Разделы: Математика
Применение метода неопределённых коэффициентов основано на следующих двух теоремах.
Теорема №1 (о многочлене, тождественно равном нулю).
Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.
Теорема №2 (следствие теоремы № 1).
Деление многочлена на многочлен.
Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.
Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.
Многочлены Q(x) и R(x) имеют вид:
Раскроем скобки в правой части равенства:
Для отыскания неизвестных коэффициентов получаем систему уравнений:
Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.
Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.
Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).
Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.
Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.
Подставим Q(x) и R(x):
Раскроем скобки в правой части равенства:
Получаем систему уравнений:
Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.
Расположение многочлена по степеням.
Возьмем функцию Поставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).
Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.
Пример 3. Расположим многочлен по степеням.
Приравниваем коэффициенты при одинаковых степенях и получаем систему:
Решая систему, находим:
Ответ: .
Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).
Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90
Ответ: f(x) =
Представление произведения в виде многочлена стандартного вида.
Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).
Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:
(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.
Для вычисления их положим х = 1 и х = — 3, тогда получим:
откуда а =7, в = 7.
Ответ: х 3 +7х 2 + 7х — 15.
Разложение многочлена на множители
Пример 6. Дан многочлен
Разложим его на множители, если известно, сто все его корни – целые числа.
Решение: Будем искать разложение в виде:
полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.
Приравниваем коэффициенты при одинаковых степенях.
Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел
Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)
Пример 7. Дан многочлен .
Разложим его на множители, если известно, сто все его корни – целые числа.
Решение: Будем искать разложение в виде:
полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.
Приравниваем коэффициенты при одинаковых степенях.
Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел
Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)
Пример 8. Разность является целым числом. Найдем это число.
Решение: Так как,
Тогда
Положим где a и b – неизвестные коэффициенты.
Тогда
Решая данную систему уравнений, получим а = 5, b = -4.
Значит так как
Аналогично устанавливаем, что
Следовательно
Пример 9. Является ли разность целым числом.
Решение: Т.к.
тогда —
Положим где a и b – неизвестные коэффициенты.
Тогда откуда
из второго уравнения тогда первое уравнение принимает вид
b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Значит, а = 5.
Аналогично,
Окончательно получаем: — иррациональное число.
Уничтожение иррациональности в знаменателе
Пример 10. Избавимся от иррациональности в знаменателе:
Решение:
отсюда
Раскроем скобки, сгруппируем:
Ответ:
Пример 11. Избавимся от иррациональности в знаменателе:
Решение: ,
отсюда
Раскроем скобки, сгруппируем
Отсюда
Итак
Следовательно
Ответ:
Применение метода неопределенных коэффициентов при решении уравнений
Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.
Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел
Если х = 1, то
если х = -1, то
если х = 3, то
если х = -3, то
Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.
Попробуем разложить многочлен на множители в следующем виде:
, где a, b, c и d – целые. Раскроем скобки:
Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:
Так как bd = -3, то будем искать решения среди вариантов:
Проверим вариант № 2, когда b = —1; d = 3:
Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.
Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: , где a, b, c и d -целые. Раскроем скобки:
Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:
Так как , bd = 5, то будем искать решения среди вариантов:
Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.
Итак,
D =13
D = 29
Ответ:
О решении одного класса кубических уравнений.
Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = , в = , с =
Положим в уравнении (1) х = у + m. Тогда получим уравнение:
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.
Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:
Решения этой системы: m = —; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = у — можно привести к двучленному уравнению третьей степени.
Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.
Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — = -1. Выполним подстановку х = у -1.
Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = , а х = — 1.
Ответ: — 1.
Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.
Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — = -2.
Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.
у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = , а х = — 2.
Ответ: – 2.
Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.
Видео:Математика без Ху!ни. Метод неопределенных коэффициентов.Скачать
Разложение многочлена на множители методом неопределенных коэффициентов
Разложение многочлена на множители методом неопределенных коэффициентов
В этой статье мы рассмотрим решение уравнения четвертой степени с помощью разложения на множители методом неопределенных коэффициентов.
Решить уравнение:
Перед нами уравнение четвертой степени.
Чтобы решить это уравнение, разложим левую часть уравнения на множители.
Многочлен четвертой степени можно разложить на произведение двух многочленов второй степени.
Воспользуемся методом неопределенных коэффициентов.
Пусть выполняется равенство:
Здесь -целые числа.
Перемножим две скобки справа и приведем подобные члены. Получим:
Два многочлена равны тогда и только тогда, когда равны их коэффициенты.
Приравняем коэффициенты при одинаковых степенях и получим систему уравнений:
Без ограничения общности можем считать, что
, тогда пусть
, отсюда или .
Рассмотрим два случая:
- ,
Получим систему уравнений:
Из второго и третьего уравнений получаем — что не удовлетворяет третьему уравнению. Система не имеет решений.
2. ,
Из второго и третьего уравнений получаем — и эти значения удовлетворяет третьему уравнению.
Получили:
Тогда наше разложение имеет вид:
Осталось приравнять квадратные трехчлены в скобках к нулю и найти корни:
Ответ: ,
Видео:Метод неопределенных коэффициентов. 10 класс.Скачать
Разложение дроби на простейшие
Для закрепления материала будут рассмотрены несколько примеров и рассмотрена теория по разложению дробей на простейшие. Подробно рассмотрим метод неопределенных коэффициентов и метод частных значений, изучим всевозможные комбинации.
Простые дроби имеют название элементарных дробей.
Видео:Метод неопределенных коэффициентовСкачать
Типы дробей
- A x — a ;
- A ( x — a ) n ;
- M x + N x 2 + p x + q ;
- M x + N ( x 2 + p x + q ) n .
A , M , N , a , p , q из которых являются числами, а дискриминант дробей 3 и 4 меньше нуля, то есть корней не имеет выражение.
При упрощении выражения быстрее выполняются вычислительные функции. Представление дробно-рациональной дроби как суммы простейших дробей аналогично. Для этого применяют ряды Лорана для того, чтобы разложить в степенные ряды или для поиска интегралов.
Например, если необходимо брать интеграл от дробно-рациональной функции вида ∫ 2 x 3 + 3 x 3 + x d x . После чего необходимо произвести разложение подынтегральной функции на простейшие дроби. Все это к формированию простых интегралов. Получаем, что
∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 2 x — 3 x + 2 x 2 + 1 d x = = ∫ 2 d x + ∫ 3 x d x — ∫ 3 x + 2 x 2 + 1 d x = = 2 x + 3 ln x — 3 2 ∫ d ( x 2 + 1 ) x 2 + 1 — 2 ∫ d x x 2 + 1 = = 2 x + 3 ln x — 3 2 ln x 2 + 1 — 2 a r c tan ( x ) + C
Произвести разложение дроби вида — 2 x + 3 x 3 + x .
Когда степень числителя многочлена меньше степени многочлена в знаменателе, имеет место разложение на простейшие дроби. Иначе применяется деление для выделения целой части, после чего производят разложение дробно-рациональной функции.
Применим деление углом. Получаем, что
Отсюда следует, что дробь примет вид
2 x 3 + 3 x 3 + x = 2 + — 2 x + 3 x 3 + x
Значит, такое разложение приведет к тому, что результат будет равен — 2 x + 3 x 3 + x .
Видео:Метод неопределенных коэффициентовСкачать
Алгоритм метода неопределенных коэффициентов
Для того, чтобы правильно произвести разложение, необходимо придерживаться нескольких пунктов:
- Произвести разложение на множители. можно применять вынесение за скобки, формулы сокращенного умножения, подбор корня. Имеющийся пример x 3 + x = x x 2 + 1 для упрощения выносят х за скобки.
- Разложение дроби на простейшие дроби с неопределенными коэффициентами.
Рассмотрим на нескольких примерах:
Когда в знаменателе имеется выражение вида ( x — a ) ( x — b ) ( x — c ) ( x — d ) , количество множителей не имеет значения, дробь можно представить в виде дроби первого типа A x — a + B x — b + C x — c + D x — d , где a , b , c и d являются числами, A , B , C и D – неопределенными коэффициентами.
Когда знаменатель имеет выражение ( x — a ) 2 ( x — b ) 4 ( x — c ) 3 , количество множителей также не имеет значения, причем саму дробь необходимо привести ко второму или первому типу вида:
A 2 x — a 2 + A 1 x — a + B 4 x — b 4 + B 3 x — b 3 + B 2 x — b 2 + B 1 x — b + + C 3 x — c 3 + C 2 x — c 2 + C 1 x — c
где имеющиеся a , b , c являются числами, а A 1 , A 2 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 — неопределенными коэффициентами. Какова степень многочлена, такое количество слагаемых имеем.
Когда знаменатель имеет вид типа x 2 + p x + q x 2 + r x + s , тогда количество квадратичных функций значения не имеет, а дробь принимает вид третьего типа P x + Q x 2 + p x + q + R x + S x 2 + r x + s ,где имеющиеся p , q , r и s являются числами, а P , Q , R и S – определенными коэффициентами.
Когда знаменатель имеет вид x 2 + p x + q 4 x 2 + r x + s 2 , количество множителей значения не имеет также , как и их степени, дробь представляется в виде третьего и четверного типов вида
P 4 x + Q 4 ( x 2 + p x + q ) 4 + P 3 x + Q 3 ( x 2 + p x + q ) 3 + P 2 x + Q 2 ( x 2 + p x + q ) 2 + P 1 x + Q 1 x 2 + p x + q + + R 2 x + S 2 ( x 2 + r x + s ) 2 + R 1 x + S 1 x 2 + r x + s
где имеющиеся p , q , r и s являются числами, а P 1 , P 2 , P 3 , P 4 , R 1 , R 2 , S 1 , S 2 — неопределенными коэффициентами.
Когда имеется знаменатель вида ( x — a ) ( x — b ) 3 ( x 2 + p x + q ) ( x 2 + r x + s ) 2 , тогда дробь необходимо представить в виде четвертого типа
A x — a + B 3 x — b 3 + В 2 x — b 2 + В 1 x — b + + P x + Q x 2 + p x + q + R 2 x + S 2 x 2 + r x + s 2 + R 1 x + S 1 x 2 + r x + s
Рассмотрим на примере дроби. Когда дробь раскладывается в сумму третьим типом вида 2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 , где A , B и C являются неопределенными коэффициентами.
Приведение полученной суммы простейших дробей при наличии неопределенного коэффициента к общему знаменателю, применяем метода группировки при одинаковых степенях х и получаем, что
2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 = = A ( x 2 + 1 ) + ( B x + C ) x x ( x 2 + 1 ) = A x 2 + A + B x 2 + C x x ( x 2 + 1 ) = = x 2 ( A + B ) + x C + A x ( x 2 + 1 )
Когда х отличен от 0 , тогда решение сводится к приравниванию двух многочленов. Получаем 2 x — 3 = x 2 ( A + B ) + x C + A . Многочлены считаются равными тогда, когда совпадают коэффициенты при одинаковых степенях.
- Приравнивание коэффициентов с одинаковыми степенями х. Получим, что система линейных уравнений при наличии определенных коэффициентов:
A + B = 0 C = 2 A = — 3 - Решение полученной системы при помощи любого способа для нахождения неопределенных коэффициентов: A + B = 0 C = 2 A = — 3 ⇔ A = — 3 B = 3 C = 2
- Производим запись ответа:
2 x 3 + 3 x 3 + x = 2 — 2 x — 3 x 3 + x = 2 — 2 x — 3 x ( x 2 + 1 ) = = 2 — A x + B x + C x 2 + 1 = 2 — — 3 x + 3 x + 2 x 2 + 1 = 2 + 3 x — 3 x + 2 x 2 + 1
Необходимо постоянно выполнять проверки. Это способствует тому, что приведение к общему знаменателю получит вид
2 + 3 x — 3 x + 2 x 2 + 1 = 2 x ( x 2 + 1 ) — ( 3 x + 2 ) x x ( x 2 + 1 ) = 2 x 3 + 3 x 3 + x
Методом неопределенных коэффициентов считают метод разложения дроби на другие простейшие.
Использование метода частных значений способствует представлению линейных множителей таким образом:
x — a x — b x — c x — d .
Произвести разложение дроби 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x .
По условию имеем, что степень многочлена числителя меньше степени многочлена знаменателя, тогда деление выполнять не нужно. Необходимо перейти к разложению на множители. для начала необходимо выполнить вынесение х за скобки. Получим, что
x 3 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 )
Квадратный трехчлен x 2 — 5 x + 6 имеет корни, которые находим не по дискриминанту, а по теореме Виета. Получим:
x 1 + x 2 = 5 x 1 · x 2 = 6 ⇔ x 1 = 3 x 2 = 2
Запись трехчлена может быть в виде x 2 — 5 x + 6 = ( x — 3 ) ( x — 2 ) .
Тогда изменится знаменатель: x 2 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 ) = x ( x — 3 ) ( x — 2 )
Имея такой знаменатель, дробь раскладываем на простейшие дроби с неопределенными коэффициентами. Выражение примет вид:
2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2
Полученный результат необходимо приводить к общему знаменателю. Тогда получаем:
2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2 = = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 )
После упрощения придем к неравенству вида
2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 ) ⇒ ⇒ 2 x 2 — x — 7 = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 )
Теперь переходим к нахождению неопределенных коэффициентов. Нужно подставлять полученные значения в равенство для того, чтобы знаменатель обратился в ноль, то есть значения х = 0 , х = 2 и х = 3 .
Если х = 0 , получим:
2 · 0 2 — 0 — 7 = A ( 0 — 3 ) ( 0 — 2 ) + B · 0 · ( 0 — 2 ) + C · 0 · ( 0 — 3 ) — 7 = 6 A ⇒ A = — 7 6
Если x = 2 , тогда
2 · 2 2 — 2 — 7 = A ( 2 — 3 ) ( 2 — 2 ) + B · 2 · ( 2 — 2 ) + C · 2 · ( 2 — 3 ) — 1 = — 2 C ⇒ C = 1 2
Если x = 3 , тогда
2 · 3 2 — 3 — 7 = A ( 3 — 3 ) ( 3 — 2 ) + B · 3 · ( 3 — 2 ) + C · 3 · ( 3 — 3 ) 8 = 3 B ⇒ B = 8 3
Ответ: 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = A x + B x — 3 + C x — 2 = — 7 6 · 1 x + 8 3 · 1 x — 3 + 1 2 · 1 x — 2
Метод коэффициентов и метод частных значений отличаются только способом нахождения неизвестных. Данные методы могут быть совмещены для быстрого упрощения выражения.
Произвести разложение выражения x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 на простейшие дроби.
По условию имеем, что степень числителя многочлена меньше знаменателя, значит зазложение примет вид
x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3
Производим приведение к общему знаменателю. Имеем, что
x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3
Приравняем числители и получим, что
x 4 + 3 x 3 + 2 x + 11 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2
Из выше написанного понятно, что нули знаменателя – это х = 1 , х = — 1 и х = 3 . Тогда применим метод частных решений. Для этого подставим значения х. получим, что если х=1:
— 5 = — 16 A ⇒ A = 5 16
— 15 = 128 B ⇒ B = — 15 128
157 = 8 C 3 ⇒ C 3 = 157 8
Отсюда следует, что нужно найти значения C 1 и C 3 .
Поэтому подставим полученный значения в числитель, тогда
x 4 + 3 x 3 + 2 x — 11 = = 5 16 ( x + 1 ) ( x — 3 ) 3 — 15 128 ( x — 1 ) ( x — 3 ) 3 + 157 8 ( x — 1 ) ( x + 1 ) + + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2
Раскроем скобки для того, чтобы привести подобные слагаемые с одинаковыми степенями. Придем к выражению вида
x 4 + 3 x 3 + 2 x — 11 = x 4 25 128 + C 1 + x 3 — 85 64 + C 2 — 6 C 1 + + x 2 673 32 — 3 C 2 + 8 C 1 + x 405 64 — C 2 + 6 C 1 + 3 C 2 — 9 C 1 — 3997 128
Необходимо приравнять соответствующие коэффициенты с одинаковыми степенями, тогда сможем найти искомое значение C 1 и C 3 . Теперь необходимо решить систему:
25 128 + C 1 = 1 — 85 64 + C 2 — 6 C 1 = 3 673 32 — 3 C 2 + 8 C 1 = 0 405 64 — C 2 + 6 C 1 = 2 3 C 2 — 9 C 1 — 3997 128 = 11
Первое уравнение дает возможность найти C 1 = 103 128 , а второе C 2 = 3 + 85 64 + 6 C 1 = 3 + 85 64 + 6 · 103 128 = 293 32 .
Итог решения – это искомое разложение дроби на простейшие вида:
x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C 3 x — 3 3 + C 2 x — 3 2 + C 1 x — 3 = = 5 16 1 x — 1 — 15 128 1 x + 1 + 157 8 · 1 x — 3 3 + 293 32 1 x — 3 2 + 103 128 1 x — 3
При непосредственном применении метода неопределенных коэффициентов необходимо было бы решать все пять линейных уравнений, объединенных в систему. Такой метод упрощает поиск значения переменных и дальнейшее решение в совокупности. Иногда применяется несколько методов. Это необходимо для быстрого упрощения всего выражения и поиска результата.
🎬 Видео
10 класс. Метод неопределенных коэффициентов.Скачать
Многочлен полином Жегалкина Метод неопределенных коэффициентовСкачать
Метод неопределенных коэффициентовСкачать
Метод неопределенных коэффициентовСкачать
Высшая математика. Интегралы. Замена. Интегрирование по частям. Метод неопределенных коэффициентовСкачать
Разложение на множители методом неопределенных коэффициентовСкачать
Метод неопределенных коэффициентов для линейного ДУ со специальной правой частью (квазимногочленом)Скачать
Схема Горнера. 10 класс.Скачать
Метод неопределенных коэффициентовСкачать
Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать
Как использовать метод неопределённых коэффициентов для минимизации ДНФ и КНФ? Душкин объяснитСкачать
Метод неопределённых коэффициентов для линейных голоморфных уравнений в MathCadСкачать
16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать
Интегралы №7 Интегрирование рациональных алгебраических функций (Метод неопределенных коэффициентов)Скачать
Метод неопределенных коэффициентовСкачать
Решение дифференциальных уравнений методом неопределенных коэффициентовСкачать