Как решать уравнения методом неопределенных коэффициентов

Метод неопределенных коэффициентов и его универсальность

Разделы: Математика

Применение метода неопределённых коэффициентов основано на следующих двух теоремах.

Теорема №1 (о многочлене, тождественно равном нулю).

Если при произвольных значениях аргумента x значение многочлена f(x) = а0+ а1х + а2х 2 +. + а nx n , заданного в стандартном виде, равно нулю, то все его коэффициенты а0, а1, а2, . аn равны нулю.

Теорема №2 (следствие теоремы № 1).

Деление многочлена на многочлен.

Пример 1. Выполнить деление многочлена х 5 – 6х 3 + 2х 2 -4 на многочлен х 2 – х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 5 – 6х 3 + 2х 2 -4 = (х 2 – х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 2 – х + 1). Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 5 – 2 = 3.

Многочлены Q(x) и R(x) имеют вид:

Раскроем скобки в правой части равенства:

Для отыскания неизвестных коэффициентов получаем систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Ответ: Q(x) = x 3 + x 2 — 6x — 5, R(x) = x + 1.

Пример 2. Выполнить деление многочлена х 7 –1 на многочлен х 3 + х + 1.

Решение: Надо найти такие многочлены Q(x) и R(x), что х 7 –1 = (х 3 + х + 1) Q(x) + R(x), причём степень многочлена R(x) меньше степени многочлена (х 3 + х + 1).

Из того, что степень произведения многочленов равна сумме их степеней, следует, что степень многочлена Q(x) равна 7– 3 = 4.

Многочлены Q(x) и R(x) имеют вид: Q(x) = q 4x 4 + q 3x 3 + q 2x 2 + q 1x + q0,
R(x) = r 2x 2 + r 1x + r0.

Подставим Q(x) и R(x):

Раскроем скобки в правой части равенства:

Получаем систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Ответ: Q(x) = x 4 — x 2 — x + 1, R(x) = 2x 2 — 2.

Расположение многочлена по степеням.

Возьмем функцию Как решать уравнения методом неопределенных коэффициентовПоставим перед собой задачу «расположить многочлен по степеням f(x) по степеням (х-х0).

Как решать уравнения методом неопределенных коэффициентов

Задача сводится к нахождению неизвестных коэффициентов а0, а1, . аn. В каждом конкретном случае эти числа найти легко. Действительно, расположим многочлены, находящиеся в левой и правой частях равенства, по степеням x. Так как мы имеем тождество, то (по теореме № 2) коэффициенты при одинаковых степенях x должны быть равны между собой. Приравняв коэффициенты правой части соответствующим заданным коэффициентам левой, мы придем к системе n+1 уравнений с n+1 неизвестными а0, а1, . аn , которую нужно решить.

Пример 3. Расположим многочлен Как решать уравнения методом неопределенных коэффициентовпо степеням.

Как решать уравнения методом неопределенных коэффициентов
Как решать уравнения методом неопределенных коэффициентов

Приравниваем коэффициенты при одинаковых степенях и получаем систему:

Как решать уравнения методом неопределенных коэффициентов

Решая систему, находим: Как решать уравнения методом неопределенных коэффициентов

Ответ: Как решать уравнения методом неопределенных коэффициентов.

Пример 4. Расположим f(x) = х 4 — 8х 3 + 24х 2 — 50х + 90 по степеням (х-2).

Решение: Полагаем х4 — 8х 3 + 24х 2 — 50х + 90

Ответ: f(x) = Как решать уравнения методом неопределенных коэффициентов

Представление произведения в виде многочлена стандартного вида.

Пример 5. Не выполняя действий, представим в виде многочлена стандартного вида произведение (х — 1)(х + 3)(х + 5).

Решение: Произведение есть многочлен третьей степени, коэффициент при старшем члене равен 1, а свободный член равен (- 15), тогда запишем:

(х — 1)(х + 3)(х + 5) = х 3 + ах 2 + вх — 15, где а и в — неизвестные коэффициенты.

Для вычисления их положим х = 1 и х = — 3, тогда получим:

Как решать уравнения методом неопределенных коэффициентовоткуда а =7, в = 7.

Ответ: х 3 +7х 2 + 7х — 15.

Разложение многочлена на множители

Пример 6. Дан многочлен Как решать уравнения методом неопределенных коэффициентов

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

Как решать уравнения методом неопределенных коэффициентов

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Как решать уравнения методом неопределенных коэффициентов

Приравниваем коэффициенты при одинаковых степенях.

Как решать уравнения методом неопределенных коэффициентов

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 30. Следовательно, их следует искать среди чисел Как решать уравнения методом неопределенных коэффициентов

Проведя испытания, установим, что корни нашего многочлена -2, -5, 1 и 3. Следовательно х 4 + 3х 3 — 15х 2 — 19х + 30 = (х — 1)(х — 3)(х + 2)(х + 5)

Пример 7. Дан многочлен Как решать уравнения методом неопределенных коэффициентов.

Разложим его на множители, если известно, сто все его корни – целые числа.

Решение: Будем искать разложение в виде:

Как решать уравнения методом неопределенных коэффициентов

полагая числа a, b, c и d его корнями. Раскроем скобки в правой части и сгруппируем по одинаковым степеням.

Как решать уравнения методом неопределенных коэффициентов

Приравниваем коэффициенты при одинаковых степенях.

Как решать уравнения методом неопределенных коэффициентов

Так как корни нашего многочлена – целые, то из последнего уравнения системы заключаем, что они должны быть делителями числа 84. Следовательно, их следует искать среди чисел

Как решать уравнения методом неопределенных коэффициентов

Проведя испытания, установим, что корни нашего многочлена -7,-2,2,3. Следовательно х 4 + 4х 3 — 25х 2 — 16х + 84 = (х — 2)(х — 3)(х + 2)(х + 7)

Пример 8. Разность Как решать уравнения методом неопределенных коэффициентовявляется целым числом. Найдем это число.

Решение: Так как, Как решать уравнения методом неопределенных коэффициентов

Тогда Как решать уравнения методом неопределенных коэффициентов

Положим Как решать уравнения методом неопределенных коэффициентовгде a и b – неизвестные коэффициенты.

Тогда Как решать уравнения методом неопределенных коэффициентов

Решая данную систему уравнений, получим а = 5, b = -4.

Значит Как решать уравнения методом неопределенных коэффициентовтак как Как решать уравнения методом неопределенных коэффициентов

Аналогично устанавливаем, что Как решать уравнения методом неопределенных коэффициентов

Следовательно Как решать уравнения методом неопределенных коэффициентов

Пример 9. Является ли разность Как решать уравнения методом неопределенных коэффициентовцелым числом.

Решение: Т.к. Как решать уравнения методом неопределенных коэффициентов

тогда — Как решать уравнения методом неопределенных коэффициентов

Положим Как решать уравнения методом неопределенных коэффициентовгде a и b – неизвестные коэффициенты.

Тогда Как решать уравнения методом неопределенных коэффициентовоткуда Как решать уравнения методом неопределенных коэффициентов

из второго уравнения Как решать уравнения методом неопределенных коэффициентовтогда первое уравнение принимает вид

Как решать уравнения методом неопределенных коэффициентов

b 2 = 12,5 — — не удовлетворяет условию задачи, или b 2 = 9, откуда b = -3 или b = 3 — не удовлетворяет числу Как решать уравнения методом неопределенных коэффициентовЗначит, а = 5.

Как решать уравнения методом неопределенных коэффициентовКак решать уравнения методом неопределенных коэффициентов

Аналогично, Как решать уравнения методом неопределенных коэффициентов

Окончательно получаем: Как решать уравнения методом неопределенных коэффициентов— иррациональное число.

Уничтожение иррациональности в знаменателе

Пример 10. Избавимся от иррациональности в знаменателе: Как решать уравнения методом неопределенных коэффициентов

Решение: Как решать уравнения методом неопределенных коэффициентов

отсюда Как решать уравнения методом неопределенных коэффициентов

Раскроем скобки, сгруппируем:

Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Ответ: Как решать уравнения методом неопределенных коэффициентов

Пример 11. Избавимся от иррациональности в знаменателе: Как решать уравнения методом неопределенных коэффициентов

Решение: Как решать уравнения методом неопределенных коэффициентов,

отсюда Как решать уравнения методом неопределенных коэффициентов

Раскроем скобки, сгруппируем Как решать уравнения методом неопределенных коэффициентов

Отсюда Как решать уравнения методом неопределенных коэффициентов

Итак Как решать уравнения методом неопределенных коэффициентов

Следовательно Как решать уравнения методом неопределенных коэффициентов

Ответ: Как решать уравнения методом неопределенных коэффициентов

Применение метода неопределенных коэффициентов при решении уравнений

Пример 12. Решим уравнение х 4 + х 3 — 4х 2 — 9х — 3 = 0.

Решение: Предположим, что корни уравнения — целые числа, тогда их надо искать среди чисел Как решать уравнения методом неопределенных коэффициентов

Если х = 1, то Как решать уравнения методом неопределенных коэффициентов
если х = -1, то Как решать уравнения методом неопределенных коэффициентов
если х = 3, то Как решать уравнения методом неопределенных коэффициентов
если х = -3, то Как решать уравнения методом неопределенных коэффициентов

Отсюда делаем вывод, что рациональных корней наше уравнение не имеет.

Попробуем разложить многочлен Как решать уравнения методом неопределенных коэффициентовна множители в следующем виде:

Как решать уравнения методом неопределенных коэффициентов, где a, b, c и d – целые. Раскроем скобки:

Как решать уравнения методом неопределенных коэффициентов

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Так как bd = -3, то будем искать решения среди вариантов:

Как решать уравнения методом неопределенных коэффициентов

Проверим вариант № 2, когда b = —1; d = 3:

Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Пример 13. Решить уравнение: х 4 — 15х 2 + 12х + 5= 0.

Решение: Разложим многочлен f(х) = х 4 — 15х 2 + 12х + 5 на множители в следующем виде: Как решать уравнения методом неопределенных коэффициентов, где a, b, c и d -целые. Раскроем скобки: Как решать уравнения методом неопределенных коэффициентов

Приравнивая соответствующие коэффициенты выражений для неизвестных a, b, c и d получаем систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Так как , bd = 5, то будем искать решения среди вариантов:

Как решать уравнения методом неопределенных коэффициентов

Системе удовлетворяет вариант №2, т.е. а = 3, b = -1, c = -3, d = 5.

Итак, Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов
D =13
D = 29

Как решать уравнения методом неопределенных коэффициентов

Ответ: Как решать уравнения методом неопределенных коэффициентов

О решении одного класса кубических уравнений.

Пусть дано кубическое уравнение: а 1 х 3 + b 1х 2 +с 1х +d1 = 0, где а ≠ 0.
Приведём его к виду х 3 + ах 2 +bх + с = 0 (1), где а = Как решать уравнения методом неопределенных коэффициентов, в = Как решать уравнения методом неопределенных коэффициентов, с = Как решать уравнения методом неопределенных коэффициентов
Положим в уравнении (1) х = у + m. Тогда получим уравнение: Как решать уравнения методом неопределенных коэффициентов
Раскроем скобки, сгруппируем: y 3 +3у 2 m + 3ym 2 + m 3 + ay 2 + 2aym +am 2 + by +bm + с = 0,
y 3 + y 2 (a +3m) +y(3m 2 +2am +b) + m 3 +am 2 +bm + с = 0.

Для того, чтобы уравнение (1) было двучленным, должно выполняться условие:

Как решать уравнения методом неопределенных коэффициентов

Решения этой системы: m = —Как решать уравнения методом неопределенных коэффициентов; a 2 = 3b. Таким образом, при произвольном с и при a 2 = 3b уравнение подстановкой х = уКак решать уравнения методом неопределенных коэффициентовможно привести к двучленному уравнению третьей степени.

Пример14. Решить уравнение: х 3 + 3х 2 +3х — 9 =0.

Решение: В данном уравнении а = 3, в =3, тогда условие a 2 = 3b выполняется, а m = — Как решать уравнения методом неопределенных коэффициентов= -1. Выполним подстановку х = у -1.

Уравнение принимает вид: (у -1) 3 +3(у -1) 2 +3(у -1) – 9 = 0.
y 3 -3y 2 +3у -1 +3у 2 – 6у +3 +3у –3 – 9 = 0.
y 3 – 10 = 0, откуда у = Как решать уравнения методом неопределенных коэффициентов, а х = Как решать уравнения методом неопределенных коэффициентов— 1.

Ответ: Как решать уравнения методом неопределенных коэффициентов— 1.

Пример15. Решить уравнение: х 3 + 6х 2 + 12х + 5 = 0.

Решение: а = 6, в =12, тогда условие a 2 = 3b (62 = 3×12) выполняется, а m = — Как решать уравнения методом неопределенных коэффициентов= -2.

Выполним подстановку х = у — 2. Уравнение принимает вид: (у -2) 3 +6(у -2) 2 +12(у -2) + 5 = 0.

у 3 – 6у 2 + 12у – 8 + 6у 2 -24у + 24 + 12у – 24 + 5 = 0.
у 3 – 3 = 0, у = Как решать уравнения методом неопределенных коэффициентов, а х = Как решать уравнения методом неопределенных коэффициентов— 2.

Ответ: Как решать уравнения методом неопределенных коэффициентов– 2.

Рассмотренные в работе примеры могут быть решены и другими способами. Но цель работы заключалась в том, чтобы решить их методом неопределённых коэффициентов, показать универсальность этого метода, его оригинальность и рациональность, не отрицая того, что в некоторых случаях он приводит к громоздким, но не сложным преобразованиям.

Видео:Математика без Ху!ни. Метод неопределенных коэффициентов.Скачать

Математика без Ху!ни. Метод неопределенных коэффициентов.

Разложение многочлена на множители методом неопределенных коэффициентов

Разложение многочлена на множители методом неопределенных коэффициентов

В этой статье мы рассмотрим решение уравнения четвертой степени с помощью разложения на множители методом неопределенных коэффициентов.

Решить уравнение: Как решать уравнения методом неопределенных коэффициентов

Перед нами уравнение четвертой степени.

Чтобы решить это уравнение, разложим левую часть уравнения на множители.

Многочлен четвертой степени можно разложить на произведение двух многочленов второй степени.

Воспользуемся методом неопределенных коэффициентов.

Пусть выполняется равенство:

Как решать уравнения методом неопределенных коэффициентов

Здесь Как решать уравнения методом неопределенных коэффициентов-целые числа.

Перемножим две скобки справа и приведем подобные члены. Получим:

Как решать уравнения методом неопределенных коэффициентов

Два многочлена равны тогда и только тогда, когда равны их коэффициенты.

Приравняем коэффициенты при одинаковых степенях Как решать уравнения методом неопределенных коэффициентови получим систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Без ограничения общности можем считать, что Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов, тогда пусть Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов, отсюда Как решать уравнения методом неопределенных коэффициентовили Как решать уравнения методом неопределенных коэффициентов.

Рассмотрим два случая:

  1. Как решать уравнения методом неопределенных коэффициентов, Как решать уравнения методом неопределенных коэффициентов

Получим систему уравнений:

Как решать уравнения методом неопределенных коэффициентов

Из второго и третьего уравнений получаем Как решать уравнения методом неопределенных коэффициентов— что не удовлетворяет третьему уравнению. Система не имеет решений.

2. Как решать уравнения методом неопределенных коэффициентов, Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Из второго и третьего уравнений получаем Как решать уравнения методом неопределенных коэффициентов— и эти значения удовлетворяет третьему уравнению.

Получили: Как решать уравнения методом неопределенных коэффициентов

Тогда наше разложение имеет вид:

Как решать уравнения методом неопределенных коэффициентов

Осталось приравнять квадратные трехчлены в скобках к нулю и найти корни:

Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Как решать уравнения методом неопределенных коэффициентов

Ответ: Как решать уравнения методом неопределенных коэффициентов, Как решать уравнения методом неопределенных коэффициентов

Видео:Метод неопределенных коэффициентов. 10 класс.Скачать

Метод неопределенных коэффициентов. 10 класс.

Разложение дроби на простейшие

Для закрепления материала будут рассмотрены несколько примеров и рассмотрена теория по разложению дробей на простейшие. Подробно рассмотрим метод неопределенных коэффициентов и метод частных значений, изучим всевозможные комбинации.

Простые дроби имеют название элементарных дробей.

Видео:Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Типы дробей

  1. A x — a ;
  2. A ( x — a ) n ;
  3. M x + N x 2 + p x + q ;
  4. M x + N ( x 2 + p x + q ) n .

A , M , N , a , p , q из которых являются числами, а дискриминант дробей 3 и 4 меньше нуля, то есть корней не имеет выражение.

При упрощении выражения быстрее выполняются вычислительные функции. Представление дробно-рациональной дроби как суммы простейших дробей аналогично. Для этого применяют ряды Лорана для того, чтобы разложить в степенные ряды или для поиска интегралов.

Например, если необходимо брать интеграл от дробно-рациональной функции вида ∫ 2 x 3 + 3 x 3 + x d x . После чего необходимо произвести разложение подынтегральной функции на простейшие дроби. Все это к формированию простых интегралов. Получаем, что

∫ 2 x 3 + 3 x 3 + x d x = ∫ 2 + 2 x — 3 x + 2 x 2 + 1 d x = = ∫ 2 d x + ∫ 3 x d x — ∫ 3 x + 2 x 2 + 1 d x = = 2 x + 3 ln x — 3 2 ∫ d ( x 2 + 1 ) x 2 + 1 — 2 ∫ d x x 2 + 1 = = 2 x + 3 ln x — 3 2 ln x 2 + 1 — 2 a r c tan ( x ) + C

Произвести разложение дроби вида — 2 x + 3 x 3 + x .

Когда степень числителя многочлена меньше степени многочлена в знаменателе, имеет место разложение на простейшие дроби. Иначе применяется деление для выделения целой части, после чего производят разложение дробно-рациональной функции.

Применим деление углом. Получаем, что

Как решать уравнения методом неопределенных коэффициентов

Отсюда следует, что дробь примет вид

2 x 3 + 3 x 3 + x = 2 + — 2 x + 3 x 3 + x

Значит, такое разложение приведет к тому, что результат будет равен — 2 x + 3 x 3 + x .

Видео:Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Алгоритм метода неопределенных коэффициентов

Для того, чтобы правильно произвести разложение, необходимо придерживаться нескольких пунктов:

  • Произвести разложение на множители. можно применять вынесение за скобки, формулы сокращенного умножения, подбор корня. Имеющийся пример x 3 + x = x x 2 + 1 для упрощения выносят х за скобки.
  • Разложение дроби на простейшие дроби с неопределенными коэффициентами.

Рассмотрим на нескольких примерах:

Когда в знаменателе имеется выражение вида ( x — a ) ( x — b ) ( x — c ) ( x — d ) , количество множителей не имеет значения, дробь можно представить в виде дроби первого типа A x — a + B x — b + C x — c + D x — d , где a , b , c и d являются числами, A , B , C и D – неопределенными коэффициентами.

Когда знаменатель имеет выражение ( x — a ) 2 ( x — b ) 4 ( x — c ) 3 , количество множителей также не имеет значения, причем саму дробь необходимо привести ко второму или первому типу вида:

A 2 x — a 2 + A 1 x — a + B 4 x — b 4 + B 3 x — b 3 + B 2 x — b 2 + B 1 x — b + + C 3 x — c 3 + C 2 x — c 2 + C 1 x — c

где имеющиеся a , b , c являются числами, а A 1 , A 2 , B 1 , B 2 , B 3 , B 4 , C 1 , C 2 , C 3 — неопределенными коэффициентами. Какова степень многочлена, такое количество слагаемых имеем.

Когда знаменатель имеет вид типа x 2 + p x + q x 2 + r x + s , тогда количество квадратичных функций значения не имеет, а дробь принимает вид третьего типа P x + Q x 2 + p x + q + R x + S x 2 + r x + s ,где имеющиеся p , q , r и s являются числами, а P , Q , R и S – определенными коэффициентами.

Когда знаменатель имеет вид x 2 + p x + q 4 x 2 + r x + s 2 , количество множителей значения не имеет также , как и их степени, дробь представляется в виде третьего и четверного типов вида

P 4 x + Q 4 ( x 2 + p x + q ) 4 + P 3 x + Q 3 ( x 2 + p x + q ) 3 + P 2 x + Q 2 ( x 2 + p x + q ) 2 + P 1 x + Q 1 x 2 + p x + q + + R 2 x + S 2 ( x 2 + r x + s ) 2 + R 1 x + S 1 x 2 + r x + s

где имеющиеся p , q , r и s являются числами, а P 1 , P 2 , P 3 , P 4 , R 1 , R 2 , S 1 , S 2 — неопределенными коэффициентами.

Когда имеется знаменатель вида ( x — a ) ( x — b ) 3 ( x 2 + p x + q ) ( x 2 + r x + s ) 2 , тогда дробь необходимо представить в виде четвертого типа

A x — a + B 3 x — b 3 + В 2 x — b 2 + В 1 x — b + + P x + Q x 2 + p x + q + R 2 x + S 2 x 2 + r x + s 2 + R 1 x + S 1 x 2 + r x + s

Рассмотрим на примере дроби. Когда дробь раскладывается в сумму третьим типом вида 2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 , где A , B и C являются неопределенными коэффициентами.

Приведение полученной суммы простейших дробей при наличии неопределенного коэффициента к общему знаменателю, применяем метода группировки при одинаковых степенях х и получаем, что

2 x — 3 x 3 + x = 2 x — 3 x ( x 2 + 1 ) = A x + B x + C x 2 + 1 = = A ( x 2 + 1 ) + ( B x + C ) x x ( x 2 + 1 ) = A x 2 + A + B x 2 + C x x ( x 2 + 1 ) = = x 2 ( A + B ) + x C + A x ( x 2 + 1 )

Когда х отличен от 0 , тогда решение сводится к приравниванию двух многочленов. Получаем 2 x — 3 = x 2 ( A + B ) + x C + A . Многочлены считаются равными тогда, когда совпадают коэффициенты при одинаковых степенях.

  • Приравнивание коэффициентов с одинаковыми степенями х. Получим, что система линейных уравнений при наличии определенных коэффициентов:
    A + B = 0 C = 2 A = — 3
  • Решение полученной системы при помощи любого способа для нахождения неопределенных коэффициентов: A + B = 0 C = 2 A = — 3 ⇔ A = — 3 B = 3 C = 2
  • Производим запись ответа:
    2 x 3 + 3 x 3 + x = 2 — 2 x — 3 x 3 + x = 2 — 2 x — 3 x ( x 2 + 1 ) = = 2 — A x + B x + C x 2 + 1 = 2 — — 3 x + 3 x + 2 x 2 + 1 = 2 + 3 x — 3 x + 2 x 2 + 1

Необходимо постоянно выполнять проверки. Это способствует тому, что приведение к общему знаменателю получит вид

2 + 3 x — 3 x + 2 x 2 + 1 = 2 x ( x 2 + 1 ) — ( 3 x + 2 ) x x ( x 2 + 1 ) = 2 x 3 + 3 x 3 + x

Методом неопределенных коэффициентов считают метод разложения дроби на другие простейшие.

Использование метода частных значений способствует представлению линейных множителей таким образом:

x — a x — b x — c x — d .

Произвести разложение дроби 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x .

По условию имеем, что степень многочлена числителя меньше степени многочлена знаменателя, тогда деление выполнять не нужно. Необходимо перейти к разложению на множители. для начала необходимо выполнить вынесение х за скобки. Получим, что

x 3 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 )

Квадратный трехчлен x 2 — 5 x + 6 имеет корни, которые находим не по дискриминанту, а по теореме Виета. Получим:

x 1 + x 2 = 5 x 1 · x 2 = 6 ⇔ x 1 = 3 x 2 = 2

Запись трехчлена может быть в виде x 2 — 5 x + 6 = ( x — 3 ) ( x — 2 ) .

Тогда изменится знаменатель: x 2 — 5 x 2 + 6 x = x ( x 2 — 5 x + 6 ) = x ( x — 3 ) ( x — 2 )

Имея такой знаменатель, дробь раскладываем на простейшие дроби с неопределенными коэффициентами. Выражение примет вид:

2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2

Полученный результат необходимо приводить к общему знаменателю. Тогда получаем:

2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = 2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A x + B x — 3 + C x — 2 = = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 )

После упрощения придем к неравенству вида

2 x 2 — x — 7 x ( x — 3 ) ( x — 2 ) = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 ) x ( x — 3 ) ( x — 2 ) ⇒ ⇒ 2 x 2 — x — 7 = A ( x — 3 ) ( x — 2 ) + B x ( x — 2 ) + C x ( x — 3 )

Теперь переходим к нахождению неопределенных коэффициентов. Нужно подставлять полученные значения в равенство для того, чтобы знаменатель обратился в ноль, то есть значения х = 0 , х = 2 и х = 3 .

Если х = 0 , получим:

2 · 0 2 — 0 — 7 = A ( 0 — 3 ) ( 0 — 2 ) + B · 0 · ( 0 — 2 ) + C · 0 · ( 0 — 3 ) — 7 = 6 A ⇒ A = — 7 6

Если x = 2 , тогда

2 · 2 2 — 2 — 7 = A ( 2 — 3 ) ( 2 — 2 ) + B · 2 · ( 2 — 2 ) + C · 2 · ( 2 — 3 ) — 1 = — 2 C ⇒ C = 1 2

Если x = 3 , тогда

2 · 3 2 — 3 — 7 = A ( 3 — 3 ) ( 3 — 2 ) + B · 3 · ( 3 — 2 ) + C · 3 · ( 3 — 3 ) 8 = 3 B ⇒ B = 8 3

Ответ: 2 x 2 — x — 7 x 3 — 5 x 2 + 6 x = A x + B x — 3 + C x — 2 = — 7 6 · 1 x + 8 3 · 1 x — 3 + 1 2 · 1 x — 2

Метод коэффициентов и метод частных значений отличаются только способом нахождения неизвестных. Данные методы могут быть совмещены для быстрого упрощения выражения.

Произвести разложение выражения x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 на простейшие дроби.

По условию имеем, что степень числителя многочлена меньше знаменателя, значит зазложение примет вид

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3

Производим приведение к общему знаменателю. Имеем, что

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C ( x — 3 ) 3 + C ( x — 3 ) 2 + C x — 3 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3

Приравняем числители и получим, что

x 4 + 3 x 3 + 2 x + 11 = = A ( x + 1 ) ( x — 3 ) 3 + B ( x — 1 ) ( x — 3 ) 3 + + C 3 ( x — 1 ) ( x + 1 ) + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

Из выше написанного понятно, что нули знаменателя – это х = 1 , х = — 1 и х = 3 . Тогда применим метод частных решений. Для этого подставим значения х. получим, что если х=1:

— 5 = — 16 A ⇒ A = 5 16

— 15 = 128 B ⇒ B = — 15 128

157 = 8 C 3 ⇒ C 3 = 157 8

Отсюда следует, что нужно найти значения C 1 и C 3 .

Поэтому подставим полученный значения в числитель, тогда

x 4 + 3 x 3 + 2 x — 11 = = 5 16 ( x + 1 ) ( x — 3 ) 3 — 15 128 ( x — 1 ) ( x — 3 ) 3 + 157 8 ( x — 1 ) ( x + 1 ) + + C 2 ( x — 1 ) ( x + 1 ) ( x — 3 ) + C 1 ( x — 1 ) ( x + 1 ) ( x — 3 ) 2

Раскроем скобки для того, чтобы привести подобные слагаемые с одинаковыми степенями. Придем к выражению вида

x 4 + 3 x 3 + 2 x — 11 = x 4 25 128 + C 1 + x 3 — 85 64 + C 2 — 6 C 1 + + x 2 673 32 — 3 C 2 + 8 C 1 + x 405 64 — C 2 + 6 C 1 + 3 C 2 — 9 C 1 — 3997 128

Необходимо приравнять соответствующие коэффициенты с одинаковыми степенями, тогда сможем найти искомое значение C 1 и C 3 . Теперь необходимо решить систему:

25 128 + C 1 = 1 — 85 64 + C 2 — 6 C 1 = 3 673 32 — 3 C 2 + 8 C 1 = 0 405 64 — C 2 + 6 C 1 = 2 3 C 2 — 9 C 1 — 3997 128 = 11

Первое уравнение дает возможность найти C 1 = 103 128 , а второе C 2 = 3 + 85 64 + 6 C 1 = 3 + 85 64 + 6 · 103 128 = 293 32 .

Итог решения – это искомое разложение дроби на простейшие вида:

x 4 + 3 x 3 + 2 x — 11 ( x — 1 ) ( x + 1 ) ( x — 3 ) 3 = A x — 1 + B x + 1 + C 3 x — 3 3 + C 2 x — 3 2 + C 1 x — 3 = = 5 16 1 x — 1 — 15 128 1 x + 1 + 157 8 · 1 x — 3 3 + 293 32 1 x — 3 2 + 103 128 1 x — 3

При непосредственном применении метода неопределенных коэффициентов необходимо было бы решать все пять линейных уравнений, объединенных в систему. Такой метод упрощает поиск значения переменных и дальнейшее решение в совокупности. Иногда применяется несколько методов. Это необходимо для быстрого упрощения всего выражения и поиска результата.

🎬 Видео

10 класс. Метод неопределенных коэффициентов.Скачать

10 класс. Метод неопределенных коэффициентов.

Многочлен полином Жегалкина Метод неопределенных коэффициентовСкачать

Многочлен полином Жегалкина  Метод неопределенных коэффициентов

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Высшая математика. Интегралы. Замена. Интегрирование по частям. Метод неопределенных коэффициентовСкачать

Высшая математика. Интегралы. Замена. Интегрирование по частям. Метод неопределенных коэффициентов

Разложение на множители методом неопределенных коэффициентовСкачать

Разложение на множители методом неопределенных коэффициентов

Метод неопределенных коэффициентов для линейного ДУ со специальной правой частью (квазимногочленом)Скачать

Метод неопределенных коэффициентов для линейного ДУ со специальной правой частью (квазимногочленом)

Схема Горнера. 10 класс.Скачать

Схема Горнера. 10 класс.

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1Скачать

Линейное неоднородное дифференциальное уравнение с постоянными коэффициентами 4y''-y=x^3-24x #1

Как использовать метод неопределённых коэффициентов для минимизации ДНФ и КНФ? Душкин объяснитСкачать

Как использовать метод неопределённых коэффициентов для минимизации ДНФ и КНФ? Душкин объяснит

Метод неопределённых коэффициентов для линейных голоморфных уравнений в MathCadСкачать

Метод неопределённых коэффициентов для линейных голоморфных уравнений в MathCad

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентамиСкачать

16. Линейные неоднородные дифференциальные уравнения 2-го порядка с постоянными коэффициентами

Интегралы №7 Интегрирование рациональных алгебраических функций (Метод неопределенных коэффициентов)Скачать

Интегралы №7 Интегрирование рациональных алгебраических функций (Метод неопределенных коэффициентов)

Метод неопределенных коэффициентовСкачать

Метод неопределенных коэффициентов

Решение дифференциальных уравнений методом неопределенных коэффициентовСкачать

Решение дифференциальных уравнений методом неопределенных коэффициентов
Поделиться или сохранить к себе: