Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Действия с дробями 7 класс, повторение, сравнение, сокращение, решение уравнений

В начале первой четверти семиклассники на уроках математики активно повторяют все действия, как с обыкновенными, так и с десятичными дробями. И делают они это не просто так.

В 7 классе по программе обучения начинается алгебра. Дроби будут состоять уже из алгебраических выражений, многочленов. Все действия с такими уже > дробями основываются на умении решать обыкновенные дроби в пятом шестом классе.

Видео:Как решать уравнения? уравнение 7 класс. Линейное уравнениеСкачать

Как решать уравнения? уравнение 7 класс. Линейное уравнение

Дроби повторение 7 класс

Повторение начинается с самых простых примеров на все арифметические действия с обыкновенными дробями. Не забываем, что там где знаменатели разные следует найти общий, и только потом выполнять действия.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решениемКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Видео:КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 классСкачать

КАК РЕШИТЬ УРАВНЕНИЕ С ДРОБЯМИ, СВОДЯЩЕЕСЯ К ЛИНЕЙНОМУ? Примеры | АЛГЕБРА 7 класс

Сравнение дробей 7 класс

Для того, чтобы научиться сравнивать дроби, нужно узнать несколько способов по их сравнению, и выбрать для себя более понятный и удобный.

Основные правила сравнения дробей:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В первом правиле мы сравниваем только числители, так как знаменатели равны. Мы уже говорили, что знамен.-это общее количество долей, а числитель показывает сколько их взято из общего, следовательно, чем больше долей взято, тем и дробь соответственно больше.

При одинаковых числ-х сравнивают только знамен. Чем он меньше, тем больше дробь. Разберемся, почему так. К примеру разделите 10 на 5 и 10 на 2, очевидно, что второе частное больше первого. Поэтому, если сравнить 10/5 и 10/2, то 10/2 будет больше.

В десятичных дробях мы сравниваем их соответствующие целые части и дробные. Если первые равны, то мы сравниваем десятые, сотые и т.д. Поэтому для сравнения мы должны уравнивать количество дес.знаков.

Также можно сравнить две обыкн.дроби используя число, которое находится в ряду между ними. Какая из дробей окажется больше этого числа, та и будет большей в примере.

Вот несколько интересных способов, как можно сравнить дроби:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Если от вас требуется сравнить десятичную и обыкновенную дроби, можно перевести одну из них в более удобную для вас. И сравнивать вы уже будите либо обыкновенные, либо десятичные.

Еще один хороший способ, дополнить до единицы. Чем больше нужно добавить дроби, чтобы получить целое, тем она будет меньше.

Можно использовать и перекрестное правило, как в пропорции. Для этого умножаем смотрящие друг на друга числители и знаменатели.

Видео:Уравнения с дробями. Алгебра 7 класс.Скачать

Уравнения с дробями. Алгебра 7 класс.

Правила дробей 7 класс

Начиная изучать рациональные дроби в седьмом классе, стоит познакомиться с рядом правил, которым подчиняются действия с ними.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

К рациональным дробям применяются те же правила, что и к обыкн-м.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Для выполнения всех арифметических действий, следует знать несколько формул сокращенного умножения:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Эти формулы понадобятся на уроках математики до 11 класса, поэтому их лучше выучить сразу в седьмом.

Видео:ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по МатематикеСкачать

ЛИНЕЙНЫЕ УРАВНЕНИЯ - Как решать линейные уравнения // Подготовка к ЕГЭ по Математике

Действия с дробями 7 класс

Как в пятом и шестом, так же и в седьмом классе, дроби в основном складывают, вычитают, умножают и делят. Есть еще сокращение и сравнение. Рациональные дроби также называют алгебраическими.

Сложение и вычитание.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

К примеру, b/3 + c/3. Это сумма рациональных или алгебраических дробей. Решением будет: b+c/3.

Еще пара примеров.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решениемКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Умножение и деление.

Так же как и с обыкновенными дробями, умножать будем числитель на числитель, и знам. на знаменатель. Очень важно обратить внимание на то, что вы умножаете многочлены, поэтому каждый числитель и знаменатель лучше взять в скобки. Так вы сможете избежать ненужных ошибок.

И деление выполняется в точности также как и в обык.дробях. Первую дробь оставьте на месте без изменений, поменяйте частное на умножение, вторую дробь переверните.

Видео:Сложное уравнение с дробями. Алгебра 7 класс.Скачать

Сложное уравнение с дробями. Алгебра 7 класс.

Сложение и вычитание дробей 7 класс

Никогда не начинайте выполнять действия не упростив выражения. Выполните все возможные преобразования и пример решится намного легче и быстрее. Также числители второй и последующих дробей при сложении и вычитании стоит взять в скобки. Очень часто возникают ошибки только из-за одного неправильно поставленного знака. Будьте внимательны.

Если перед скобкой стоит >, раскрываем ее, не меняя знаки внутри. Если >, то все меняем на противоположные.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Знаменатели совершенно одинаковые, находим сумму числ. Приведите подобные, это с и 2с, d и -d, которые в свою очередь взаимно уничтожаются, так как имеют разные знаки. В итоге остается с+2с = 3с. Ответ: 3с/2а.

Все намного проще, если знам. одинаковые. С разными нужно немного подумать.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В примере два знам. 15а и 3. Нам нужно найти общий. В этом случае проще домножить 3 так, чтобы получить 15а. Для этого 3 умножаем на 5а. Но чтобы действие было верным, применяем основное свойство дроби, и на 5а умножим еще и числитель. Далее складываем дроби с один.знам.

Видео:№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью ОГЭ ЕГЭСкачать

№7 Линейное уравнение (5х+4)/2+3=9x/5 Простое уравнение с дробями Решите уравнение с дробью  ОГЭ ЕГЭ

Деление и умножение дробей 7 класс

Разберем сразу примеры, так как правила уже обговорены выше.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В примере выше требуется разделить алгебраические дроби, содержащие выражения со степенью. Здесь важно вспомнить, что при сокращении степеней мы вычитаем из большей степени меньшую.

Первую дробь мы оставили без изменений, вторую перевернули, заменив действие на умножение. Теперь ищем, что можно сократить. Сначала смотри на числовые коэффициенты. Сокращаем 7 и 35, 9 и 18. Затем сокращаем буквенную часть.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Для удобства возьмите каждый многочлен в скобки. Мы видим, что сразу можно сократить скобку (7-х). Многие допускают ошибку, считая что (a-b) и (a+b) сократимы, это большая ошибка. Ведь к примеру, 5-2 и 5+2 совершенно разные выражения.

Видео:Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСССкачать

Урок 6 УРАВНЕНИЕ И ЕГО КОРНИ 7 КЛАСС

Конечные десятичные дроби 7 класс

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Десятичные дроби отличаются друг от друга по количеству знаков (цифр) после запятой. Соответственно своему названию, у конечной десятичной дроби после запятой, конечное число знаков: 5, 0235; 2,3654; 0,12 и т.д.

Любую такую дробь можно перевести обратно в обыкновенную. 2,36 = 2 целых 36/100. Но не каждую обыкновенную можно представить в виде конечной дес.дроби. В таком случае уже получается бесконечная дес.дробь.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Видео:Как решать дробно-рациональные уравнения? | МатематикаСкачать

Как решать дробно-рациональные уравнения? | Математика

Уравнения с дробями 7 класс на примерах с пояснением

Уравнения с дробями можно решить используя пропорцию, или светси решение к этому. Первое уравнение и ему подобные очень просто и быстро решается пропорцией. Используем умножение >.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Бывают и более сложные уравнения, которые нужно преобразовать.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Здесь уже нужно вспомнить правило умножения скобки на число или раскрытие скобок. На число перед скобкой умножаем каждое слагаемое в скобке. Значит 7 умножим и на 2, и на (-х). Далее решаем как обычное линейное уравнение.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В следующем уравнении разберем два способа решения.

Первый вариант решения основывается на избавлении от знаменателей, дабы превратить дробное уравнение в линейное. Для этого умножаем каждое слагаемое на общий для дробей знаменатель. В нашем случае 45.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Сокращаем и получаем линейное уравнение. Раскрываем в нем скобки, находим подобные слагаемые.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Вторым вариантом будет приведение к общему знаменателю в правой части, и сведению решения к пропорции.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решениемКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Видео:Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.Скачать

Решение уравнений с одним неизвестным, сводящихся к линейным. Алгебра. 7 класс.

Сокращение дробей 7 класс

При сокращении рациональных дробей используем правило сокращения обык.др. Числитель и знаменатель делим на один многочлен.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решениемКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Запомните, что разные буквенные части мы не сокращаем, только одинаковые.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Дроби, в числ. и знамен. которых стоит выражение (многочлен) тоже сократимы. В таких дробях можно сокращать только одинаковые многочлены. Многочлены разделены между собой умножением.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решениемКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Также можно использовать формулы сокращ. умножения.

Видео:Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестнымСкачать

Видеоурок. 7 класс. Решение линейных уравнений с одним неизвестным

Решение уравнений с дробями

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Решить уравнение с дробями - Математика - 6 классСкачать

Решить уравнение с дробями - Математика - 6 класс

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙСкачать

Урок 7 ЛИНЕЙНОЕ УРАВНЕНИЕ С ОДНОЙ ПЕРЕМЕННОЙ

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Дробно-рациональные уравнения. 8 класс.Скачать

Дробно-рациональные уравнения. 8 класс.

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Алгебра 7 Линейное уравнение с одной переменнойСкачать

Алгебра 7 Линейное уравнение с одной переменной

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:Сложные уравнения. Как решить сложное уравнение?Скачать

Сложные уравнения. Как решить сложное уравнение?

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Переведем новый множитель в числитель..

Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Алгебра 7 класс. Операции с дробями - bezbotvyСкачать

    Алгебра 7 класс. Операции с дробями - bezbotvy

    Как решать уравнения с дробями. Показательное решение уравнений с дробями.

    Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.
    Например, требуется решить простое уравнение x/b + c = d.

    Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

    Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

    Например, как решить дробное уравнение:
    x/5+4=9
    Умножаем обе части на 5. Получаем:
    х+20=45

    Другой пример, когда неизвестное находится в знаменателе:

    Уравнения такого типа называются дробно-рациональными или просто дробными.

    Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

    • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
    • нельзя делить или умножать уравнение на выражение =0.

    Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

    Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

    Например, требуется решить дробное уравнение:

    Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

    Избавляемся от знаменателя путем умножения всех членов уравнения на х

    И решаем обычное уравнение

    5x – 2х = 1
    3x = 1
    х = 1/3

    Решим уравнение посложнее:

    Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

    Здесь также присутствует ОДЗ: х Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением-2.

    Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

    Для сокращения знаменателей требуется левую часть умножить на х+2, а правую — на 2. Значит, обе части уравнения надо умножать на 2(х+2):

    Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

    Это самое обычное умножение дробей, которое мы уже рассмотрели выше

    Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

    Запишем это же уравнение, но несколько по-другому

    Как решать уравнения с дробями 7 класс по алгебре примеры с ответами и решением

    Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

    х = 4 – 2 = 2, что соответствует нашей ОДЗ

    Для закрепления материала рекомендуем еще посмотреть видео.

    Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями, то отписывайтесь в комментариях.

    🎦 Видео

    Алгебра 7 класс с нуля | Математика | УмскулСкачать

    Алгебра 7 класс с нуля | Математика | Умскул

    Уравнения с дробями 6 класс (задания, примеры) - как решать?Скачать

    Уравнения с дробями 6 класс (задания, примеры) - как решать?

    Алгебра 7 класс. Повторение. Как решить уравнение с дробями. ГДЗ по Алгебре📕Fração. Equação.Скачать

    Алгебра 7 класс. Повторение. Как решить уравнение с дробями. ГДЗ по Алгебре📕Fração. Equação.
    Поделиться или сохранить к себе: