 5 классZ, то 4y + 1= 4•3m + 1 = 12m + 1 не делится на 3.
    2. Если y = 3 m + 1, то 4y +1 = 4• (3m + 1)+1 = 12m + 5 не делится на 3.
    3. Если y = 3 m + 2, то 4y +1 = 4• (3m + 2)+1 = 12m + 9 делится на 3, поэтому 3x = 12m + 9, следовательно, x = 4m + 3, а y = 3m + 2.

    Ответ: Как решать уравнения с двумя одинаковыми неизвестными 5 классгде m Как решать уравнения с двумя одинаковыми неизвестными 5 классZ.

    Описанный метод удобно применять в случае, если числа m и n не малы, но зато разлагаются на простые сомножители.

    Пример: Решить уравнения в целых числах.

    Пусть y = 4n, тогда 16 — 7y = 16 – 7•4n = 16 – 28n = 4*(4-7n) делится на 4.

    y = 4n+1, тогда 16 – 7y = 16 – 7• (4n + 1) = 16 – 28n – 7 = 9 – 28n не делится на 4.

    y = 4n+2, тогда 16 – 7y = 16 – 7• (4n + 2) = 16 – 28n – 14 = 2 – 28n не делится на 4.

    y = 4n+3, тогда 16 – 7y = 16 – 7• (4n + 3) = 16 – 28n – 21 = -5 – 28n не делится на 4.

    Следовательно, y = 4n, тогда

    4x = 16 – 7•4n = 16 – 28n, x = 4 – 7n

    Ответ: Как решать уравнения с двумя одинаковыми неизвестными 5 класс, где n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ.

    II. Неопределенные уравнения 2-ой степени

    Сегодня на уроке мы лишь коснемся решения диофантовых уравнений второго порядка.

    И из всех типов уравнений рассмотрим случай, когда можно применить формулу разности квадратов или другой способ разложения на множители.

    Пример: Решить уравнение в целых числах.

    Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    13 – простое число, поэтому оно может быть разложено на множители лишь четырьмя способами: 13 = 13•1 = 1•13 = (-1)(-13) = (-13)(-1)

    Рассмотрим эти случаи

    а) Как решать уравнения с двумя одинаковыми неизвестными 5 класс=> Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    б) Как решать уравнения с двумя одинаковыми неизвестными 5 класс=> Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    в) Как решать уравнения с двумя одинаковыми неизвестными 5 класс=> Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    г) Как решать уравнения с двумя одинаковыми неизвестными 5 класс=> Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    4) Домашнее задание.

    Примеры. Решить уравнение в целых числах:

    а) Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    Как решать уравнения с двумя одинаковыми неизвестными 5 классКак решать уравнения с двумя одинаковыми неизвестными 5 классКак решать уравнения с двумя одинаковыми неизвестными 5 класс
    2x = 42x = 52x = 5
    x = 2x = 5/2x = 5/2
    y = 0не подходитне подходит
    Как решать уравнения с двумя одинаковыми неизвестными 5 классКак решать уравнения с двумя одинаковыми неизвестными 5 классКак решать уравнения с двумя одинаковыми неизвестными 5 класс
    2x = -4не подходитне подходит
    x = -2
    y = 0

    б) Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    в) Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    Итоги. Что значит решить уравнение в целых числах?

    Какие методы решения неопределенных уравнений вы знаете?

    Упражнения для тренировки.

    1) Решите в целых числах.

    а) 8x + 12y = 32x = 1 + 3n, y = 2 — 2n, n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    б) 7x + 5y = 29x = 2 + 5n, y = 3 – 7n, n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    в) 4x + 7y = 75x = 3 + 7n, y = 9 – 4n, n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    г) 9x – 2y = 1x = 1 – 2m, y = 4 + 9m, m Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    д) 9x – 11y = 36x = 4 + 11n, y = 9n, n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    е) 7x – 4y = 29x = 3 + 4n, y = -2 + 7n, n Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    ж) 19x – 5y = 119x = 1 + 5p, y = -20 + 19p, p Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    з) 28x – 40y = 60x = 45 + 10t, y = 30 + 7t, t Как решать уравнения с двумя одинаковыми неизвестными 5 классZ

    2) Найти целые неотрицательные решения уравнения:

    а) 8x + 65y = 81x = 2, y = 1
    б) 17x + 23y = 183x = 4, y = 5

    3) Найти все пары целых чисел (x; y), удовлетворяющие следующим условиям

    а) x + y = xy(0;0), (2;2)
    б) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(1;2), (5;2), (-1;-1), (-5;-2)

    Как решать уравнения с двумя одинаковыми неизвестными 5 класс

    Число 3 можно разложить на множители:

    a) Как решать уравнения с двумя одинаковыми неизвестными 5 классб) Как решать уравнения с двумя одинаковыми неизвестными 5 классв) Как решать уравнения с двумя одинаковыми неизвестными 5 классг) Как решать уравнения с двумя одинаковыми неизвестными 5 класс
    в) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(11;12), (-11;-12), (-11;12), (11;-12)
    г) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(24;23), (24;-23), (-24;-23), (-24;23)
    д) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(48;0), (24;1), (24;-1)
    е) Как решать уравнения с двумя одинаковыми неизвестными 5 классx = 3m; y = 2m, mКак решать уравнения с двумя одинаковыми неизвестными 5 классZ
    ж) y = 2x – 1x = m: y = 2m – 1, m Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    з) Как решать уравнения с двумя одинаковыми неизвестными 5 классx = 2m; y = m; x = 2m; y = -m, m Как решать уравнения с двумя одинаковыми неизвестными 5 классZ
    и)Как решать уравнения с двумя одинаковыми неизвестными 5 классрешений нет

    4) Решить уравнения в целых числах

    Как решать уравнения с двумя одинаковыми неизвестными 5 класс(-3;-2), (-1;1), (0;4), (2;-2), (3;1), (5;4)
    (x — 3)(xy + 5) = 5(-2;3), (2;-5), (4;0)
    (y + 1)(xy – 1)=3(0;-4), (1;-2), (1;2)
    Как решать уравнения с двумя одинаковыми неизвестными 5 класс(-4;-1), (-2;1), (2;-1), (4;1)
    Как решать уравнения с двумя одинаковыми неизвестными 5 класс(-11;-12), (-11;12), (11;-12), (11;12)
    Как решать уравнения с двумя одинаковыми неизвестными 5 класс(-24;23), (-24;23), (24;-23), (24;23)

    5) Решить уравнения в целых числах.

    а) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(-1;0)
    б)Как решать уравнения с двумя одинаковыми неизвестными 5 класс(5;0)
    в) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(2;-1)
    г) Как решать уравнения с двумя одинаковыми неизвестными 5 класс(2; -1)
  • Детская энциклопедия “Педагогика”, Москва, 1972 г.
  • Алгебра-8, Н.Я. Виленкин, ВО “Наука”, Новосибирск, 1992 г.
  • Конкурсные задачи, основанные на теории чисел. В.Я. Галкин, Д.Ю. Сычугов. МГУ, ВМК, Москва, 2005г.
  • Задачи повышенной трудности в курсе алгебры 7-9 классов. Н.П. Косрыкина. “Просвещение”, Москва, 1991 г.
  • Алгебра 7, Макарычев Ю.Н., “Просвещение”.
  • Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

    Сложные уравнения. Как решить сложное уравнение?

    Системы уравнений

    Система уравнений — это группа уравнений, в которых одни и те же неизвестные обозначают одни те же числа. Чтобы показать, что уравнения рассматриваются как система, слева от них ставится фигурная скобка:

    Как решать уравнения с двумя одинаковыми неизвестными 5 классx — 4y = 2
    3x — 2y = 16

    Решить систему уравнений — это значит, найти общие решения для всех уравнений системы или убедиться, что решения нет.

    Чтобы решить систему уравнений, нужно исключить одно неизвестное, то есть из двух уравнений с двумя неизвестными составить одно уравнение с одним неизвестным. Исключить одно из неизвестных можно тремя способами: подстановкой, сравнением, сложением или вычитанием.

    Видео:Уравнения. 5 классСкачать

    Уравнения. 5 класс

    Способ подстановки

    Чтобы решить систему уравнений способом подстановки, нужно в одном из уравнений выразить одно неизвестное через другое и результат подставить в другое уравнение, которое после этого будет содержать только одно неизвестное. Затем находим значение этого неизвестного и подставляем его в первое уравнение, после этого находим значение второго неизвестного.

    Рассмотрим решение системы уравнений:

    Как решать уравнения с двумя одинаковыми неизвестными 5 классx — 4y = 2
    3x — 2y = 16

    Сначала найдём, чему равен x в первом уравнении. Для этого перенесём все члены уравнения, не содержащие неизвестное x, в правую часть:

    Так как x, на основании определения системы уравнений, имеет такое же значение и во втором уравнении, то подставляем его значение во второе уравнение и получаем уравнение с одним неизвестным:

    3x— 2y = 16;
    3( 2 + 4y )— 2y = 16.

    Решаем полученное уравнение, чтобы найти, чему равен y. Как решать уравнения с одним неизвестным, вы можете посмотреть в соответствующей теме.

    3(2 + 4y) — 2y = 16;
    6 + 12y — 2y = 16;
    6 + 10y = 16;
    10y = 16 — 6;
    10y = 10;
    y = 10 : 10;
    y = 1.

    Мы определили что y = 1. Теперь, для нахождения численного значения x, подставим значение y в преобразованное первое уравнение, где мы ранее нашли, какому выражению равен x:

    x = 2 + 4y = 2 + 4 · 1 = 2 + 4 = 6.

    Видео:Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.Скачать

    Сложные уравнения со скобками. Как решать уравнения в несколько действий в 5 классе.

    Способ сравнения

    Способ сравнения — это частный случай подстановки. Чтобы решить систему уравнений способом сравнения, нужно в обоих уравнениях найти, какому выражению будет равно одно и то же неизвестное и приравнять полученные выражения друг к другу. Получившееся в результате уравнение позволяет узнать значение одного неизвестного. С помощью этого значения затем вычисляется значение второго неизвестного.

    Например, для решение системы:

    Как решать уравнения с двумя одинаковыми неизвестными 5 классx — 4y = 2
    3x — 2y = 16

    найдём в обоих уравнениях, чему равен y (можно сделать и наоборот — найти, чему равен x):

    x — 4y = 23x — 2y = 16
    -4y = 2 — x-2y = 16 — 3x
    y = (2 — x) : — 4y = (16 — 3x) : -2

    Составляем из полученных выражений уравнение:

    2 — x=16 — 3x
    -4-2

    Решаем уравнение, чтобы узнать значение x:

    2 — x· (-4) =16 — 3x· (-4)
    -4-2
    2 — x = 32 — 6x
    x + 6x = 32 — 2
    5x = 30
    x = 30 : 5
    x = 6

    Теперь подставляем значение x в первое или второе уравнение системы и находим значение y:

    x — 4y = 23x — 2y = 16
    6 — 4y = 23 · 6 — 2y = 16
    -4y = 2 — 6-2y = 16 — 18
    -4y = -4-2y = -2
    y = 1y = 1

    Видео:11. Уравнения (Виленкин, 5 класс)Скачать

    11. Уравнения (Виленкин, 5 класс)

    Способ сложения или вычитания

    Чтобы решить систему уравнений способом сложения, нужно составить из двух уравнений одно, сложив левые и правые части, при этом одно из неизвестных должно быть исключено из полученного уравнения. Неизвестное можно исключить, уравняв при нём коэффициенты в обоих уравнениях.

    Как решать уравнения с двумя одинаковыми неизвестными 5 классx — 4y = 2
    3x — 2y = 16

    Уравняем коэффициенты при неизвестном y, умножив все члены второго уравнения на -2:

    Как решать уравнения с двумя одинаковыми неизвестными 5 классx — 4y = 2
    -6x + 4y = -32

    Теперь сложим по частям оба уравнения, чтобы получить уравнение с одним неизвестным:

    +x — 4y = 2
    -6x + 4y = -32
    -5x = -30

    Находим значение x (x = 6). Теперь, подставив значение x в любое уравнение системы, найдём y = 1.

    Если уравнять коэффициенты у x, то, для исключения этого неизвестного, нужно было бы вычесть одно уравнение из другого.

    Уравняем коэффициенты при неизвестном x, умножив все члены первого уравнения на 3:

    (x — 4y) · 3 = 2 · 3

    Как решать уравнения с двумя одинаковыми неизвестными 5 класс3x — 12y = 6
    3x — 2y = 16

    Теперь вычтем по частям второе уравнение из первого, чтобы получить уравнение с одним неизвестным:

    3x — 12y = 6
    3x — 2y = 16
    -10y = -10

    Находим значение y (y = 1). Теперь, подставив значение y в любое уравнение системы, найдём x = 6:

    3x — 2y = 16
    3x — 2 · 1 = 16
    3x — 2 = 16
    3x = 16 + 2
    3x = 18
    x = 18 : 3
    x = 6

    Для решения системы уравнений, рассмотренной выше, был использован способ сложения, который основан на следующем свойстве:

    Любое уравнение системы можно заменить на уравнение, получаемое путём сложения (или вычитания) уравнений, входящих в систему. При этом получается система уравнений, имеющая те же решения, что и исходная.

    🎥 Видео

    Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.Скачать

    Правила решения уравнений в 5 классе. Как запомнить и вывести их самому.

    Уравнение с двумя неизвестными. Решить в целых числах. ЗадачаСкачать

    Уравнение с двумя неизвестными. Решить в целых числах. Задача

    Уравнения со скобками - 5 класс (примеры)Скачать

    Уравнения со скобками - 5 класс (примеры)

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?Скачать

    Решение простых уравнений. Что значит решить уравнение? Как проверить решение уравнения?

    Упрощение выражений. 5 класс.Скачать

    Упрощение выражений.  5 класс.

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 классСкачать

    ЛИНЕЙНОЕ УРАНЕНИЕ С ДВУМЯ ПЕРЕМЕННЫМИ — Как решать линейное уравнение // Алгебра 7 класс

    Решение сложных уравнений 4-5 класс.Скачать

    Решение сложных уравнений 4-5 класс.

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэСкачать

    МЕТОД ПОДСТАНОВКИ 😉 СИСТЕМЫ УРАВНЕНИЙ ЧАСТЬ I#математика #егэ #огэ #shorts #профильныйегэ

    Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать

    Уравнения с дробями 5 класс (задания, примеры) - как решать?

    Как решать Уравнения с дробями ( Математика 5 класс )Скачать

    Как решать Уравнения с дробями ( Математика 5 класс )

    Уравнение с дробями видео урок ( Математика 5 класс )Скачать

    Уравнение с дробями видео урок ( Математика 5 класс )
    Поделиться или сохранить к себе: