- Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
- Как вычислить арксинус?
- Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
- Зачем нужен арксинус? Решение уравнения (sin x=a)
- Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
- Арксинус отрицательного числа
- Алгебра
- Арккосинус
- Решение уравнений tgx = a и ctgx = a
- Уравнения и неравенства, содержащие обратные тригонометрические функции
- 🎥 Видео
Арксинусом числа (a) ((a∈[-1;1])) называют число (x∈[-frac;frac]) синус которого равен (a) т.е.
Проще говоря, арксинус обратен синусу.
На круге это выглядит так:
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Как вычислить арксинус?
Чтобы вычислить арксинус — нужно ответить на вопрос: синус какого числа (лежащего в пределах от (-frac) до (frac) ) равен аргументу арксинуса?
Например, вычислите значение арксинуса:
а) Синус какого числа равен (-frac)? Или в более точной формулировке можно спросить так: если (sin x=-frac), то чему равен (x)? Причем, обратите внимание, нам нужно такое значение, которое лежит между (-frac) и (frac). Ответ очевиден:
б) Синус какого числа равен (frac<sqrt>)? Кто-то вспоминает тригонометрический круг, кто-то таблицу, но в любом случае ответ (frac).
в) Синус от чего равен (-1)?
Иначе говоря, (sin x=-1), (x=) ?
Тригонометрический круг со всеми стандартными арксинусами:
Видео:Арксинус. Решение уравнения sin t = a | Алгебра 10 класс #27 | ИнфоурокСкачать
Зачем нужен арксинус? Решение уравнения (sin x=a)
Чтобы понять зачем придумали арксинус, давайте решим уравнение: (sin x=frac).
Это не вызывает затруднений:
Внимание! Если вдруг затруднения всё же были, то почитайте здесь о решении простейших уравнений с синусом.
А теперь решите уравнение: (sin x=frac).
Что тут будет ответом? Не (frac), не (frac), даже не (frac) — вообще никакие привычные числа не подходят, однако при этом очевидно, что решения есть. Но как их записать?
Вот тут-то на помощь и приходит арксинус! Значение правой точки равно (arcsinfrac), потому что известно, что синус равен (frac). Длина дуги от (0) до правой точки тогда тоже будет равна (arcsinfrac). Тогда чему равно значение второй точки? С учетом того, что правая точка находится на расстоянии равному (arcsinfrac) от (π), то её значение составляет (π- arcsinfrac).
Ок, значение этих двух точек нашли. Теперь запишем полный ответ: ( left[ beginx=arcsin frac+2πn, n∈Z\ x=π-arcsin frac+2πl, l∈Zendright.) Без арксинусов решить уравнение (sin x=frac) не получилось бы. Как и уравнение (sin x=0,125), (sin x=-frac), (sin x=frac<sqrt>) и многие другие. Фактически без арксинуса мы можем решать только (9) простейших уравнений с синусом:
С арксинусом – бесконечное количество.
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Пример. Решите тригонометрическое уравнение: (sin x=frac<sqrt>).
Решение:
Кто поторопился написать ответ ( left[ beginx=arcsin frac<sqrt>+2πn, n∈Z\ x=π-arcsin frac<sqrt>+2πl, l∈Zendright.), тот на ЕГЭ потеряет 2 балла. Дело в том, что в отличии от прошлых примеров (arcsin frac<sqrt>) — вычислимое значение, но чтобы это стало очевидно нужно избавиться от иррациональности в знаменателе аргумента. Для этого умножим и числитель и знаменатель дробь на корень из двух (frac<sqrt> = frac<1 cdot sqrt> <sqrtcdot sqrt>= frac<sqrt>). Таким образом, получаем:
Значит в ответе вместо арксинусов нужно написать (frac).
Пример. Решите тригонометрическое уравнение: (sin x=frac).
Решение:
И вновь тот, кто поторопился написать ( left[ beginx= arcsin frac+2πn, n∈Z\ x=π- arcsinfrac+2πl, l∈Zendright.) на ЕГЭ потеряет (2) балла. Что не так? – спросите вы. Ведь точно не табличное значение, почему нельзя написать (arcsinfrac)? Пролистайте до самого верха, туда, где было определение арксинуса. Там написана маленькая, но очень важная деталь – аргумент арксинуса должен быть меньше или равен (1) и больше или равен (-1). Ведь синус не может выходить за эти пределы! И если решить уравнение с помощью круга, а не бездумно пользоваться готовыми формулами, то станет очевидно, что у такого уравнения решений нет.
Думаю, вы уловили закономерность.
Если (sin x) равен не табличному значению между (1) и (-1), то решения будут выглядеть как: ( left[ beginx= arcsin a +2πn, n∈Z\ x=π- arcsin a +2πl, l∈Zendright.)
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Арксинус отрицательного числа
Прежде чем научиться решать тригонометрические уравнения с отрицательным синусом советую запомнить формулу:
Если хотите понять логику этой формулы, внимательно рассмотрите картинку ниже:
Удивил последний пример? Почему в нем формула не работает? Потому что запись (arcsin(-frac<sqrt>)) в принципе неверна, ведь (-frac<sqrt> Синус
Тригонометрические уравнения
Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать
Алгебра
План урока:
Видео:10 класс - Алгебра - Арксинус. Решение уравнения sin t = aСкачать
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Наконец, решениями ур-ния
Видео:Отбор корней с аркфункциями в №12 | Это будет на ЕГЭ 2023 по математикеСкачать
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Уравнения и неравенства, содержащие обратные тригонометрические функции
Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.
Вначале напомним важнейшие свойства обратных тригонометрических функций.
1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];
arcsin (– x) = – arcsin x (x О [– 1; 1]);
2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];
3 Функция y = arctg x определена и монотонно возрастает на R;
arctg (– x) = – arctg x (x О R);
4 Функция y = arcctg x определена и монотонно убывает на R;
5
Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.
I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями
Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.
1 .
2 .
3 .
4 .
Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).
Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).
Решение. Уравнение равносильно системе
Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.
Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).
Решение. Неравенство равносильно следующему:
Пример 3. Решить неравенство 3arcsin 2x
Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).
Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .
Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:
arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы
Аналогичные равносильные преобразования используются и при решении задач с параметрами.
Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.
Решение. Уравнение равносильно уравнению
Рассмотрим два случая:
1) a = 0. В этом случае система примет вид:
2) a № 0. В этом случае уравнение системы является квадратным. Его корни:
Так как | x | Ј 1, то . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.
Ответ: при при a = – 1 и a = 0 x = 1; при прочих a решений нет.
Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).
Решение. Неравенство равносильно системе
Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x і 1, при a – неравенству x Ј 1, при a = решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.
Ответ: при | a | > решений нет; при a = – x = 1;
II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями
При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)
Рассуждая аналогично, можно получить следующие переходы:
Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.
Пример 9. Решить уравнение
Корень является посторонним.
Пример 10. Решить уравнение
Корень x = – 2 является посторонним.
Ответ: .
Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).
Корни вида являются посторонними.
Ответ:
При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.
Пример 12. Решить неравенство
Решение. Рассмотрим функцию
и решим неравенство f(x) Ј 0 методом интервалов.
1) Найдем D(f). Для этого решим систему
2) Найдем нули f(x). Для этого решим уравнение
Корень x = – 2 является посторонним.
3) Решим неравенство f(x) Ј 0 методом интервалов.
Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.
При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,
Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2x – a).
Решение. Данное уравнение равносильно системе
Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень
Ответ: при любом a
III. Замена переменной
Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.
Пример 14. Решить уравнение
Решение. Обозначим После преобразований получим уравнение
Поскольку
откуда
Ответ:
Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.
Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда
Поскольку откуда
Ответ: [– 1; cos 2] И [cos 1; 1].
Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества
Пример 16. Решить уравнение
Решение. Данное уравнение равносильно следующему:
Пусть arcsin x = t,
Тогда
IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций
Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.
Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.
Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.
Теорема 3. Если то на множестве X уравнение f(x) = g(x) равносильно
системе
Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.
Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.
Пример 18. Решить уравнение
Решение. Пусть x 2 + x = t. Тогда уравнение примет вид
Функции являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0
Пример 19. Решить неравенство
Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок
Ответ:
Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .
Решение. Поскольку arcsin то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно . Таким образом, уравнение равносильно системе:
Решение последней системы не представляет труда.
🎥 Видео
Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать
Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать
Вычисление аркфункцийСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Уравнение с арксинусом и арккосинусомСкачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Задание 13 с арксинусом и арккосинусом #48Скачать
Урок 6. Простейшие тригонометрические уравнения. Арксинус/арккосинус.Скачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
10 класс, 21 урок, Обратные тригонометрические функцииСкачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
ТРИГОНОМЕТРИЯ ЗА 7 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Уравнение с арксинусом.Скачать