Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Как решать уравнения с дробями. Показательное решение уравнений с дробями.

Решение уравнений с дробями рассмотрим на примерах. Примеры простые и показательные. С их помощью вы наиболее понятным образом сможете усвоить, как решать уравнения с дробями.
Например, требуется решить простое уравнение x/b + c = d.

Уравнения такого типа называется линейным, т.к. в знаменателе находятся только числа.

Решение выполняется путем умножения обоих частей уравнения на b, тогда уравнение принимает вид x = b*(d – c), т.е. знаменатель дроби в левой части сокращается.

Например, как решить дробное уравнение:
x/5+4=9
Умножаем обе части на 5. Получаем:
х+20=45

Другой пример, когда неизвестное находится в знаменателе:

Уравнения такого типа называются дробно-рациональными или просто дробными.

Решать дробное уравнение бы будем путем избавления от дробей, после чего это уравнение, чаще всего, превращается в линейное или квадратное, которое решается обычным способом. Следует только учесть следующие моменты:

  • значение переменной, обращающее в 0 знаменатель, корнем быть не может;
  • нельзя делить или умножать уравнение на выражение =0.

Здесь вступает в силу такое понятие, как область допустимых значений (ОДЗ) – это такие значения корней уравнения, при которых уравнение имеет смысл.

Таким образом решая уравнение, необходимо найти корни, после чего проверить их на соответствие ОДЗ. Те корни, которые не соответствуют нашей ОДЗ, из ответа исключаются.

Например, требуется решить дробное уравнение:

Исходя из вышеуказанного правила х не может быть = 0, т.е. ОДЗ в данном случае: х – любое значение, отличное от нуля.

Избавляемся от знаменателя путем умножения всех членов уравнения на х

И решаем обычное уравнение

5x – 2х = 1
3x = 1
х = 1/3

Решим уравнение посложнее:

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Здесь также присутствует ОДЗ: х Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями-2.

Решая это уравнение, мы не станем переносить все в одну сторону и приводить дроби к общему знаменателю. Мы сразу умножим обе части уравнения на выражение, которое сократит сразу все знаменатели.

Для сокращения знаменателей требуется левую часть умножить на х+2, а правую — на 2. Значит, обе части уравнения надо умножать на 2(х+2):

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Это самое обычное умножение дробей, которое мы уже рассмотрели выше

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Запишем это же уравнение, но несколько по-другому

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Левая часть сокращается на (х+2), а правая на 2. После сокращения получаем обычное линейное уравнение:

х = 4 – 2 = 2, что соответствует нашей ОДЗ

Для закрепления материала рекомендуем еще посмотреть видео.

Решение уравнений с дробями не так сложно, как может показаться. В этой статье мы на примерах это показали. Если у вас возникли какие то трудности с тем, как решать уравнения с дробями, то отписывайтесь в комментариях.

Содержание
  1. Решение уравнений с дробями
  2. Понятие дроби
  3. Основные свойства дробей
  4. Понятие уравнения
  5. Понятие дробного уравнения
  6. Как решать уравнения с дробями
  7. 1. Метод пропорции
  8. 2. Метод избавления от дробей
  9. Что еще важно учитывать при решении
  10. Универсальный алгоритм решения
  11. Примеры решения дробных уравнений
  12. Тема дроби 5 класс, суть дроби, сложение, вычитание, деление, умножение, примеры с объяснениями. Как понять дроби
  13. Суть дроби
  14. Действия с дробями 5 класс
  15. Сложение дробей, объяснение
  16. Вычитание дробей, объяснение
  17. Деление десятичных дробей 5 класс
  18. Умножение десятичных дробей 5 класс
  19. Смешанные дроби 5 класс
  20. Примеры с десятичными дробями 5 класс с объяснением
  21. Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением
  22. Примеры с дробями 5 класс для тренировки
  23. Как научить ребенка легко решать дроби с помощью лего
  24. 📹 Видео

Видео:Уравнения с дробями 5 класс (задания, примеры) - как решать?Скачать

Уравнения с дробями 5 класс (задания, примеры) - как решать?

Решение уравнений с дробями

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

О чем эта статья:

5 класс, 6 класс, 7 класс

Видео:Уравнение с дробями видео урок ( Математика 5 класс )Скачать

Уравнение с дробями видео урок ( Математика 5 класс )

Понятие дроби

Прежде чем отвечать на вопрос, как найти десятичную дробь, разберемся в основных определениях, видах дробей и разницей между ними.

Дробь — это рациональное число, представленное в виде a/b, где a — числитель дроби, b — знаменатель. Есть два формата записи:

  • обыкновенный вид — ½ или a/b,
  • десятичный вид — 0,5.

Дробь — это одна из форм деления, записываемая с помощью дробной черты. Над чертой принято писать делимое (число, которое делим) — числитель. А под чертой всегда находится делитель (на сколько делим), его называют знаменателем. Черта между числителем и знаменателем означает деление.

Дроби бывают двух видов:

  1. Числовые — состоят из чисел. Например, 2/7 или (1,8 − 0,3)/5.
  2. Алгебраические — состоят из переменных. Например, (x + y)/(x − y). Значение дроби зависит от данных значений букв.

Дробь называют правильной, когда ее числитель меньше знаменателя. Например, 4/9 и 23/57.

Неправильная дробь — та, у которой числитель больше знаменателя или равен ему. Например, 13/5. Такое число называют смешанным — читается так: «две целых три пятых», а записывается — 2 3/5.

Видео:Уравнения с дробями. Как решать уравнения с дробями в 5 классе.Скачать

Уравнения с дробями. Как решать уравнения с дробями в 5 классе.

Основные свойства дробей

Дробь не имеет значения, если делитель равен нулю.

Дробь равняется нулю в том случае, если числитель равен нулю, а знаменатель отличен от нуля.

Дроби a/b и c/d называют равными, если a × d = b × c.

Если числитель и знаменатель дроби умножить или разделить на одно и то же натуральное число, то получится равная ей дробь.

Действия с дробями можно выполнять те же, что и с обычными числами: складывать, вычитать, умножать и делить. Также, дроби можно сравнивать между собой и возводить в степень.

Видео:Как вычитать дроби с разными знаменателями. #математика #дробиСкачать

Как вычитать дроби с разными знаменателями.  #математика #дроби

Понятие уравнения

Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Наша задача — найти неизвестные числа так, чтобы при их подстановке в пример получилось верное числовое равенство. Давайте на примере:

  • Возьмем выражение 4 + 5 = 9. Это верное равенство, потому что 4+5 действительно 9. Если бы вместо 9 стояло любое другое число — мы бы сказали, что числовое равенство неверное.
  • Уравнением можно назвать выражение 4 + x = 9, с неизвестной переменной x, значение которой нужно найти. Результат должен быть таким, чтобы знак равенства был оправдан, и левая часть равнялась правой.

Корень уравнения — то самое число, которое уравнивает выражения справа и слева, когда мы подставляем его на место неизвестной. В таком случае афоризм «зри в корень» — очень кстати при усердном решении уравнений.

Равносильные уравнения — это те, в которых совпадают множества решений. Другими словами, у них одни и те же корни.

Решить уравнение значит найти все его корни или убедиться, что корней нет.

Алгебраические уравнения могут быть разными, самые часто встречающиеся — линейные и квадратные. Расскажем и про них.

Линейное уравнение выглядит таках + b = 0, где a и b — действительные числа.

Что поможет в решении:

  • если а не равно нулю, то у уравнения единственный корень: х = −b : а;
  • если а равно нулю, а b не равно нулю — у уравнения нет корней;
  • если а и b равны нулю, то корень уравнения — любое число.
Квадратное уравнение выглядит так:ax 2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, a ≠ 0.

Видео:Как решать Уравнения с дробями ( Математика 5 класс )Скачать

Как решать Уравнения с дробями ( Математика 5 класс )

Понятие дробного уравнения

Дробное уравнение — это уравнение с дробями. Да, вот так просто. Но это еще не все. Чаще всего неизвестная стоит в знаменателе. Например, вот так:

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Такие уравнения еще называют дробно-рациональными. В них всегда есть хотя бы одна дробь с переменной в знаменателе.

Если вы видите в знаменателях числа, то это уравнения либо линейные, либо квадратные. Решать все равно нужно, поэтому идем дальше. Примеры:

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

На алгебре в 8 классе можно встретить такое понятие, как область допустимых значений — это множество значений переменной, при которых это уравнение имеет смысл. Его используют, чтобы проверить корни и убедиться, что решение правильное.

Мы уже знаем все важные термины, их определения и наконец подошли к самому главному — сейчас узнаем как решить дробное уравнение.

Видео:Вычитание дробей и смешанных чисел. 5 класс.Скачать

Вычитание дробей и смешанных чисел. 5 класс.

Как решать уравнения с дробями

1. Метод пропорции

Чтобы решить уравнение методом пропорции, нужно привести дроби к общему знаменателю. А само правило звучит так: произведение крайних членов пропорции равно произведению средних. Проверим, как это работает.

Итак, у нас есть линейное уравнение с дробями:

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

В левой части стоит одна дробь — оставим без преобразований. В правой части видим сумму, которую нужно упростить так, чтобы осталась одна дробь.

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

После того, как в левой и правой части осталась одна дробь, можно применить метод пропорции и перемножить крест-накрест числители и знаменатели.

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

2. Метод избавления от дробей

Возьмем то же самое уравнение, но попробуем решить его по-другому.

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

В уравнении есть две дроби, от которых мы очень хотим избавиться. Вот, как это сделать:

  • подобрать число, которое можно разделить на каждый из знаменателей без остатка;
  • умножить на это число каждый член уравнения.

Ищем самое маленькое число, которое делится на 5 и 9 и без остатка — 45 как раз подходит. Умножаем каждый член уравнения на 45 и избавляемся от знаменателей. Вуаля!

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Вот так просто мы получили тот же ответ, что и в прошлый раз.

Что еще важно учитывать при решении

  • если значение переменной обращает знаменатель в 0, значит это неверное значение;
  • делить и умножать уравнение на 0 нельзя.

Универсальный алгоритм решения

Определить область допустимых значений.

Найти общий знаменатель.

Умножить каждый член уравнения на общий знаменатель и сократить полученные дроби. Знаменатели при этом пропадут.

Раскрыть скобки, если нужно и привести подобные слагаемые.

Решить полученное уравнение.

Сравнить полученные корни с областью допустимых значений.

Записать ответ, который прошел проверку.

Курсы по математике от Skysmart помогут закрепить материал и разобраться в сложных темах.

Видео:как решать дробиСкачать

как решать дроби

Примеры решения дробных уравнений

Чтобы стать успешным в любом деле, нужно чаще практиковаться. Мы уже знаем, как решаются дробные уравнения — давайте перейдем к решению задачек.

Пример 1. Решить дробное уравнение: 1/x + 2 = 5.

  1. Вспомним правило х ≠ 0. Это значит, что область допустимых значений: х — любое число, кроме нуля.
  2. Отсчитываем справа налево в числителе дробной части три знака и ставим запятую.
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Решим обычное уравнение.

Пример 2. Найти корень уравненияКак решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

  1. Область допустимых значений: х ≠ −2.
  2. Умножим обе части уравнения на выражение, которое сократит оба знаменателя: 2(х+2)
  3. Избавимся от знаменателя. Умножим каждый член уравнения на х.

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Переведем новый множитель в числитель..

Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

Сократим левую часть на (х+2), а правую на 2.

Пример 3. Решить дробное уравнение: Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Найти общий знаменатель:

Умножим обе части уравнения на общий знаменатель. Сократим. Получилось:

Выполним возможные преобразования. Получилось квадратное уравнение:

Решим полученное квадратное уравнение:

Получили два возможных корня:

Если x = −3, то знаменатель равен нулю:

Если x = 3 — знаменатель тоже равен нулю.

  • Вывод: числа −3 и 3 не являются корнями уравнения, значит у данного уравнения нет решения.
  • Видео:Сложение дробей и смешанных чисел. 5 класс.Скачать

    Сложение дробей и смешанных чисел. 5 класс.

    Тема дроби 5 класс, суть дроби, сложение, вычитание, деление, умножение, примеры с объяснениями. Как понять дроби

    Практически каждый пятиклассник после первого знакомства с обыкновенными дробями находится в небольшом шоке. Мало того, что нужно еще понять суть дроби, так с ними еще придется выполнять арифметические действия. После этого маленькие ученики будут систематически допрашивать своего учителя, разузнавать когда же эти дроби кончатся.

    Чтобы избежать подобных ситуаций, достаточно всего лишь как можно проще объяснить детям эту нелегкую тему, а лучше в игровой форме.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Уравнение. 5 класс.Скачать

    Уравнение. 5 класс.

    Суть дроби

    Перед тем, как узнать что такое дробь, ребенок должен познакомиться с понятием доля. Здесь лучше всего подойдет ассоциативный метод.

    Представьте целый торт, который поделили на несколько равных частей, допустим на четыре. Тогда каждый кусочек торта, можно назвать долей. Если взять один из четырех кусков торта, то он будет одной четвертой долей.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Доли бывают разные, потому что, целое можно поделить на совершенно разное количество частей. Чем больше долей в целом, тем они меньше, и наоборот.

    Чтобы доли можно было обозначить, придумали такое математическое понятие, как обыкновенная дробь. Дробь позволит нам записать столько долей, сколько потребуется.

    Составными частями дроби являются числитель и знаменатель, которые разделены дробной чертой либо наклонной чертой. Многие дети не понимают их смысла, поэтому и суть дроби им не понятна. Дробная черта обозначает деление, здесь нет ничего сложного.

    Знаменатель принято записывать снизу, под дробной чертой или справа от накл.черты. Он показывает количество долей целого. Числитель, он записывается сверху над дробной чертой или слева от накл.черты, определяет сколько долей взяли.К примеру дробь 4/7. В данном случае 7-это знаменатель, показывает, что есть всего 7 долей, а числитель 4 указывает на то, что из семи долей взяли четыре.

    Основные доли и их запись в дробях:

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Помимо обыкновеной, существует еще и десятичная дробь.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Сложение и вычитание дробей с разными знаменателями.Скачать

    Сложение и вычитание дробей с разными знаменателями.

    Действия с дробями 5 класс

    В пятом классе учатся выполнять все арифметические действия с дробями.

    Все действия с дробями выполняются по правилам, и надеяться на то, что не выучив правило все получится само сабой не стоит. Поэтому не стоит пренебрегать устной частью домашнего задания по математике.

    Мы уже поняли, что запись десятичной и обыкновенной дроби различны, следовательно и арифметические действия будут выполняться по-разному. Действия с обыкновенными дробями зависят от тех чисел, которые стоят в знаменателе, а в десятичной-после запятой справа.

    Для дробей, у которых знаменатели одинаковые, алгоритм сложения и вычитания очень прост. Действия выполняем только с числителями.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Для дробей с разными знаменателями нужно найти Наименьший Общий Знаменатель ( НОЗ). Это то число, которое будет делиться без остатка на все знаменатели, и будет наименьшим из таких чисел, если их несколько.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Для сложения либо вычитания десятичных дробей, нужно записать их в столбик, запятая под запятой, и уравнить количество десятичных знаков если это требуется.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Чтобы перемножить обыкновенные дроби просто найди произведение числителей и знаменателей. Очень простое правило.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Деление выполняется по следующему алгоритму:

    1. Делимое записать без изменения
    2. Деление превратить в умножение
    3. Делитель перевернуть (записать обратную дробь делителю)
    4. Выполнить умножение

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Уравнения с дробями ( Математика - 5 класс )Скачать

    Уравнения с дробями ( Математика - 5 класс )

    Сложение дробей, объяснение

    Давайте более подробно разберем, как складывать обыкновенные и десятичные дроби.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как видно на изображении выше, у дроби одна третья и две третьих общий знаменатель три. Значит требуется сложить только числители единицу и два, а знаменатель оставить без изменения. В итоге получается сумма три третьих. Такой ответ, когда числитель и знаменатель дроби равны, можно записать как 1, так как 3:3 = 1.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Требуется найти сумму дробей две третьих и две девятых. В этом случае знаменатели различны, 3 и 9. Чтобы выполнить сложение, нужно подобрать общий. Есть очень простой способ. Выбираем наибольший знаменатель, это 9. Проверяем делится ли он на 3. Так как 9:3 = 3 без остатка, следовательно 9 подходит как общий знаменатель.

    Следующим шагом находим дополнительные множители для каждого числителя. Для этого общий знаменатель 9 делим поочередно на знаменатель каждой дроби, полученные числа и будут допол. множ. Для первой дроби: 9:3 = 3, дописываем к числителю первой дроби 3. Для второй дроби: 9:9 = 1, единицу можно не дописывать, так как при умножении на нее получится то же самое число.

    Теперь умножаем числители на их дополнительные множители и складываем результаты. Полученная сумма дробь восемь девятых.

    Сложение десятичных дробей выполняется по тому же правилу, что и сложение натуральных чисел. В столбик, разряд записывается под разрядом. Единственное отличие в том, что в десятичных дробях нужно правильно поставить запятую в результате. Для этого дроби записываются запятая под запятой, и в сумме требуется лишь снести запятую вниз.

    Найдем сумму дробей 38, 251 и 1, 56. Чтобы было удобнее выполнять действия, мы уровняли количество десятичных знаков справа, добавив 0.

    Складываем дроби не обращая внимания на запятую. А в полученной сумме просто опускаем запятую вниз. Ответ: 39, 811.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Сложение дробей и смешанных чисел. Практическая часть. 5 класс.Скачать

    Сложение дробей и смешанных чисел. Практическая часть. 5 класс.

    Вычитание дробей, объяснение

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателямиЧтобы найти разность дробей две третьих и одна третья, нужно вычислить разность числителей 2-1 = 1, а знаменатель оставить без изменения. В ответе получаем разность одну третью.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Найдем разность дробей пять шестых и семь десятых. Находим общий знаменатель. Используем способ подбора, из 6 и 10 наибольший 10. Проверяем: 10 : 6 без остатка не делится. Добавляем еще 10, получается 20:6, тоже без остатка не делится. Снова увеличиваем на 10, получили 30:6 = 5. Общий знаменатель 30. Так же НОЗ можно найти по таблице умножения.

    Находим дополнительные множители. 30:6 = 5 — для первой дроби. 30:10 = 3 — для второй. Перемножаем числители и их доп.множ. Получаем уменьшаемое 25/30 и вычитаемое 21/30. Далее выполняем вычитание числителей, а знаменатель оставляем без изменения.

    В результате получилась разность 4/30. Дробь сократимая. Разделим ее на 2. В ответе 2/15.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Умножение, деление и сложение дробей #математика #алгебра #дроби #5классСкачать

    Умножение, деление и сложение дробей #математика #алгебра #дроби #5класс

    Деление десятичных дробей 5 класс

    В этой теме рассматривается два варианта действий:

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Обыкновенные дроби и действия над ними. Практическая часть. 5 класс.Скачать

    Обыкновенные дроби и действия над ними. Практическая часть. 5 класс.

    Умножение десятичных дробей 5 класс

    Вспомните, как вы умножаете натуральные числа, точно таким же способом и находят произведение десятичных дробей. Сначала разберемся, как умножить десятичную дробь на натуральное число. Для этого:

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателямиПри умножении десятичной дроби на десятичную, действуем точно также.

    Видео:Как найти общий знаменатель. Математика 6 класс простоСкачать

    Как найти общий знаменатель. Математика 6 класс просто

    Смешанные дроби 5 класс

    Пятиклашки любят называть такие дроби не смешанные, а >, наверное так легче запомнить. Смешанные дроби называются так от того, что они получились путем соединения целого натурального числа и обыкновенной дроби.

    Смешанная дробь состоит из целой и дробной части.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателямиПри чтении таких дробей сначала называют целую часть, затем дробную: одна целая две третьих, две целых одна пятая, три целых две пятых, четыре целых три четвертых.

    Как же они получаются, эти смешанные дроби? Все довольно просто. Когда мы получаем в ответе неправильную дробь ( дробь у которой числитель больше знаменателя), мы ее должны всегда переводить в смешанную. Достаточно разделить числитель на знаменатель. Это действие называется выделением целой части:

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Перевести смешанную дробь обратно в неправильную тоже несложно:

    Видео:5 класс, 29 урок, Сложение и вычитание смешанных чиселСкачать

    5 класс, 29 урок, Сложение и вычитание смешанных чисел

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателямиПримеры с десятичными дробями 5 класс с объяснением

    Много вопросов у детей вызывают примеры на несколько действий. Разберем пару таких примеров.

    ( 0,4 · 8,25 — 2,025 ) : 0,5 =

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателямиПервым действием находим произведение чисел 8,25 и 0,4. Выполняем умножение по правилу. В ответе отсчитываем справа налево три знака и ставим запятую.

    Второе действие находится там же в скобках, это разность. От 3,300 вычитаем 2,025. Записываем действие в столбик, запятая под запятой.

    Третье действие-деление. Полученную разность во втором действии делим на 0,5. Запятая переносится на один знак. Результат 2,55.

    ( 0, 93 + 0, 07 ) : ( 0, 93 — 0, 805 ) =

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Первое действие сумма в скобках.Складываем в столбик, помним, что запятая под запятой. Получаем ответ 1,00.

    Второе действие разность из второй скобки. Так как у уменьшаемого меньше знаков после запятой, чем у вычитаемого, добавляем недостающий. Результат вычитания 0 ,125.

    Третьим действие делим сумму на разность. Запятая переносится на три знака. Получилось деление 1000 на 125.

    Видео:Вычитание смешанных чисел. 5 класс.Скачать

    Вычитание смешанных чисел. 5 класс.

    Примеры с обыкновенными дробями с разными знаменателями 5 класс с объяснением

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    В первом примере находим сумму дробей 5/8 и 3/7. Общим знаменателем будет число 56. Находим дополнительные множ., разделим 56:8 = 7 и 56:7 = 8. Дописываем их к первой и второй дроби соответственно. Перемножаем числители и их множители, получаем сумму дробей 35/56 и 24/56. Получили сумму 59/56. Дробь неправильная, переводим ее в смешанное число.Остальные примеры решаются аналогично.

    Видео:Сложение дробей. Как складывать дроби?Скачать

    Сложение дробей. Как складывать дроби?

    Примеры с дробями 5 класс для тренировки

    Для удобства переведите смешанные дроби в неправильные и выполняйте действия.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Видео:Сложение и вычитание смешанных чиселСкачать

    Сложение и вычитание смешанных чисел

    Как научить ребенка легко решать дроби с помощью лего

    С помощью такого конструктора можно не только хорошо развивать воображение ребенка, но и объяснить наглядно в игровой форме, что такое доля и дробь.

    На картинке ниже показано, что одна часть с восемью кружками это целое. Значит, взяв пазл с четырьмя кружками, получается половина, или 1/2. На картинке наглядно показано, как решать примеры с лего, если считать кружки на деталях.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Вы можете построить башенки из определенного количества частей и подписать каждую из них, как на картинке ниже. Например возьмем башенку из семи частей. Каждая часть зеленого конструктора будет 1/7. Если вы к одной такой части добавите еще две, то получится 3/7. Наглядное объяснение примера 1/7+2/7 = 3/7.

    Как решать уравнения с дробями 5 класс объяснение примеры с разными знаменателями

    Чтобы получать пятерки по математике не забывайте учить правила и отрабатывать их на практике.

    📹 Видео

    Вычитание дробей. Как вычитать дроби?Скачать

    Вычитание дробей. Как вычитать дроби?
    Поделиться или сохранить к себе: