Урок: как построить параболу или квадратичную функцию?
- ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
- ПРАКТИЧЕСКАЯ ЧАСТЬ
- Метод Симпсона (парабол)
- Метод парабол – суть, формула, оценка, погрешности, иллюстрации
- Суть метода парабол
- Вывод формулы метода Симпсона (парабол)
- Примеры приближенного вычисления определенных интегралов методом парабол
- Замечание
- Квадратичная функция. Построение параболы
- Основные понятия
- Построение квадратичной функции
- Алгоритм построения параболы
- Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
- Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
- Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
- 🎬 Видео
ТЕОРЕТИЧЕСКАЯ ЧАСТЬ
Парабола — это график функции описанный формулой ax 2 +bx+c=0.
Чтобы построить параболу нужно следовать простому алгоритму действий:
1 ) Формула параболы y=ax 2 +bx+c,
если а>0 то ветви параболы направленны вверх,
а 2 +bx+c=0;
a) Полное квадратное уравнение имеет вид ax 2 +bx+c=0 и решается по дискриминанту;
b) Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0:
ax 2 +bx=0,
х(ax+b)=0,
х=0 и ax+b=0;
c)Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a);
4) Найти несколько дополнительных точек для построения функции.
ПРАКТИЧЕСКАЯ ЧАСТЬ
И так теперь на примере разберем все по действиям:
Пример №1:
y=x 2 +4x+3
c=3 значит парабола пересекает OY в точке х=0 у=3. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=4 c=3 x=(-b)/2a=(-4)/(2*1)=-2 y= (-2) 2 +4*(-2)+3=4-8+3=-1 вершина находится в точке (-2;-1)
Найдем корни уравнения x 2 +4x+3=0
По дискриминанту находим корни
a=1 b=4 c=3
D=b 2 -4ac=16-12=4
x=(-b±√(D))/2a
x1=(-4+2)/2=-1
x2=(-4-2)/2=-3
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=-2
х -4 -3 -1 0
у 3 0 0 3
Подставляем вместо х в уравнение y=x 2 +4x+3 значения
y=(-4) 2 +4*(-4)+3=16-16+3=3
y=(-3) 2 +4*(-3)+3=9-12+3=0
y=(-1) 2 +4*(-1)+3=1-4+3=0
y=(0) 2 +4*(0)+3=0-0+3=3
Видно по значениям функции,что парабола симметрична относительно прямой х=-2
Пример №2:
y=-x 2 +4x
c=0 значит парабола пересекает OY в точке х=0 у=0. Ветви параболы смотрят вниз так как а=-1 -1 2 +4*2=-4+8=4 вершина находится в точке (2;4)
Найдем корни уравнения -x 2 +4x=0
Неполное квадратное уравнение вида ax 2 +bx=0. Чтобы его решить нужно вынести х за скобки, потом каждый множитель приравнять к 0.
х(-x+4)=0, х=0 и x=4.
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=2
х 0 1 3 4
у 0 3 3 0
Подставляем вместо х в уравнение y=-x 2 +4x значения
y=0 2 +4*0=0
y=-(1) 2 +4*1=-1+4=3
y=-(3) 2 +4*3=-9+13=3
y=-(4) 2 +4*4=-16+16=0
Видно по значениям функции,что парабола симметрична относительно прямой х=2
Пример №3
y=x 2 -4
c=4 значит парабола пересекает OY в точке х=0 у=4. Ветви параболы смотрят вверх так как а=1 1>0.
a=1 b=0 c=-4 x=(-b)/2a=0/(2*(1))=0 y=(0) 2 -4=-4 вершина находится в точке (0;-4)
Найдем корни уравнения x 2 -4=0
Неполное квадратное уравнение вида ax 2 +c=0. Чтобы его решить нужно неизвестные перенести в одну сторону, а известные в другую. x =±√(c/a)
x 2 =4
x1=2
x2=-2
Возьмем несколько произвольных точек, которые находятся рядом с вершиной х=0
х -2 -1 1 2
у 0 -3 -3 0
Подставляем вместо х в уравнение y= x 2 -4 значения
y=(-2) 2 -4=4-4=0
y=(-1) 2 -4=1-4=-3
y=1 2 -4=1-4=-3
y=2 2 -4=4-4=0
Видно по значениям функции,что парабола симметрична относительно прямой х=0
Подписывайтесь на канал на YOUTUBE, чтобы быть в курсе всех новинок и готовится с нами к экзаменам.
Видео:Решение квадратных неравенств | МатематикаСкачать
Метод Симпсона (парабол)
При вычислении определенного интеграла не всегда получаем точное решение. Не всегда удается представление в виде элементарной функции. Формула Ньютона-Лейбница не подходит для вычисления, поэтому необходимо использовать методы численного интегрирования. Такой метод позволяет получать данные с высокой точностью. Метод Симпсона является таковым.
Для этого необходимо дать графическое представление выведению формулы. Далее идет запись оценки абсолютной погрешности при помощи метода Симпсона. В заключении произведем сравнение трех методов: Симпсона, прямоугольников, трапеций.
Видео:Решение квадратных неравенств методом интервалов. 8 класс.Скачать
Метод парабол – суть, формула, оценка, погрешности, иллюстрации
Задана функция вида y = f ( x ) , имеющая непрерывность на интервале [ a ; b ] , необходимо произвести вычисление определенного интеграла ∫ a b f ( x ) d x
Необходимо разбить отрезок [ a ; b ] на n отрезков вида x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n с длиной 2 h = b — a n и точками a = x 0 x 2 x 4 . . . x 2 π — 2 x 2 π = b . Тогда точки x 2 i — 1 , i = 1 , 2 , . . . , n считаются серединами отрезков x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n . Данный случай показывает, что определение узлов производится через x i = a + i · h , i = 0 , 1 , . . . , 2 n .
Видео:метод парабол для решения квадратных неравенствСкачать
Суть метода парабол
Каждый интервал x 2 i — 2 ; x 2 i , i = 1 , 2 , . . . , n подынтегральной функции приближен при помощи параболы, заданной y = a i x 2 + b i x + c i , проходящей через точки с координатами x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) . Поэтому метод и имеет такое название.
Данные действия выполняются для того, чтобы интеграл ∫ x 2 i — 2 x 2 i a i x 2 + b i x + c i d x взять в качестве приближенного значения ∫ x 2 i — 2 x 2 i f ( x ) d x . Можем вычислить при помощи формулы Ньютона-Лейбница. Это и есть суть метода парабол. Рассмотрим рисунок, приведенный ниже.
Графическая иллюстрация метода парабол (Симпсона)
При помощи красной линии изображается график функции y = f ( x ) , синей – приближение графика y = f ( x ) при помощи квадратичных парабол.
Видео:Неравенства №13 из ОГЭ. Квадратные неравенства. «Метод параболы»Скачать
Вывод формулы метода Симпсона (парабол)
Исходя из пятого свойства определенного интеграла получаем ∫ a b f ( x ) d x = ∑ i = 1 n ∫ x 2 i — 2 x 2 i f ( x ) d x ≈ ∑ i = 1 n ∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x
Для того чтобы получить формулу методом парабол, необходимо произвести вычисление:
∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x
Пусть x 2 i — 2 = 0 . Рассмотрим рисунок, приведенный ниже.
Изобразим, что через точки с координатами x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) может проходить одна квадратичная парабола вида y = a i x 2 + b i x + c i . Иначе говоря, необходимо доказать, что коэффициенты могут определяться только единственным способом.
Имеем, что x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) являются точками параболы, тогда каждое из представленных уравнений является справедливым. Получаем, что
a i ( x 2 i — 2 ) 2 + b i · x 2 i — 2 + c i = f ( x 2 i — 2 ) a i ( x 2 i — 1 ) 2 + b i · x 2 i — 1 + c i = f ( x 2 i — 1 ) a i ( x 2 i ) 2 + b i · x 2 i + c i = f ( x 2 i )
Полученная система разрешается относительно a i , b i , c i , где необходимо искать определитель матрицы по Вандермонду. Получаем, что
( x 2 i — 2 ) 2 x 2 i — 2 1 x 2 i — 1 ) 2 x 2 i — 1 1 ( x 2 i ) 2 x 2 i 1 , причем он считается отличным от нуля и не совпадает с точками x 2 i — 2 , x 2 i — 1 , x 2 i . Это признак того, что уравнение имеет только одно решение, тогда и выбранные коэффициенты a i ; b i ; c i могут определяться только единственным образом, тогда через точки x 2 i — 2 ; f ( x 2 i — 2 ) , x 2 i — 1 ; x 2 i — 1 , x 2 i ; f ( x 2 i ) может проходить только одна парабола.
Можно переходить к нахождению интеграла ∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x .
f ( x 2 i — 2 ) = f ( 0 ) = a i · 0 2 + b i · 0 + c i = c i f ( x 2 i — 1 ) = f ( h ) = a i · h 2 + b i · h + c i f ( x 2 i ) = f ( 0 ) = 4 a i · h 2 + 2 b i · h + c i
Для осуществления последнего перехода необходимо использовать неравенство вида
∫ x 2 i — 2 x 2 i ( a i x 2 + b i x + c i ) d x = ∫ 0 2 h ( a i x 2 + b i x + c i ) d x = = a i x 3 3 + b i x 2 2 + c i x 0 2 h = 8 a i h 3 3 + 2 b i h 2 + 2 c i h = = h 3 8 a i h 2 + 6 b i h + 6 c i = h 3 f x 2 i — 2 + 4 f 2 2 i — 1 + f x 2 i
Значит, получаем формулу, используя метод парабол:
∫ a b f ( x ) d x ≈ ∑ i = 1 n ∫ x 2 i — 2 x 2 i a i x 2 + b i x + c i d x = = ∑ i = 1 n h 3 ( f ( x 2 i — 2 ) + 4 f ( x 2 i — 1 ) + f ( x 2 i ) ) = = h 3 f ( x 0 ) + 4 f ( x 1 ) + f ( x 2 ) + f ( x 2 ) + 4 f ( x 3 ) + f ( x 4 ) + . . . + + f ( x 2 n — 2 ) + 4 f ( x 2 n — 1 ) + f ( x 2 n ) = = h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n )
Формула метода Симпсона имеет вид ∫ a b f ( x ) d x ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) .
Формула оценки абсолютной погрешности имеет вид δ n ≤ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 .
Видео:Как понять неравенства? Квадратные неравенства. Линейные и сложные неравенства | TutorOnlineСкачать
Примеры приближенного вычисления определенных интегралов методом парабол
Метод Симпсона предполагает приближенное вычисление определенных интегралов. Чаще всего имеются два типа задач, для которых применим данный метод:
- при приближенном вычислении определенного интеграла;
- при нахождении приближенного значения с точностью δ n .
На точность вычисления влияет значение n , чем выше n , тем точнее промежуточные значения.
Вычислить определенный интеграл ∫ 0 5 x d x x 4 + 4 при помощи метода Симпсона, разбивая отрезок интегрирования на 5 частей.
По условию известно, что a = 0 ; b = 5 ; n = 5 , f ( x ) = x x 4 + 4 .
Тогда запишем формулу Симпсона в виде
∫ a b f ( x ) d x ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n )
Чтобы применить ее в полной мере, необходимо рассчитать шаг по формуле h = b — a 2 n , определить точки x i = a + i · h , i = 0 , 1 , . . . , 2 n и найти значения подынтегральной функции f ( x i ) , i = 0 , 1 , . . . , 2 n .
Промежуточные вычисления необходимо округлять до 5 знаков. Подставим значения и получим
h = b — a 2 n = 5 — 0 2 · 5 = 0 . 5
Найдем значение функции в точках
i = 0 : x i = x 0 = a + i · h = 0 + 0 · 0 . 5 = 0 ⇒ f ( x 0 ) = f ( 0 ) = 0 0 4 + 4 = 0 i = 1 : x i = x 1 = a + i · h = 0 + 1 · 0 . 5 = 0 . 5 ⇒ f ( x 1 ) = f ( 0 . 5 ) = 0 . 5 0 . 5 4 + 4 ≈ 0 . 12308 . . . i = 10 : x i = x 10 = a + i · h = 0 + 10 · 0 . 5 = 5 ⇒ f ( x 10 ) = f ( 5 ) = 5 5 4 + 4 ≈ 0 . 00795
Наглядность и удобство оформляется в таблице, приведенной ниже
i | 0 | 1 | 2 | 3 | 4 | 5 |
x i | 0 | 0 . 5 | 1 | 1 . 5 | 2 | 2 . 5 |
f x i | 0 | 0 . 12308 | 0 . 2 | 0 . 16552 | 0 . 1 | 0 . 05806 |
i | 6 | 7 | 8 | 9 | 10 |
x i | 3 | 3 . 5 | 4 | 4 . 5 | 5 |
f x i | 0 . 03529 | 0 . 02272 | 0 . 01538 | 0 . 01087 | 0 . 00795 |
Необходимо подставить результаты в формулу метода парабол:
∫ 0 5 x d x x 4 + 4 ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) = = 0 . 5 3 0 + 4 · 0 . 12308 + 0 . 16552 + 0 . 05806 + + 0 . 02272 + 0 . 01087 + 2 · 0 . 2 + 0 . 1 + + 0 . 03529 + 0 . 01538 + 0 . 00795 ≈ ≈ 0 . 37171
Для вычисления мы выбрали определенный интеграл, который можно вычислить по Ньютону-Лейбницу. Получим:
∫ 0 5 x d x x 4 + 4 = 1 2 ∫ 0 5 d ( x 2 ) x 2 2 + 4 = 1 4 a r c t g x 2 2 0 5 = 1 4 a r c t g 25 2 ≈ 0 . 37274
Ответ: Результаты совпадают до сотых.
Вычислить неопределенный интеграл ∫ 0 π sin 3 x 2 + 1 2 d x при помощи метода Симпсона с точностью до 0 , 001 .
По условию имеем, что а = 0 , b = π , f ( x ) = sin 3 x 2 + 1 2 , δ n ≤ 0 . 001 . Необходимо определить значение n . Для этого используется формула оценки абсолютной погрешности метода Симпсона вида δ n ≤ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 ≤ 0 . 001
Когда найдем значение n , то неравенство m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2880 n 4 ≤ 0 . 001 будет выполняться. Тогда, применив метод парабол, погрешность при вычислении не превысит 0 . 001 . Последнее неравенство примет вид
n 4 ≥ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2 . 88
Теперь необходимо выяснить, какое наибольшее значение может принимать модуль четвертой производной.
f ‘ ( x ) = sin 3 x 2 + 1 2 ‘ = 3 2 cos 3 x 2 ⇒ f » ( x ) = 3 2 cos 3 x 2 ‘ = — 9 4 sin 3 x 2 ⇒ f ‘ ‘ ‘ ( x ) = — 9 4 sin 3 x 2 ‘ = — 27 8 cos 3 x 2 ⇒ f ( 4 ) ( x ) = — 27 8 cos 3 x 2 ‘ = 81 16 sin 3 x 2
Область определения f ( 4 ) ( x ) = 81 16 sin 3 x 2 принадлежит интервалу — 81 16 ; 81 16 , а сам отрезок интегрирования [ 0 ; π ) имеет точку экстремума, из этого следует, что m a x [ 0 ; π ] f ( 4 ) ( x ) = 81 16 .
n 4 ≥ m a x [ a ; b ] f ( 4 ) ( x ) · ( b — a ) 5 2 . 88 ⇔ n 4 ≥ 81 16 · π — 0 5 2 . 88 ⇔ ⇔ n 4 > 537 . 9252 ⇔ n > 4 . 8159
Получили, что n – натуральное число, тогда его значение может быть равным n = 5 , 6 , 7 … для начала необходимо взять значение n = 5 .
Действия производить аналогично предыдущему примеру. Необходимо вычислить шаг. Для этого
h = b — a 2 n = π — 0 2 · 5 = π 10
Найдем узлы x i = a + i · h , i = 0 , 1 , . . . , 2 n , тогда значение подынтегральной функции будет иметь вид
i = 0 : x i = x 0 = a + i · h = 0 + 0 · π 10 = 0 ⇒ f ( x 0 ) = f ( 0 ) = sin 3 · 0 2 + 1 2 = 0 . 5 i = 1 : x i = x 1 = a + i · h = 0 + 1 · π 10 = π 10 ⇒ f ( x 1 ) = f ( π 10 ) = sin 3 · π 10 2 + 1 2 ≈ 0 . 953990 . . . i = 10 : x i = x 10 = a + i · h = 0 + 10 · π 10 = π ⇒ f ( x 10 ) = f ( π ) = sin 3 · π 2 + 1 2 ≈ — 0 . 5
Для объединения результатов запишем данные в таблицу.
i | 0 | 1 | 2 | 3 | 4 |
x i | 0 | π 10 | π 5 | 3 π 10 | 2 π 5 |
f ( x i ) | 0 . 5 | 0 . 953990 | 1 . 309017 | 1 . 487688 | 1 . 451056 |
i | 5 | 6 | 7 | 8 | 9 | 10 |
x i | π 2 | 3 π 5 | 7 π 10 | 4 π 5 | 9 π 10 | π |
f ( x i ) | 1 . 207107 | 0 . 809017 | 0 . 343566 | — 0 . 087785 | — 0 . 391007 | — 0 . 5 |
Осталось подставить значения в формулу решения методом парабол и получим
∫ 0 π sin 3 x 2 + 1 2 ≈ h 3 f ( x 0 ) + 4 ∑ i = 1 n f ( x 2 i — 1 ) + 2 ∑ i = 1 n — 1 f ( x 2 i ) + f ( x 2 n ) = = π 30 · 0 , 5 + 4 · 0 . 953990 + 1 . 487688 + 1 . 207107 + + 0 . 343566 — 0 . 391007 + 2 · 1 . 309017 + 1 . 451056 + + 0 . 809017 — 0 . 87785 — 0 . 5 = = 2 . 237650
Метод Симпсона позволяет нам получать приближенное значение определенного интеграла ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237 с точностью до 0 , 001 .
При вычислении формулой Ньютона-Лейбница получим в результате
∫ 0 π sin 3 x 2 + 1 2 d x = — 2 3 cos 3 x 2 + 1 2 x 0 π = = — 3 2 cos 3 π 2 + π 2 — — 2 3 cos 0 + 1 2 · 0 = π 2 + 2 3 ≈ 2 . 237463
Ответ: ∫ 0 π sin 3 x 2 + 1 2 d x ≈ 2 . 237
Видео:Решение неравенства методом интерваловСкачать
Замечание
В большинстве случаях нахождение m a x [ a ; b ] f ( 4 ) ( x ) проблематично. Поэтому применяется альтернатива – метод парабол. Его принцип подробно разъясняется в разделе метода трапеций. Метод парабол считается предпочтительным способом для разрешения интеграла. Вычислительная погрешность влияет на результат n . Чем меньше его значение, тем точнее приближенное искомое число.
Видео:Подготовка к ОГЭ . Рациональные неравенства | Математика | TutorOnlineСкачать
Квадратичная функция. Построение параболы
О чем эта статья:
8 класс, 9 класс, ЕГЭ/ОГЭ
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Видео:Решение квадратных неравенств графическим методом. 8 класс.Скачать
Основные понятия
Функция — это зависимость «y» от «x», при которой «x» является переменной или аргументом функции, а «y» — зависимой переменной или значением функции.
Задать функцию означает определить правило в соответствии с которым по значениям независимой переменной можно найти соответствующие ее значения. Вот, какими способами ее можно задать:
- Табличный способ. Помогает быстро определить конкретные значения без дополнительных измерений или вычислений.
- Графический способ: наглядно.
- Аналитический способ, через формулы. Компактно и можно посчитать функцию при произвольном значении аргумента из области определения.
- Словесный способ.
График функции — это объединение всех точек, когда вместо «x» можно подставить в функцию произвольные значения и найти координаты этих точек.
Еще быстрее разобраться в теме и научиться строить график квадратичной функции можно на курсах по математике в онлайн-школе Skysmart.
Видео:ПРОСТЕЙШИЙ метод решения систем квадратных неравенствСкачать
Построение квадратичной функции
Квадратичная функция задается формулой y = ax 2 + bx + c, где x и y — переменные, a, b, c — заданные числа, обязательное условие — a ≠ 0. В уравнении существует следующее распределение:
|
График квадратичной функции — парабола, которая имеет следующий вид для y = x 2 :
Точки, обозначенные зелеными кружками называют базовыми точками. Чтобы найти их координаты для функции y = x 2 , нужно составить таблицу:
x
y
Если в уравнении квадратичной функции старший коэффициент равен единице, то график имеет ту же форму, как y = x 2 при любых значениях остальных коэффициентов.
График функции y = –x 2 выглядит, как перевернутая парабола:
Зафиксируем координаты базовых точек в таблице:
x
y
Посмотрев на оба графика можно заметить их симметричность относительно оси ОХ. Отметим важные выводы:
- Если старший коэффициент больше нуля a > 0, то ветви параболы напрaвлены вверх.
- Если старший коэффициент меньше нуля a 2 + bx + c, для построения которой нужно решить квадратное уравнение ax 2 + bx + c = 0. В процессе найдем дискриминант D = b 2 — 4ac, который даст нам информацию о количестве корней квадратного уравнения.
Рассмотрим три случая:
- Если D 0,то график выглядит так:
- Если D = 0, то уравнение имеет одно решение, а парабола пересекает ось ОХ в одной точке. Если a > 0, то график имеет такой вид:
- Если D > 0, то уравнение имеет два решения, а парабола пересекает ось ОХ в двух точках, которые можно найти следующим образом:
Если a > 0, то график выглядит как-то так:
0″ height=»671″ src=»https://lh6.googleusercontent.com/8ryBuyxmK9S2EbnsNc4AE5PEl_NpIg0RAM_Y_V8wUP-zREEHNgi9QoQTl8FXxoujjWRAvf3s-MPRsXsoepaLLSTHDX-ReGtrsnLQp4dW3WaEyPF2ywjVpYFXlDIpAEHoIiwlxiB7″ width=»602″>
На основе вышеизложенного ясно, что зная направление ветвей параболы и знак дискриминанта, у нас есть понимание, как будет выглядеть график конкретной функции.
Координаты вершины параболы также являются важным параметром графика квадратичной функции и находятся следующим способом:
Ось симметрии параболы — прямая, которая проходит через вершину параболы параллельно оси OY.
Чтобы построить график, нам нужна точка пересечения параболы с осью OY. Так как абсцисса каждой точки оси OY равна нулю, чтобы найти точку пересечения параболы y = ax 2 + bx + c с осью OY, нужно в уравнение вместо х подставить ноль: y(0) = c. То есть координаты этой точки будут соответствовать: (0; c).
На изображении отмечены основные параметры графика квадратичной функции:
Видео:Всё о квадратичной функции. Парабола | Математика TutorOnlineСкачать
Алгоритм построения параболы
Рассмотрим несколько способов построения квадратичной параболы. Наиболее удобный способ можно выбрать в соответствии с тем, как задана квадратичная функция.
Видео:КВАДРАТНЫЕ НЕРАВЕНСТВА ПОНЯТНЫМ ЯЗЫКОМСкачать
Уравнение квадратичной функции имеет вид y = ax 2 + bx + c.
Разберем общий алгоритм на примере y = 2x 2 + 3x — 5.
Как строим:
- Определим направление ветвей параболы. Так как а = 2 > 0, ветви параболы направлены вверх.
- Найдем дискриминант квадратного трехчлена 2x 2 + 3x — 5.
D = b 2 — 4ac = 9 — 4 * 2 * (-5) = 49 > 0
В данном случае дискриминант больше нуля, поэтому парабола имеет две точки пересечения с осью ОХ. Чтобы найти их координаты, решим уравнение:
2x 2 + 3x — 5 = 0 2 + 3x — 5 = 0″ png;base64,iVBORw0KGgoAAAANSUhEUgAAAPoAAAAyCAYAAAB1V8bkAAAJyElEQVR4Ae2c16sUwRLGfdRX/wXFB30QFFQUQUyIKCIGBEEQzCCoKIgB01ExZwVz4JpzztljwJxzzjlnrcuvL33unD2zOzO7OzvuThU0u5N6uuvrr7u6unrKiYpqQDVQ8BooV/A11AqqBlQDokTXRqAaiIEGlOgxAFmrqBpQomsbUA3EQANK9BiArFVUDSjRtQ2oBmKgASV6DEDWKqoGlOjaBlQDMdBAQRH9z58/8vv3b5P+/v2bMXy/fv0S8kxMGWesGRgNpIMXz7jhkg28CxmWgiH69+/f5dSpU7JixQpZtmyZXLx4UX7+/JkUOxoGjSaVTJw4UVatWiUbNmwoSYcPH071iF7zqYGgeNlsT58+LZMnTy7BA2y2bNkib9++tbfor4sGCobogD19+nR5/fq1nDx5Upo0aSLHjh2TZD39x48f5ebNmy4q+d8pRo327dtLo0aNTF6NGzeWevXqCeRXyVwDQfHijXTMmzZtMjiAL6lu3brSuXNnuXfvXuaFKuAcCobojOQDBgwwgD948EAg5ubNm42Z54bfjRs3ZMqUKW6XzDk6jP379wsjD/LmzRtZt26dvHr1KukzesG/BoLiRc5gceXKFZM4/vbtmxw6dEguXbokP3788P/yGN5ZMET/8uWLvHv3Tt6/f2/Muh49esj169eTQupF9MQHIfm1a9cST+txmhoIipfba86fPy9Hjx4VrDOV1BooGKJTTYh++fJlGTt2rCxevNgcJ6t+EKIz3587d26yrPR8mhoIglfiK549e2Y6dHBU8dZA3hH9+PHjYhNmnFO+fv1qTOwDBw5Ily5dhF+nQ47ndu/ebdLChQule/fuJcecp9E477d5d+zYUW7fvm0P9TeABixW/AbBCz+LffbChQtl3rh69WpZsmSJjuZlNON+Iu+IDkGZW+N427Ztm6nVp0+f5MiRI6Zh2Dl1hw4dZOjQoaVGdebc1oM+a9Ys48Sxx/y6zfUePnwoVapUcdeenvXUQLp4LV261OA8bdo0g5nzRR8+fJBhw4YJeav400DeEf3Ro0dmZGD+/fLlS1NLzLjhw4fLmDFjhEaA4DHv16+fGeHdVOHXdKczqVy5slsWes6HBtLF6/HjxwZn/CLPnz8v9aZbt25Jt27dlOiltJL6IO+I7lYdTPY1a9bIjBkz5M6dO7Jjxw5hRN++fXtSb6xfos+ZM0cqVark9trQzrEmXFxc7LnOH1oBQs44HbycRTpz5oy0a9funyA6DkGW/NavX19mauIsc+J/OkCmJliRL168ME7FVM7jxOeDHhcE0ak05KD3P3v2rFkWO3HihHz+/DmpPlh3XbRoUdLr9gL5LF++3B6G+nv//n3ZuHGjDBw4UDp16pS0kwq1EDnKPChezmI9efJEtm7dmnJVxXl/WP8PHjxopoxXr141RG3Tpo0JsPLzPqaaLVq0kDp16kjDhg2lb9++JgbEz7Pp3FMwRKfyBLkwX2fpxivqjbm8Nf1TKY77WK/NhVBuGvGoUaNMHID1N+Ti3VG8IwhezvIR5gwm/EYlrBgMGTJE9u3bZxy4YDV69Gjf/py9e/fKypUrjSVKLEDYqwcFRfSoQM/2e2fOnGmivgqd6NnWWy7zI3CqefPmUlRUVOIXgrzly5cXfEZewr2Y/XTuyaI3vfIIcj1tolM4lpyIBZ83b56MGzdO9uzZY0YjwkSfPn0apBx6r0MDYRBd8XIoOAt/sRiZU0N4az2OHz9eKlSo4MvSgOgs6RKIBYdIYUraRMfsYpkL84m5cc+ePY1DYv78+dKnTx/B2eAlmKldu3b1TISy5luII8s/XnWbNGmSMC9PlDCIrniJcXB6YcJ15s9+JHEkrlq1qixYsMDPowLRcRqzSgSHiOkI0xeUNtHpxXBUIQQ3tGrVKnLniC8N58FNYRBd8QoOPES2Php8Agw2dvR25gZRcaaNHDnSeTrlf/JxdhTsuMQacJ5LmUHAi2kT3b6HyrNBoXXr1uYUBXVThr3f+YuCcGp4JZRsFYAV8K8lt1hremqveuE4RAeJEgbR7Tvigpfb1JG6e2HCde5DCJbCM16rVi2T2D9BiLVT6Agwv3GsgSXPumHqfAZ+sLqCNWfbNQ455ve8MwxJm+gsXeF0YFcXPRlRaAiebD/OCO5l/XDQoEGeCTPHhqZWq1ZN/rVElF2iTJ061bNemHkEhiRKGESPG141atRIVKtZevXT3tjz7kcYgIioZDRmtyM6Zk09sf0zbYIndkBgabFt27ZmeZeYAgQzvmLFimWe9VMOP/ekTXTWMXv37m16uF69esmECRNMZdgDzgcgVIJrwLm8Vr9+fSECjM4wG6J4ZUOL/8+DgQdSwwGccIRkk4jITBRGaZZM8V/ZlRRGdIJlwJzBsX///gKPwpK0iY7HkArSgKgwu8XYMnju3LmkgSr0ZNZUCatCfvLFtKIHtj2sn2dycY8NmCGcF6cQIwXx+dmQfMMLfEj/qjA1Yx29ZcuWpRLmfaLcvXtXBg8eLCNGjChxUoM1mBAdt3btWmP9ZatTT3w/x2kTHcKytAB5EeYmyYiDecpWz9mzZyf9EIRb4cI6Rw/KikGcLI98w4vlWkKYC0Uw5xkEMeGt4A/Akc28P+wBMG2i28L6+WV7IruRmjVrVmK6+HkujHuYL+3atcuUhbm/SlkNRI0Xn/iqWbOmaTNlS5d/ZzDzITOhslFJTohO5Rg98WDaOUoUFabXpBExV2JThBI9OQpR4YX1x3SQb/UxOBSCYO2yA48RPCqJFdGZmxN8w/q/Ej11k4uK6ERXMqflw4+FQvTUms7N1VgRnYgndq2RlOipG1gURCf2myhLpldNmzZVoqeGKNDV2BAdj+bOnTuNcpTo3m0k10THrCVohCAiRInujVGQO2JDdJYA8bQTpIJHt3bt2mZtk1FEpawGck10PrRB4BEf4QQjgqIIK2UbqErmGsgJ0fE2AmL16tWFj/oRwpprYcRgVCcR+URsPkELBCyolNZAFHgRVcZyrcWoQYMGwtd97KfBSpdQj4JqICdEZ3kBkwwQIZZXLHDQSvi9H687G/wJgyREkl+7McdvHnG4L0q8WG9mUOCDnASf4DxVyVwDOSF65sXMXg6QnYbMMh+/fjfgZK8EmlMqDYAPzji7WyyqQSFVGfPxWuyIno8gaZlVA5lqQImeqQb1edVAHmhAiZ4HIGkRVQOZakCJnqkGI3m+WIrKlZOi45G8XF+ahxpQouchaKbIx4uU6PmKXQTlVqJHoPTMX/lM/tOuSIozz0hziIkGlOgxAVqrGW8NKNHjjb/WPiYaUKLHBGitZrw1oESPN/5a+5hoQIkeE6C1mvHWwH8BSUfSiO3XWNEAAAAASUVORK5CYII=»>
- Координаты вершины параболы:
- Точка пересечения с осью OY находится: (0; -5) и ей симметричная.
- Нанести эти точки на координатную плоскость и построить график параболы:
2 + 3x — 5 = 0″ height=»671″ src=»https://lh6.googleusercontent.com/TYyA5dFfh0ZKINaPSps3Y_X1mCv8Mhv_8bNG3_dPbZud1AEsvo7UBFmVQNm1GcR1CQFo6HE1lNjYaAgepQUTQiK_ay_Fnuv7LEsB53woHkFO66W0R1PP8QfGsFcYzaR_h4AJdLxC» width=»602″>
Видео:ЭЛЕМЕНТАРНО, ВАТСОН! Квадратичная Функция и ее график ПараболаСкачать
Уравнение квадратичной функции имеет вид y = a * (x — x₀) 2 + y₀
Координаты его вершины: (x₀; y₀). В уравнении квадратичной функции y = 2x 2 + 3x — 5 при а = 1, то второй коэффициент является четным числом.
Рассмотрим пример: y = 2 * (x — 1) 2 + 4.
Как строим:
- Воспользуемся линейным преобразованием графиков функций. Для этого понадобится:
- построить y = x 2 ,
- умножить ординаты всех точек графика на 2,
- сдвинуть его вдоль оси ОХ на 1 единицу вправо,
- сдвинуть его вдоль оси OY на 4 единицы вверх.
- Построить график параболы для каждого случая. 2 + y₀» height=»431″ src=»https://lh5.googleusercontent.com/_zgF-CXWf4Yy0p2OnBYSJkUm0zO-mNetq5feU6LIPEbIgSrO9kdr2ti_tr7Gg3yTMOlJVnuZgG0HleAFfAzG7yr7ELHT6KSMqMrRHkHqt-VcgIiSZx80cVj0zlPMBzEM0wAWQ-L6″ width=»602″>
Видео:Метод параболСкачать
Уравнение квадратичной функции имеет вид y = (x + a) × (x + b)
Рассмотрим следующий пример: y = (x − 2) × (x + 1).
Как строим:
Данный вид уравнения позволяет быстро найти нули функции:
(x − 2) × (x + 1) = 0, отсюда х₁ = 2, х₂ = −1.
Определим координаты вершины параболы:
Найти точку пересечения с осью OY:
с = ab = (−2) × (1) = −2 и ей симметричная.
Отметим эти точки на координатной плоскости и соединим плавной прямой.
🎬 Видео
Метод парабол в решении квадратных неравенств.Скачать
Построение параболыСкачать
Как решать параметры на ЕГЭ. Метод плавающей параболыСкачать
Алгебра 9. Урок 7 - Неравенства. Метод интервалов - основные фактыСкачать
ЧТО ТАКОЕ МЕТОД ИНТЕРВАЛОВ? ЧАСТЬ I #shorts #математика #егэ #огэ #профильныйегэ #методинтерваловСкачать
Как строить параболу? | TutorOnlineСкачать
НЕРАВЕНСТВА И ПАРАБОЛА 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать