Как решать уравнения на тему умножение одночлена на многочлен

Умножение одночлена на многочлен

Чтобы умножить одночлен на многочлен, надо умножить на этот одночлен каждый член многочлена и полученные произведения сложить.

При умножении одночлена на многочлен используется распределительное свойство умножения:

Произведением одночлена и многочлена будет многочлен.

Пример 1. Умножить одночлен -5a на многочлен 3a + 4b 2 .

Решение: Составим произведение одночлена и многочлена и с помощью распределительного свойства умножения раскроем скобки:

Как решать уравнения на тему умножение одночлена на многочлен

Теперь осталось выполнить умножение одночленов друг на друга:

Так как в получившемся результате нет подобных членов, то многочлен -15a 2 — 20ab 2 — это окончательный результат умножения одночлена -5a на многочлен 3a + 4b 2 .

Пример 2. Выполните умножение многочлена xxy + 2 на одночлен 2y.

Решение: Составим произведение многочлена и одночлена:

Для удобства можно записать одночлен перед многочленом, используя переместительное свойство умножения. После этого раскроем скобки:

Как решать уравнения на тему умножение одночлена на многочлен

Теперь надо перемножить одночлены:

Решение данного примера можно записать короче, не выписывая промежуточные результаты:

Пример 3. Упростите выражение:

Решение: Раскроем скобки, выполнив умножение —x на 4x — 6y, и затем сделаем приведение подобных членов (если они будут):

Так как получившийся в результате многочлен является алгебраической суммой, то его можно записать так:

Видео:Произведение одночлена и многочлена. Умножение одночлена и многочлена. 7 класс.Скачать

Произведение одночлена и многочлена. Умножение одночлена и многочлена. 7 класс.

Умножение одночлена на многочлена

Видео:7 класс, 22 урок, Умножение многочлена на одночленСкачать

7 класс, 22 урок, Умножение многочлена на одночлен

Что такое одночлен и многочлен

Одночленом называют произведение чисел, переменных и степеней.

Многочленом является алгебраическое выражение в виде суммы или разности нескольких одночленов.

Стандартный вид многочлена представляет собой запись многочлена, как суммы одночленов стандартного вида, среди которых отсутствуют подобные одночлены.

Алгоритм приведения многочлена к стандартному виду:

  1. Запись всех одночленов, которые составляют многочлен, в стандартном виде.
  2. Приведение подобных членов.

Существует несколько полезных правил, которые можно использовать при решении задач на умножение многочленов и одночленов.

Умножение двучленов в алгебре выполняют таким образом:

( a + b ) × ( c + d ) = a c + a d + b c + b d

Когда требуется найти произведение двучлена и трехчлена, следует воспользоваться следующей формулой:

( a + b + c ) × ( x + y ) = a x + b x + c x + a y + b y + c y

При умножении трехчленов, включая дроби, можно руководствоваться правилом, записанным в виде уравнения:

( a + b + c ) 2 = a 2 + b 2 + c 2 + 2 a b + 2 a c + 2 b c

Таким образом, произведение двух многочленов равно сумме произведений каждого члена первого многочлена и каждого члена второго многочлена. После сложения полученных произведений при наличии такой возможности следует привести сложный многочлен к стандартному виду.

Видео:7 класс// АЛГЕБРА // Умножение одночлена на многочлен, решение уравненийСкачать

7 класс// АЛГЕБРА // Умножение одночлена на многочлен, решение уравнений

Распределительные свойства умножения

Распределительное свойство умножения относительно сложения: произведение числа и суммы двух чисел равно сумме произведений этого числа и каждого слагаемого.

a × ( b + c ) = a b + a c

( b + c ) × a = a b + a c

Распределительное свойство умножения относительно вычитания: произведение числа и разности двух чисел равно разности произведения этого числа и уменьшаемого и произведения этого числа и вычитаемого.

a × ( b — c ) = a b — a c

( b — c ) × a = a b — a c

Распределительное свойство умножения справедливо и в том случае, когда в примере записано большее количество чисел. К примеру, если требуется найти произведение числа и суммы трех слагаемых, то можно воспользоваться следующей формулой:

a × ( b + c + d ) = a b + a c + a d

Рассмотрим несколько примеров решения задач на распределительное свойство умножения, которые часто можно встретить на уроках в средних классах школы:

28 × 7 = ( 20 + 8 ) × 7 = 20 × 7 + 8 × 7 = 140 + 56 = 196

28 × 7 = ( 30 – 2 ) × 7 = 30 × 7 – 2 × 7 = 210 – 14 = 196

56 × 9 = ( 50 + 6 ) × 9 = 50 × 9 + 6 × 9 = 450 + 54 = 504

56 × 9 = ( 60 – 4 ) × 9 = 60 × 9 — 4 × 9 = 540 – 36 = 504

473 × 7 = ( 400 + 70 + 3 ) × 7 = 400 × 7 + 70 × 7 + 3 × 7 = 2800 + 490 + 21 = 3290 + 21 = 3311

Используя распределительное свойство умножения, можно достаточно легко избавляться от скобок. В качестве тренировки рассмотрим примеры:

8 ( 3 x + 5 y ) = 8 × 3 x + 8 × 5 y = 24 x + 40 y

10 ( 7 a – 5 b ) = 10 × 7 a — 10 × 5 b = 70 a – 50 b

Распределительное свойство умножения работает также в обратном порядке:

a b + a c = a ( b + c )

Здесь общий множитель, роль которого играет а, был вынесен за скобки. В скобках в итоге остается сумма двух слагаемых b и c.

Видео:Умножение одночлена на многочлен - 7 класс алгебра. Раскрытие скобокСкачать

Умножение одночлена на многочлен - 7 класс алгебра. Раскрытие скобок

Алгоритм умножения одночлена на многочлен, пояснения на примерах

При умножении одночлена на многочлен нужно применить алгоритму:

  • найти произведение этого одночлена и каждого члена многочлена;
  • полученные результаты суммировать.

В процессе решения задач на умножение одночлена и многочлена пригодятся следующие правила из теории:

  • распределительное свойство умножения: a ( b + c ) = a b + a c ;
  • правило умножения степеней, которые имеют одинаковые основания: a x × a y = a x + y ;
  • правило расстановки знаков при умножении.

Важно заметить, что при умножении одночлена на многочлен в результате получается многочлен. Разберем несколько типичных задач.

Предположим, что требуется найти произведение следующих выражений:

Запишем произведение и раскроем скобки, руководствуясь распределительным свойством умножения:

— 5 a ( 3 a + 4 b 2 ) = — 5 a × 3 a + ( — 5 a ) × 4 b 2

Далее следует найти произведение одночленов:

— 5 a × 3 a + ( — 5 a ) × 4 b 2 = — 15 a – 20 a b 2

При разложении заметим, что подобные члены отсутствуют. Поэтому можно записать ответ в таком виде:

— 5 a ( 3 a + 4 b 2 ) = — 15 a – 20 a b 2

Предположим, что имеются некий одночлен 2y и многочлен x — x y + 2 . Попробуем найти их произведение:

Воспользуемся переместительным свойством умножения и избавимся от скобок:

2 y ( x — x y + 2 ) = 2 y × x – 2 y × x y + 2 y ) × 2

Найдем произведение одночленов:

2 y × x — 2 y × x y + 2 y × 2 = 2 x y — 2 x y 2 + 4 y

Сокращенная запись решения:

( x — x y + 2 ) 2 y = 2 x y — 2 x y 2 + 4 y

Попробуем упростить выражение:

3 x 2 — x ( 4 x — 6 y )

Избавимся от скобок и приведем подобные члены:

3 x 2 — x ( 4 x — 6 y ) = 3 x 2 — 4 x 2 + 6 x y = — 1 x 2 + 6 x y

В результате получилась алгебраическая сумма:

Видео:Умножение одночлена на многочлен. Решение уравненийСкачать

Умножение одночлена на многочлен.  Решение уравнений

Задания для самостоятельной работы

Требуется найти произведение одночлена 2a и многочлена a 2 − 7 a – 3 .

Воспользуемся распределительным свойством умножения, чтобы избавиться от скобок, и суммируем полученные результаты:

2 a ( a 2 − 7 a − 3 ) = 2 a × a 2 + 2 a × ( − 7 a ) + 2 a × ( − 3 ) = 2 a 3 + ( − 14 a 2 ) + ( − 6 a ) = 2 a 3 − 14 a 2 − 6 a

Упрощенный вариант записи:

2 a ( a 2 − 7 a − 3 ) = 2 a 3 − 14 a 2 − 6 a

Ответ: 2 a 3 − 14 a 2 − 6 a

Вычислить произведение одночлена и многочлена:

a 2 b 2 − a 2 − b 2

С помощью распределительного свойства умножения раскроем скобки и найдем сумму полученных произведений:

− a 2 b 2 ( a 2 b 2 − a 2 − b 2 ) = − a 2 b 2 × a 2 b 2 + ( − a 2 b 2 ) × ( — a 2 ) + ( − a 2 b 2 ) × ( — b 2 ) = − a 4 b 4 + a 4 b 2 + a 2 b 4

Более короткий вариант записи:

− a 2 b 2 ( a 2 b 2 − a 2 − b 2 ) = − a 4 b 4 + a 4 b 2 + a 2 b 4

Ответ: − a 4 b 4 + a 4 b 2 + a 2 b 4

− 1 , 4 x 2 y 6 ( 5 x 3 y − 1 , 5 x y 2 − 2 y 3 )

Воспользуемся распределительным свойством умножения и найдем сумму полученных произведений:

− 1 , 4 x 2 y 6 ( 5 x 3 y − 1 , 5 x y 2 − 2 y 3 ) = − 1 , 4 x 2 y 6 × 5 x 3 y + ( − 1 , 4 x 2 y 6 ) × ( − 1 , 5 x y 2 ) + ( − 1 , 4 x 2 y 6 ) × ( − 2 y 3 ) = − 7 x 5 y 7 + 2 , 1 x 3 y 8 + 2 , 8 x 2 y 9

Решение можно записать в упрощенном виде:

− 1 , 4 x 2 y 6 ( 5 x 3 y − 1 , 5 x y 2 − 2 y 3 ) = − 7 x 5 y 7 + 2 , 1 x 3 y 8 + 2 , 8 x 2 y 9

Ответ: − 7 x 5 y 7 + 2 , 1 x 3 y 8 + 2 , 8 x 2 y 9

Найти произведение одночлена и многочлена:

— 1 2 x y ( 2 3 x 2 — 3 4 x y + 4 5 y 2 )

В первую очередь найдем произведение одночлена и первого члена многочлена:

— 1 2 x y × 2 3 x 2 = — 1 3 x 3 y

Далее проделаем аналогичное действие с одночленом и вторым членом многочлена:

— 1 2 x y × ( — 3 4 x y ) = 3 8 x 2 y 2

Затем умножим одночлен на третий член многочлена:

— 1 2 x y × 4 5 y 2 = — 2 5 x y 3

— 1 2 x y ( 2 3 x 2 — 3 4 x y + 4 5 y 2 ) = — 1 2 x y × 2 3 x 2 + ( — 1 2 x y ) × ( — 3 4 x y ) + ( — 1 2 x y ) × ( — 3 4 x y ) + ( — 1 2 x y ) × 4 5 y 2 = — 1 3 x 3 y + 3 8 x 2 y 2 + ( — 2 5 x y 3 )

Сокращенный вариант записи:

— 1 2 x y ( 2 3 x 2 — 3 4 x y + 4 5 y 2 ) = — 1 3 x 3 y + 3 8 x 2 y 2 + ( — 2 5 x y 3 )

Ответ: — 1 3 x 3 y + 3 8 x 2 y 2 + ( — 2 5 x y 3 )

В первую очередь умножим 2 на многочлен (a + b), а полученное произведение запишем в скобках:

2 ( a + b ) c = ( 2 a + 2 b ) с

Скобки в данном случае потребовались, чтобы правильно выполнить дальнейшее умножение выражения на член с. Вычислим это произведение:

2 ( a + b ) c = ( 2 a + 2 b ) с = 2 a c + 2 b c

Второй вариант решения заключается в умножении (a + b) на с. Полученное выражение следует умножить на 2:

2 ( a + b ) c = 2 ( a c + b c ) = 2 a c + 2 b c

Заметим, что произведение не определяется порядком действий, когда выражение включает в себя несколько сомножителей. Таким образом, работает сочетательный закон умножения.

Видео:Умножение одночлена на многочлен. Алгебра, 7 классСкачать

Умножение одночлена на многочлен. Алгебра, 7 класс

Кейс «Умножение одночлена на многочлен», 7 класс.
учебно-методический материал по алгебре (7 класс)

Теория; разбор заданий на упрощение выражений, решение уравнений; задания для самостоятельной работы.

Видео:Умножение многочлена на многочлен. Алгебра, 7 классСкачать

Умножение многочлена на многочлен. Алгебра, 7 класс

Скачать:

ВложениеРазмер
7_klass_umnozhenie_odnochlena_na_mnogochlen.docx122.56 КБ

Видео:7 класс, 23 урок, Умножение многочлена на многочленСкачать

7 класс, 23 урок, Умножение многочлена на многочлен

Предварительный просмотр:

УМНОЖЕНИЕ ОДНОЧЛЕНА НА МНОГОЧЛЕН.

Ребята , сегодня вам нужно научиться умножать одночлен на многочлен или раскрывать скобки и приводить подобные слагаемые.

НЕ ЗАБУДЬТЕ : при раскрытии скобок, сначала определять знак и только потом умножать.

Упражнение : умножим одночлен 9n 3 на многочлен 7n 2 — Зn + 4.

Для этого составим их произведение и преобразуем его, используя распределительное свойство умножения. Умножая одночлен на каждый член многочлена и складывая результаты, получим

Как решать уравнения на тему умножение одночлена на многочлен

Произведение одночлена 9n 3 и многочлена 7n 2 — Зn + 4 мы представили в виде многочлена 63n 5 — 27n 4 + 36n 2 .

Вообще произведение одночлена и многочлена всегда можно представить в виде многочлена. При умножении одночлена на многочлен пользуются правилом:

чтобы умножить одночлен на многочлен, нужно умножить этот одночлен на каждый член многочлена и полученные произведения сложить.

Пример 1. Умножим одночлен -За 2 на многочлен 4а 3 — а + 1.

Решение: Воспользуемся правилом умножения одночлена на многочлен:

Как решать уравнения на тему умножение одночлена на многочлен

Заметим, что запись можно вести короче, не выписывая промежуточные результаты:

Как решать уравнения на тему умножение одночлена на многочлен

Пример 2 . Упростим выражение Зх 2 — 2х (х + 8).

Как решать уравнения на тему умножение одночлена на многочлен

Умножение одночлена на многочлен часто применяется при решении уравнений.

Пример 3. Решим уравнение 8 — 5x (x — 7) = 1 — 5х 2 .

Как решать уравнения на тему умножение одночлена на многочлен

Пример 4 . Решим уравнение Как решать уравнения на тему умножение одночлена на многочлен

Решение: Умножим обе части уравнения на наименьшее общее кратное знаменателей дробей, т. е. на число 18:

Как решать уравнения на тему умножение одночлена на многочлен

Как решать уравнения на тему умножение одночлена на многочлен

  1. Найдите значение выражения:

Как решать уравнения на тему умножение одночлена на многочлен

  1. Решите любые два уравнения.

🔍 Видео

7 класс, 26 урок, Деление многочлена на одночленСкачать

7 класс, 26 урок, Деление многочлена на одночлен

Произведение многочленов. 7 класс.Скачать

Произведение многочленов. 7 класс.

Алгебра 7 класс. Умножение одночлена на многочлен.Скачать

Алгебра 7 класс. Умножение одночлена на многочлен.

Алгебра 7 класс (Урок№21 - Произведение одночлена и многочлена.)Скачать

Алгебра 7 класс (Урок№21 - Произведение одночлена и многочлена.)

ЕГЭ по математике. Деление многочлена на двучленСкачать

ЕГЭ по математике. Деление многочлена на двучлен

15.12.20 7кл. Умножение одночлена на многочлен. Решение уравнений.Скачать

15.12.20 7кл. Умножение одночлена на многочлен. Решение уравнений.

Задание №3 "Решить уравнение, упростив его" по теме "Умножение и сложение многочленов и одночленов"Скачать

Задание №3 "Решить уравнение, упростив его" по теме "Умножение и сложение многочленов и одночленов"

7 класс// АЛГЕБРА // Умножение одночлена на многочлен, решение задачСкачать

7 класс// АЛГЕБРА // Умножение одночлена на многочлен, решение задач

Алгебра 7 Умножение многочлена на одночленСкачать

Алгебра 7 Умножение многочлена на одночлен

Алгебра 7 класс : Умножение одночлена на многочленСкачать

Алгебра 7 класс : Умножение одночлена на многочлен

Умножение одночленов. Возведение одночлена в степень. Алгебра, 7 классСкачать

Умножение одночленов. Возведение одночлена в степень. Алгебра, 7 класс

Алгебра 7 класс. Видеоурок по теме "Умножение одночлена на многочлен" от GDZ.ruСкачать

Алгебра 7 класс. Видеоурок по теме "Умножение одночлена на многочлен" от GDZ.ru
Поделиться или сохранить к себе: