Как решать уравнения ионно электронным методом

Видео:Окислительно-восстановительные реакции. Метод электронно-ионного баланса.Скачать

Окислительно-восстановительные реакции. Метод электронно-ионного баланса.

Метод электронного баланса и ионно-электронный метод (метод полуреакций)

Спецификой многих ОВР является то, что при составлении их уравнений подбор коэффициентов вызывает затруднение.

Для облегчения подбора коэффициентов чаще всего используют метод электронного баланса и ионно-электронный метод (метод полуреакций). Рассмотрим применение каждого из этих методов на примерах.

Видео:Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 1ч. 10 класс.

Метод электронного баланса

В его основе метода электронного баланса лежит следующее правило: общее число электронов, отдаваемое атомами-восстановителями, должно совпадать с общим числом электронов, которые принимают атомы-окислители .

В качестве примера составления ОВР рассмотрим процесс взаимодействия сульфита натрия с перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции, учитывая, что в кислой среде MnO4 — восстанавливается до Mn 2+ (см. схему):

Найдем степень окисления элементов:

Из приведенной схемы понятно, что в процессе реакции происходит увеличение степени окисления серы с +4 до +6. S +4 отдает 2 электрона и является восстановителем. Степень окисления марганца уменьшилась от +7 до +2, т.е. Mn +7 принимает 5 электронов и является окислителем.

3) Составить электронные уравнения и найти коэффициенты при окислителе и восстановителе.

S +4 – 2e — = S +6 | 5 восстановитель, процесс окисления

Mn +7 +5e — = Mn +2 | 2 окислитель, процесс восстановления

Чтобы число электронов, отданных восстановителем, было равно числу электронов, принятых восстановителем, необходимо:

  • Число электронов, отданных восстановителем, поставить коэффициентом перед окислителем.
  • Число электронов, принятых окислителем, поставить коэффициентом перед восстановителем.

Таким образом, 5 электронов, принимаемых окислителем Mn +7 , ставим коэффициентом перед восстановителем, а 2 электрона, отдаваемых восстановителем S +4 коэффициентом перед окислителем:

4) Уравнять количества атомов элементов, не изменяющих степень окисления

Соблюдаем последовательность: число атомов металлов, кислотных остатков, количество молекул среды (кислоты или щелочи). В последнюю очередь подсчитывают количество молекул образовавшейся воды.

Итак, в нашем случае число атомов металлов в правой и левой частях совпадают.

По числу кислотных остатков в правой части уравнения найдем коэффициент для кислоты.

В результате реакции образуется 8 кислотных остатков SO4 2- , из которых 5 – за счет превращения 5SO3 2- → 5SO4 2- , а 3 – за счет молекул серной кислоты 8SO4 2- — 5SO4 2- = 3SO4 2- .

Таким образом, серной кислоты надо взять 3 молекулы:

Аналогично, находим коэффициент для воды по числу ионов водорода, во взятом количестве кислоты

6H + + 3O -2 = 3H2O

Окончательный вид уравнения следующий:

Признаком того, что коэффициенты расставлены правильно является равное количество атомов каждого из элементов в обеих частях уравнения.

Видео:ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по ХимииСкачать

ОВР и Метод Электронного Баланса — Быстрая Подготовка к ЕГЭ по Химии

Ионно-электронный метод (метод полуреакций)

Реакции окисления-восстановления, также как и реакции обмена, в растворах электролитов происходят с участием ионов. Именно поэтому ионно-молекулярные уравнения ОВР более наглядно отражают сущность реакций окисления-восстановления.

При написании ионно-молекулярных уравнений, сильные электролиты записывают в виде ионов, а слабые электролиты, осадки и газы записывают в виде молекул (в недиссоциированном виде).

При написании полуреакций в ионной схеме указывают частицы, подвергающиеся изменению их степеней окисления, а также характеризующие среду, частицы:

H +кислая среда, OH —щелочная среда и H2Oнейтральная среда.

Пример 1.

Рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в кислой среде.

1) Составить схему реакции:

Записать исходные вещества и продукты реакции:

2) Записать уравнение в ионном виде

В уравнении сократим те ионы, которые не принимают участие в процессе окисления-восстановления:

SO3 2- + MnO4 — + 2H + = Mn 2+ + SO4 2- + H2O

3) Определить окислитель и восстановитель и составить полуреакции процессов восстановления и окисления.

В приведенной реакции окислитель — MnO4 — принимает 5 электронов восстанавливаясь в кислой среде до Mn 2+ . При этом освобождается кислород, входящий в состав MnO4 — , который, соединяясь с H + образует воду:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O

Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона. Как видно образовавшийся ион SO4 2- содержит больше кислорода, чем исходный SO3 2- . Недостаток кислорода восполняется за счет молекул воды и в результате этого происходит выделение 2H + :

SO3 2- + H2O — 2e — = SO4 2- + 2H +

4) Найти коэффициенты для окислителя и восстановителя

Необходимо учесть, что окислитель присоединяет столько электронов, сколько отдает восстановитель в процессе окисления-восстановления:

MnO4 — + 8H + + 5e — = Mn 2+ + 4H2O |2 окислитель, процесс восстановления

SO3 2- + H2O — 2e — = SO4 2- + 2H + |5 восстановитель, процесс окисления

5) Просуммировать обе полуреакции

Предварительно умножая на найденные коэффициенты, получаем:

2MnO4 — + 16H + + 5SO3 2- + 5H2O = 2Mn 2+ + 8H2O + 5SO4 2- + 10H +

Сократив подобные члены, находим ионное уравнение:

2MnO4 — + 5SO3 2- + 6H + = 2Mn 2+ + 5SO4 2- + 3H2O

6) Записать молекулярное уравнение

Молекулярное уравнение имеет следующий вид:

Пример 2.

Далее рассмотрим пример составления уравнения реакции между сульфитом натрия и перманганатом калия в нейтральной среде.

В ионном виде уравнение принимает вид:

Также, как и предыдущем примере, окислителем является MnO4 — , а восстановителем SO3 2- .

В нейтральной и слабощелочной среде MnO4 — принимает 3 электрона и восстанавливается до MnО2. SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + 2H2O + 3e — = MnО2 + 4OH — |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |3 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Пример 3.

Составление уравнения реакции между сульфитом натрия и перманганатом калия в щелочной среде.

В ионном виде уравнение принимает вид:

В щелочной среде окислитель MnO4 — принимает 1 электрон и восстанавливается до MnО4 2- . Восстановитель SO3 2- — окисляется до SO4 2- , отдав 2 электрона.

Полуреакции имеют следующий вид:

MnO4 — + e — = MnО2 |2 окислитель, процесс восстановления

SO3 2- + 2OH — — 2e — = SO4 2- + H2O |1 восстановитель, процесс окисления

Запишем ионное и молекулярное уравнения, учитывая коэффициенты при окислителе и восстановителе:

Необходимо отметить, что не всегда при наличии окислителя и восстановителя, возможно самопроизвольное протекание ОВР. Поэтому для количественной характеристики силы окислителя и восстановителя и для определения направления реакции пользуются значениями окислительно-восстановительных потенциалов.

Еще больше примеров составления окислительно-восстановительных реакций приведены в разделе Задачи к разделу Окислительно-восстановительные реакции. Также в разделе тест Окислительно-восстановительные реакции

Видео:Решение ОВР методом полуреакцийСкачать

Решение ОВР методом полуреакций

«Метод полуреакций, или электронно-ионного баланса»

Разделы: Химия

Тема: метод полуреакций или электронно-ионного баланса

Цель: расширить и углубить знания об ОВР.

Задачи:

  • научить определять возможность протекания ОВР между данными веществами;
  • научить устанавливать продукты реакции с опорой на схемы;
  • раскрыть сущность метода полуреакций;
  • рассмотреть правила и алгоритмы составления уравнений ОВР;
  • научить применять полученные знания для решения конкретных задач.

Формы обучения: разъяснение, рассуждение, общая характеристика.

Методы обучения: словесные (беседа, объяснение), наглядные (компьютерные), практические (упражнения).

Общедидактические методы: объяснительно-иллюстративный, частично-поисковый, проблемный.

Ход урока.

1. Проверка домашнего задания.

Опрос у доски:

1) Самостоятельная работа у доски : определите тип следующих ОВР:

Как решать уравнения ионно электронным методом

Подготовка устного ответа: классификация ОВР.

2) Самостоятельная работа у доски: расставить коэффициенты методом электронного баланса, указать окислитель и восстановитель, процессы окисления и восстановления:

Как решать уравнения ионно электронным методом

3) Устный ответ: теория ОВР.

2. Новый материал.

Сегодня на уроке мы познакомимся со способами прогнозирования продуктов в ОВР и новом методе расстановки коэффициентов в ОВР – методе полуреакций или электронно-ионного баланса.
Чтобы написать уравнение реакции, протекающей в смеси заданных веществ, нужно ответить на следующие вопросы:

а) возможна ли в принципе ОВР между данными веществами;
б) если да, то установить продукты реакции;
в) подобрать коэффициенты в уравнении реакции.

Рассмотрим эти вопросы по порядку.
Что касается первого из них, вспомним, что в любой ОВР один из участников окисляется, т.е. повышает свою валентность, а другой – восстанавливается, т.е. понижает валентность. Поэтому реакция невозможна, если оба ее участника находятся в состояниях наиболее высокой или наиболее низкой степени окисления.
Исходя из сказанного, попробуем предположить возможность протекания ОВР.
Например, определим возможна ли ОВР между Как решать уравнения ионно электронным методом.

Определите степени окисления элементов.

Учащиеся определяют степени окисления элементов по формулам соединений. Рассматривают строение атомов серы и хлора, определяют высшую и низшую степень окисления элементов.

Формулируем вывод: степени окисления серы (-2) и хлора (-1) являются для них предельно низкими, следовательно, и сера, и хлор могут выступать только в роли восстановителя. Т.е. реакция между Как решать уравнения ионно электронным методомневозможна.

Рассмотрим другой пример. Возможно ли взаимодействие между ионами Как решать уравнения ионно электронным методом?

Учащиеся рассматривают степени окисления марганца и хрома в ионах, определяют исходя из строения атомов, что оба металла находятся в высшей степени окисления, следовательно, могут выступать только в роли окислителя. Делают вывод: реакция между ионами Как решать уравнения ионно электронным методоми Как решать уравнения ионно электронным методомневозможна.

Если же один из участников может повысить, а другой понизить свои степени окисления, реакция в принципе возможна.
Указать продукты реакции только из общих соображений в таких реакциях практически невозможно. Исследование химических свойств элементов как раз и представляет собой экспериментальное выяснение того, при каких условиях его соединения вступают в реакцию с другими элементами и соединениями и какие продукты при этом получаются.
Часто в ОВР участвуют соединения хрома и марганца. Особый интерес представляет поведение пероксида водорода в ОВР. Для прогнозирования продуктов реакций с их участием можно использовать следующие схемы.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 1).

Что касается собственно процедуры подбора коэффициентов в уравнениях, то для реакций в растворах удобен так называемый метод полуреакций, или электронно-ионный. В нем сначала записывают и уравнивают отдельно процессы окисления и восстановления, а полная реакция получается их сложением.

Учитель проецирует с помощью видеопроектора схемы на экран, учащиеся для удобства имеют схемы на партах (Приложение 2).

Кроме алгоритма составления полуреакций, необходимо придерживаться нескольких очевидных правил:

  1. В кислой среде ни в левой, ни в правой части не должно быть ионов Как решать уравнения ионно электронным методомУравнивание осуществляется за счет ионов Как решать уравнения ионно электронным методоми молекул воды.
  2. В щелочной среде ни в левой, ни в правой части не должно быть ионов Как решать уравнения ионно электронным методом. Уравнивание осуществляется за счет ионов Как решать уравнения ионно электронным методоми молекул воды.
  3. В нейтральной среде ни ионов Как решать уравнения ионно электронным методом, ни Как решать уравнения ионно электронным методомв левой части быть не должно. Однако в правой части среди продуктов реакции они могут появиться.

Рассмотрим, как работают предложенные схемы на конкретных примерах.

Задача. Закончить уравнение реакции между бихроматом калия и соляной кислотой.

Ион Как решать уравнения ионно электронным методомсодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная (HCl).
Полуреакция восстановления: Как решать уравнения ионно электронным методом

Ионы Как решать уравнения ионно электронным методоммогут только окисляться, т.к. хлор имеет самую низшую степень окисления. Составим полуреакцию окисления: Как решать уравнения ионно электронным методом

Как решать уравнения ионно электронным методом

Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой.

Как решать уравнения ионно электронным методом

Получили сокращенное ионное уравнение.

Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым.

В данном случае источником ионов Как решать уравнения ионно электронным методом─ была соль Как решать уравнения ионно электронным методом, поэтому с каждым молем Как решать уравнения ионно электронным методомв раствор попадает 2 моль ионов Как решать уравнения ионно электронным методом. В реакции они участия не принимают, поэтому в неизменном виде должны перейти в правую часть уравнения. Вместе с 14 моль ионов Как решать уравнения ионно электронным методомв раствор вносится 14 моль ионов Как решать уравнения ионно электронным методом. Из них 6 участвует в реакции в качестве восстановителя, а остальные 8, как и ионы Как решать уравнения ионно электронным методом, в неизменном виде остаются после реакции, т.е. дописываются в правую часть.

В результате получаем:

Как решать уравнения ионно электронным методом

После этого можно объединить ионы в формулы реальных веществ:
Как решать уравнения ионно электронным методом

Рассмотрим другой пример.

Задача. Закончить уравнение реакции Как решать уравнения ионно электронным методом→ …

Ион Как решать уравнения ионно электронным методомсодержит марганец в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда нейтральная.

Полуреакция восстановления: Как решать уравнения ионно электронным методом

Если ион Как решать уравнения ионно электронным методомбудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления:

Как решать уравнения ионно электронным методом

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Как решать уравнения ионно электронным методом, ни Как решать уравнения ионно электронным методомв левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Как решать уравнения ионно электронным методом

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов:

Как решать уравнения ионно электронным методом

  • Перед Как решать уравнения ионно электронным методомставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Как решать уравнения ионно электронным методом— его удвоенный коэффициент:

Как решать уравнения ионно электронным методом

  • Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Как решать уравнения ионно электронным методом

  • Суммируем сначала левые, а затем правые части полуреакций, не забывая предварительно умножить множитель на коэффициент, если он стоит перед формулой:

Как решать уравнения ионно электронным методом

  • Сокращаем в правой и левой части одинаковые молекулы и ионы:

Как решать уравнения ионно электронным методом

Таким образом, получаем ионное уравнение.

  • Добавляем недостающие катионы или анионы, учитывая, что количество добавляемых ионов в правую и левую части ионного уравнения должно быть одинаковым:

Как решать уравнения ионно электронным методом

Также рассмотрим пример ОВР, протекающей с щелочной среде.

Задача. Закончить уравнение реакции: Как решать уравнения ионно электронным методом

Определяем окислитель и восстановитель в данной ОВР. В нитрате ртути (II) ртуть содержится в ее высшей степени окисления, следовательно, может выступать только в роли окислителя. Составим полуреакцию восстановления.
Полуреакция восстановления:

Как решать уравнения ионно электронным методом

  • Если ион Как решать уравнения ионно электронным методомбудет выступать в роли окислителя, то пероксид водорода — в роли восстановителя. По схеме составляем полуреакцию восстановления пероксида водорода в щелочной среде:

Как решать уравнения ионно электронным методом

  • Оформляем уравнение ОВР, протекающей в щелочной среде:

Как решать уравнения ионно электронным методом

  • Добавляем недостающие катионы и анионы.

Как решать уравнения ионно электронным методом

Преимущества электронно-ионного метода при составлении уравнений реакций и подборе коэффициентов в сравнении с методом электронного баланса особенно проявляются при составлении уравнений реакций с участием органических соединений.

Задача. Составьте уравнение окисления ацетилена раствором Как решать уравнения ионно электронным методомдо щавелевой кислоты в нейтральной среде.

Составляем схему реакции:

Как решать уравнения ионно электронным методом

Как решать уравнения ионно электронным методомвыступаем в роли окислителя, т.к. содержит марганец в его высшей степени окисления.
Следовательно, схема полуреакции восстановления имеет вид:

Как решать уравнения ионно электронным методом

Схема полуреакции окисления:

Как решать уравнения ионно электронным методом

Оформляем уравнение ОВР, протекающей в нейтральной среде:

  • Т.к в нейтральной среде ни ионов Как решать уравнения ионно электронным методом, ни Как решать уравнения ионно электронным методомв левой части быть не должно, значит, для уравнивания атомов кислорода в правую часть добавляем воду:

Как решать уравнения ионно электронным методом

  • Оформление полуреакции становится подобным оформлению полуреакции в щелочной среде: в противоположную часть добавляем удвоенное число гидроксид-ионов. Перед Как решать уравнения ионно электронным методомставим коэффициент, показывающий разницу в числе атомов кислорода в правой и левой частях полуреакций, а перед Как решать уравнения ионно электронным методомего удвоенный коэффициент. Подсчитываем заряды в полуреакциях, уравниваем заряд. Балансируем (уравниваем) число отданных и принятых электронов в полуреакциях:

Как решать уравнения ионно электронным методом

  • Составляем ионное уравнение:

Как решать уравнения ионно электронным методом

  • Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионы:

Как решать уравнения ионно электронным методом

Задача. Составьте уравнение реакции окисления фенола дихроматом калия в кислой среде до хинона:

Как решать уравнения ионно электронным методом

Ион Как решать уравнения ионно электронным методомсодержит хром в его высшей степени окисления, следовательно, может выступать только в роли окислителя. По схеме составим полуреакцию, учитывая, что среда кислотная Как решать уравнения ионно электронным методом.

Как решать уравнения ионно электронным методом

Используем правила оформления уравнений ОВР, протекающих в кислотной среде.

Как решать уравнения ионно электронным методом
Сокращаем в правой и левой части одинаковые молекулы, добавляем недостающие катионыи анионы:

Как решать уравнения ионно электронным методом

Рассмотрев метод электронно-ионного баланса или метод полуреакций можно выделить следующие достоинства данного метода:

  1. Рассматриваются реально существующие ионы и вещества.
  2. Не нужно знать все получающиеся вещества, они появляются в уравнении реакции при его выводе.
  3. Необязательно знать степени окисления. Понятие степени окисления в органической химии употребляется реже, чем о неорганической химии.
  4. Этот метод дает сведения не только о числе электронов, участвующих в каждой полуреакции, но и о том, как изменяется среда.
  5. Сокращенные ионные уравнения лучше передают смысл протекающих процессов и позволяют делать определенные предположения о строении продуктов реакции.

Домашнее задание: Закончить уравнения:

Как решать уравнения ионно электронным методом

В качестве проверочной работы по изученной теме предлагаю учащимся лабораторные опыты. Учащимся необходимо провести ОВР, объяснить происходящие явления, составив уравнения реакций с помощью метода полуреакций.

Лабораторные опыты «Окислительно-восстановительные реакции»

В три стакана налейте малиновый раствор перманганата калия. Добавьте в первый стакан немного раствора серной кислоты, во второй – воду, в третий – концентрированный раствор гидроксида калия. Окраска растворов при этом не изменяется. Добавьте во все стаканы по 5 мл сульфита калия и хорошо перемешайте смеси стеклянной палочкой.

Задание: объясните изменение окраски растворов, составив ОВР методом полуреакций.

Литература:

Д.Д. Друзцова, Л.Б. Бестаева Окислительно-восстановительные реакции. – М.:Дрофа,2005.

Видео:Учимся составлять электронный баланс/овр/8классСкачать

Учимся составлять электронный баланс/овр/8класс

Правила составления уравнений ионно-электронным методом

1) Если исходные соединения или ионы содержат больше атомов кислорода, чем продукты реакции, то в кислых растворах избыток кислорода связывается ионами водорода с образованием молекул воды:

MnО — 4 + 8H + + 5eMn +2 + 4H2O,

а в нейтральных и щелочных – молекулами воды с образованием гидроксид ионов

NO — 3 + 6H2ONH3 + 9OH — (нейтральная или щелочная)

MnО — 4 + 2H2O +3eMnO2 + 4OH —

2) Если исходные соединения содержат меньше атомов кислорода, чем продукты реакции, то недостаток кислорода восполняется в кислой и нейтральной средах за счет молекул воды с образованием ионов водорода,

I2 + 6H2O2 IO — 3 + 12H + +10e (кислая или нейтральная)

а в щелочной среде – за счет гидроксид-ионов, с образованием молекул воды.

CrO — 2 + 4OH — = CrO -2 4 + 2H2O + 3e

SO3 -2 + H2O – 2eSO4 -2 + 2H +

SO3 -2 + 2OH — -2eSO4 -2 + H2O

Это же правило, но в более короткой формулировке:

1) если исходные вещества полуреакции содержат больше кислорода, чем продукты реакции, то в кислых растворах освобождающийся кислород связывается в воду, а в нейтральных и в щелочных в гидроксид ион (OH — )

O 2- +2H + = H 2O

O 2- +HOH = 2OH —

2) если исходные вещества содержат меньше атомов кислорода, чем образующие, то недостаток их восполняется в кислых и нейтральных растворах за счет молекул воды, а в щелочных за счет гидроксид — ионов.

H2O = O 2- +2H +

2OH — = O 2- + H2O

Как решать уравнения ионно электронным методомMnO4 — + e = MnO4 2- 2

SO3 -2 + 2OH — 2e = SO4 -2 +H2O 1

Метод полуреакций (электронно – ионный метод) применяют для реакций, протекающих в растворах.

Электронно-ионные уравнения точнее отражают истинные изменения веществ в процессе окислительно-восстановительной реакции и облегчают составление уравнений этих процессов в ионно-молекулярной формуле.

Ионно — электронный метод ( метод полуреакций ) – основан на составлении раздельных ионных уравнений полуреакций – процессов окисления и восстановления – с последующим их суммированием в общее ионное уравнение.

1)записывается общая молекулярная схема

2)составляется ионная схема реакции. При этом сильные электролиты представлены в виде ионов, а слабые электролиты, осадки и газы – в молекулярном виде. В схеме определяется частица, определяется характер среды ( H + ,H2O или OH — )

Cr2O7 2- + Fe + H +Cr 3+ + Fe 2+

3) Cоставляются уравнения 2-х полуреакций.

а) уравнивается число всех атомов, кроме водорода и кислорода

Cr2O7 2- + H +2Cr 3+

FeFe 2+

б) уравнивается кислород с использованием молекул H2O или связывания его в H2O

Cr2O7 2- + 14H +2Cr 3+ + 7 H2O

в)уравниваются заряды с помощью прибавления электронов

Cr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O

Fe – 2eFe 2+

4) уравнивается общее число участвующих электронов путем подбора дополнительных множителей по правилу наименьшего кратного и суммируются уравнения обеих полуреакций.

Как решать уравнения ионно электронным методом Как решать уравнения ионно электронным методомCr2O7 2- + 14H + + 6e2Cr 3+ + 7 H2O 2 1

Fe – 2eFe 2+ 6 3

Как решать уравнения ионно электронным методом

Cr2O7 2- + 3Fe + 14H +2Cr 3+ + 3Fe 2+ + 7 H2O

5) записываются уравнения в молекулярной форме, с добавлением ионов, не участвующих в процессе окисления- восстановления.

Достоинства метода: видна роль среды, учитывается реальное состояние частиц в реакции, но применим лишь для реакций в растворах.

6. ЭДС окислительно-восстановительного процесса, направление протекания ОВР

7. Электродный потенциал

Электро́дный потенциа́л — разность электрических потенциалов между электродом и находящимся с ним в контакте электролитом (чаще всего между металлом и раствором электролита).

Возникновение электродного потенциала обусловлено переносом заряженных частиц через границу раздела фаз, специфической адсорбцией ионов, а при наличии полярных молекул (в том числе молекул растворителя) — ориентационной адсорбцией их. Величина электродного потенциала в неравновесном состоянии зависит как от природы и состава контактирующих фаз, так и от кинетических закономерностей электродных реакций на границе раздела фаз.

Равновесное значение скачка потенциалов на границе раздела электрод/раствор определяется исключительно особенностями электродной реакции и не зависит от природы электрода и адсорбции на нём поверхностно-активных веществ. Эту абсолютную разность потенциаловмежду точками, находящимися в двух разных фазах, нельзя измерить экспериментально или рассчитать теоретически.

Уравнение Нернста — уравнение, связывающее окислительно-восстановительный потенциал системы с активностями веществ, входящих в электрохимическое уравнение, и стандартными электродными потенциалами окислительно-восстановительных пар.

Вывод уравнения Нернста

Как решать уравнения ионно электронным методом,

· Как решать уравнения ионно электронным методом— электродный потенциал, Как решать уравнения ионно электронным методом— стандартный электродный потенциал, измеряется в вольтах;

· Как решать уравнения ионно электронным методом— универсальная газовая постоянная, равная 8.31 Дж/(моль·K);

· Как решать уравнения ионно электронным методом— абсолютная температура;

· Как решать уравнения ионно электронным методом— постоянная Фарадея, равная 96485,35 Кл·моль −1 ;

Как решать уравнения ионно электронным методом

· Как решать уравнения ионно электронным методом— число моль электронов, участвующих в процессе;

· Как решать уравнения ионно электронным методоми Как решать уравнения ионно электронным методом— активности соответственно окисленной и восстановленной форм вещества, участвующего в полуреакции.

Если в формулу Нернста подставить числовые значения констант Как решать уравнения ионно электронным методоми Как решать уравнения ионно электронным методоми перейти от натуральных логарифмов к десятичным, то при Как решать уравнения ионно электронным методомполучим

Как решать уравнения ионно электронным методом

Гальвани́ческий элеме́нт — химический источник электрического тока, основанный на взаимодействии двух металлов и (или) их оксидов в электролите, приводящем к возникновению в замкнутой цепи электрического тока. Назван в честь Луиджи Гальвани.

Всякий гальванический элемент состоит из двух электродов-металлов, погруженных в растворы электролитов; последние сообщаются друг с другом — обычно через пористую перегородку.

Электрод, на котором происходит процесс окисления, называется анодом (он заряжен отрицательно и имеет меньшее значение электродного потенциала).

Электрод, на котором происходит процесс восстановления, называется катодом (он заряжен положительно и имеет большее значение электродного потенциала).

10.ЭДС гальванического элемента

Максимальное значение напряжения гальванического элемента, соответствующее обратимому протеканию реакции, называется электродвижущей силой гальванического элемента и обозначается E. Как решать уравнения ионно электронным методом

E = j + — j , если E > 0, следовательно, гальванический элемент работать будет.

При схематическом изображении гальванического элемента граница раздела между металлом и раствором обозначается вертикальной чертой, граница между растворами электролитов — двойной вертикальной чертой.

Химическая реакция, которая лежит в основе работы гальванического элемента называется токообразующей.

Электро́лиз — физико-химический процесс, состоящий в выделении на электродах составных частей растворённых веществ или других веществ, являющихся результатом вторичных реакций на электродах, который возникает при прохождении электрического тока через раствор либо расплав электролита.

Упорядоченное движение ионов в проводящих жидкостях происходит в электрическом поле, которое создается электродами — проводниками, соединёнными с полюсами источника электрической энергии. Анодом при электролизе называется положительный электрод, катодом — отрицательный [1] . Положительные ионы — катионы — (ионы металлов, водородные ионы, ионы аммония и др.) — движутся к катоду, отрицательные ионы —анионы — (ионы кислотных остатков и гидроксильной группы) — движутся к аноду.

Явление электролиза широко применяется в современной промышленности. В частности, электролиз является одним из способов промышленного получения алюминия, водорода, а также гидроксида натрия, хлора, хлорорганических соединений [источник не указан 1346 дней] , диоксида марганца [2] , пероксида водорода. Большое количество металлов извлекаются из руд и подвергаются переработке с помощью электролиза (электроэкстракция,электрорафинирование). Также, электролиз является основным процессом, благодаря которому функционирует химический источник тока.

Электролиз находит применение в очистке сточных вод (процессы электрокоагуляции, электроэкстракции, электрофлотации).

12. Законы Фарадея

Первый закон Фарадея

В 1832 году Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит:
Как решать уравнения ионно электронным методом
если через электролит пропускается в течение времени t постоянный ток с силой тока I. Коэффициент пропорциональности Как решать уравнения ионно электронным методомназывается электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

Вывод закона Фарадея

Как решать уравнения ионно электронным методом(1)

Как решать уравнения ионно электронным методом(2)

Как решать уравнения ионно электронным методом(3)

Как решать уравнения ионно электронным методом(4)

Как решать уравнения ионно электронным методом, где z — валентность атома (иона) вещества, e — заряд электрона (5)

Подставляя (2)-(5) в (1), получим

Как решать уравнения ионно электронным методом

Как решать уравнения ионно электронным методом

где Как решать уравнения ионно электронным методом— постоянная Фарадея.

Как решать уравнения ионно электронным методом

Как решать уравнения ионно электронным методом

Второй закон Фарадея

Электрохимические эквиваленты различных веществ относятся, как их химические эквиваленты.

Химическим эквивалентом иона называется отношение молярной массы A иона к его валентности z. Поэтому электрохимический эквивалент

Как решать уравнения ионно электронным методом

где Как решать уравнения ионно электронным методом— постоянная Фарадея.

Второй закон Фарадея записывается в следующем виде:

Как решать уравнения ионно электронным методом

где Как решать уравнения ионно электронным методом— молярная масса данного вещества,образовавшегося (однако не обязательно выделившегося — оно могло и вступить в какую-либо реакцию сразу после образования) в результате электролиза, г/моль; Как решать уравнения ионно электронным методом— сила тока, пропущенного через вещество или смесь веществ (раствор, расплав), А; Как решать уравнения ионно электронным методом— время, в течение которого проводился электролиз, с; Как решать уравнения ионно электронным методом— постоянная Фарадея, Кл·моль −1 ; Как решать уравнения ионно электронным методом— число участвующих в процессе электронов, которое при достаточно больших значениях силы тока равно абсолютной величине заряда иона (и его противоиона), принявшего непосредственное участие в электролизе (окисленного или восстановленного). Однако это не всегда так; например, при электролизе раствора соли меди(II) может образовываться не только свободная медь, но и ионы меди(I) (при небольшой силе тока).

📺 Видео

8 класс. ОВР. Окислительно-восстановительные реакции.Скачать

8 класс. ОВР. Окислительно-восстановительные реакции.

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 классСкачать

ЭТОТ метод поможет на уроках ХИМИИ / Химия 9 класс

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по ХимииСкачать

РЕАКЦИИ ИОННОГО ОБМЕНА, ИОННОЕ УРАВНЕНИЕ - Урок Химия 9 класс / Подготовка к ЕГЭ по Химии

(2) ОВР. Метод полуреакций.Скачать

(2) ОВР. Метод полуреакций.

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)Скачать

89. Как расставить коэффициенты реакции методом электронного баланса (закрепление)

Метод электронно-ионного балансаСкачать

Метод электронно-ионного баланса

Химия | Молекулярные и ионные уравненияСкачать

Химия | Молекулярные и ионные уравнения

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 3ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 6ч. 10 класс.

Окислительно-восстановительные реакции. 3 часть. 9 класс.Скачать

Окислительно-восстановительные реакции. 3 часть. 9 класс.

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Упрощенный подход.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 5ч. 10 класс.

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.Скачать

Составление ур-й окислительно-восст. реакций методом ионно-электронного баланса. 2ч. 10 класс.

Метод электронно-ионного балансаСкачать

Метод электронно-ионного баланса

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.Скачать

Окислительно-восстановительные реакции в кислой среде. Продвинутый подход.
Поделиться или сохранить к себе: