Задачи, связанные с обратными тригонометрическими функциями, часто вызывают у школьников старших классов значительные трудности. Связано это, прежде всего, с тем, что в действующих учебниках и учебных пособиях подобным задачам уделяется не слишком большое внимание, и если с задачами на вычисление значений обратных тригонометрических функций учащиеся еще как-то справляются, то уравнения и неравенства, содержащие эти функции, нередко ставят их в тупик. Последнее не удивительно, поскольку практически ни в одном учебнике (включая учебники для классов с углубленным изучением математики) не излагается методика решения даже простейших уравнений и неравенств такого рода. Предлагаемая вашему вниманию статья посвящена методам решения уравнений и неравенств, содержащих обратные тригонометрические функции. Надеемся, что она окажется полезной для учителей, работающих в старших классах – как общеобразовательных, так и математических.
Вначале напомним важнейшие свойства обратных тригонометрических функций.
1 Функция y = arcsin x определена и монотонно возрастает на отрезке [– 1; 1];
arcsin (– x) = – arcsin x (x О [– 1; 1]);
2 Функция y = arccos x определена и монотонно убывает на отрезке [– 1; 1];
3 Функция y = arctg x определена и монотонно возрастает на R;
arctg (– x) = – arctg x (x О R);
4 Функция y = arcctg x определена и монотонно убывает на R;
5
Свойства монотонности и ограниченности являются ключевыми при решении многих уравнений и неравенств, содержащих обратные тригонометрические функции. Перейдем к рассмотрению методов решения этих уравнений и неравенств.
I. Уравнения и неравенства, левая и правая части которых являются одноименными обратными тригонометрическими функциями
Решение уравнений и неравенств, левая и правая части которых представляют собой одноименные обратные тригонометрические функции различных аргументов, основывается, прежде всего, на таком свойстве этих функций, как монотонность. Напомним, что функции y = arcsin t и y = arctg t монотонно возрастают, а функции y = arccos t и y = arcctg t монотонно убывают на своих областях определения. Поэтому справедливы следующие равносильные переходы.
1 .
2 .
3 .
4 .
Замечание 1. Какой из двух равносильных систем пользоваться при решении уравнений 1а) и 2а), зависит от того, какое неравенство проще: | f(x) | Ј 1 (тогда используем первую систему), или | g(x) | Ј 1 (в этом случае используем вторую систему).
Пример 1. Решить уравнение arcsin (3x 2 – 4x – 1) = arcsin (x + 1).
Решение. Уравнение равносильно системе
Замечание 2. Решать неравенство, входящее в систему, вообще говоря, не обязательно. Достаточно проверить, удовлетворяют ли неравенству найденные корни уравнения, как это и было сделано при решении примера 1.
Пример 2. Решить неравенство arcctg (8x 2 – 6x – 1) Ј arcctg (4x 2 – x + 8).
Решение. Неравенство равносильно следующему:
Пример 3. Решить неравенство 3arcsin 2x
Пример 4. Решить неравенство arccos (x 2 – 3) Ј arccos (x + 3).
Пример 5. Решить уравнение arccos (4x 2 – 3x – 2) + arccos (3x 2 – 8x – 4) = p .
Решение. Так как p – arccos t = arccos (– t), то имеет место следующая цепочка равносильных преобразований:
arccos (4x 2 – 3x – 2) = p – arccos (3x 2 – 8x – 4) Ы
Ы arccos (4x 2 – 3x – 2) = arccos (– 3x 2 + 8x + 4) Ы
Аналогичные равносильные преобразования используются и при решении задач с параметрами.
Пример 7. Решить уравнение с параметром a: arcsin (ax 2 – ax + 1) + arcsin x = 0.
Решение. Уравнение равносильно уравнению
Рассмотрим два случая:
1) a = 0. В этом случае система примет вид:
2) a № 0. В этом случае уравнение системы является квадратным. Его корни:
Так как | x | Ј 1, то . Если a = – 1, то x2 = x1 = 1. Если a О (– Ґ Ч ; – 1) И [1; Ґ ), то уравнение имеет два корня.
Ответ: при при a = – 1 и a = 0 x = 1; при прочих a решений нет.
Пример 8. Решить неравенство с параметром a: arccos (3ax + 1) Ј arccos (2x + 3a – 1).
Решение. Неравенство равносильно системе
Решать последнюю систему можно графо-аналитическим методом, учитывая то, что при a > первое неравенство системы равносильно неравенству x і 1, при a – неравенству x Ј 1, при a = решением первого неравенства является любое действительное число. Множество всех точек (x; a) плоскости Oxa, удовлетворяющих системе, показано на рис. 1 штриховкой.
Ответ: при | a | > решений нет; при a = – x = 1;
II. Уравнения и неравенства, левая и правая части которых являются разноименными обратными тригонометрическими функциями
При решении уравнений и неравенств, левая и правая части которых являются разноименными обратными тригонометрическими функциями, пользуются известными тригонометрическими тождествами. Эта группа задач является чуть более сложной по сравнению с предыдущей. При решении многих уравнений такого рода бывает целесообразно не обсуждать вопрос о равносильности преобразований, а сразу переходить к уравнению-следствию и после его решения делать необходимую проверку. Рассуждения здесь могут быть примерно следующими. Пусть требуется решить уравнение arcsin f(x) = arccos g(x). Предположим, что x0 – решение этого уравнения. Обозначим arcsin f(x0) = arccos g(x0) через a. Тогда sin a = f(x0), cos a = g(x0), откуда f 2 (x0) + g 2 (x0) = 1. Итак, arcsin f(x) = arccos g(x) Ю f 2 (x) + g 2 (x) = 1. (1)
Рассуждая аналогично, можно получить следующие переходы:
Замечание 3. Корнем каждого из уравнений (1)–(4) может быть только такое число x0, для которого f(x0) і 0 и g(x0) і 0. В противном случае множество значений левой и правой частей уравнения не пересекаются.
Пример 9. Решить уравнение
Корень является посторонним.
Пример 10. Решить уравнение
Корень x = – 2 является посторонним.
Ответ: .
Пример 11. Решить уравнение arctg (2sin x) = arcctg (cos x).
Корни вида являются посторонними.
Ответ:
При решении неравенств, левая и правая части которых представляют собой разноименные обратные тригонометрические функции, целесообразно использовать метод интервалов, а в некоторых случаях учитывать свойства монотонных функций.
Пример 12. Решить неравенство
Решение. Рассмотрим функцию
и решим неравенство f(x) Ј 0 методом интервалов.
1) Найдем D(f). Для этого решим систему
2) Найдем нули f(x). Для этого решим уравнение
Корень x = – 2 является посторонним.
3) Решим неравенство f(x) Ј 0 методом интервалов.
Замечание 4. Заметим, что найдя корень уравнения можно было не обращаться к методу интервалов, а воспользоваться тем, что функция является монотонно возрастающей, а функция монотонно убывающей на отрезке . Поэтому решением исходного неравенства является промежуток [– 2; 1]. Следует, однако, понимать, что метод интервалов является более универсальным, – ведь его можно применять и в тех случаях, когда использование свойств монотонных функций не приводит к искомому результату.
При решении уравнений и неравенств данного типа, содержащих параметры, становится актуальным вопрос о равносильности преобразований. Чтобы преобразования (1)–(4) сделать равносильными, следует учесть естественные ограничения, связанные с областями определения обратных тригонометрических функций и множествами их значений (см. замечание 3). Так, например,
Пример 13. Решить уравнение с параметром a: arcctg (x – 2a) = arctg (2x – a).
Решение. Данное уравнение равносильно системе
Графиком квадратного трехчлена f(x) = 2x 2 – 5ax + 2a2 – 1 является парабола, ветви которой направлены вверх. Поскольку f(2a) = – 1 2a. Это корень
Ответ: при любом a
III. Замена переменной
Некоторые уравнения и неравенства, содержащие обратные тригонометрические функции, можно свести к алгебраическим, сделав соответствующую замену переменной. При этом следует помнить о естественных ограничениях на вводимую переменную, связанных с ограниченностью обратных тригонометрических функций.
Пример 14. Решить уравнение
Решение. Обозначим После преобразований получим уравнение
Поскольку
откуда
Ответ:
Пример 15. Решить неравенство arccos 2 x – 3arccos x + 2 і 2.
Решение. Пусть arccos x = t, 0 Ј t Ј p . Тогда
Поскольку откуда
Ответ: [– 1; cos 2] И [cos 1; 1].
Иногда свести уравнение или неравенство к алгебраическому можно с помощью тождества
Пример 16. Решить уравнение
Решение. Данное уравнение равносильно следующему:
Пусть arcsin x = t,
Тогда
IV. Использование свойств монотонности и ограниченности обратных тригонометрических функций
Решение некоторых уравнений и неравенств, содержащих обратные тригонометрические функции, основывается исключительно на таких свойствах этих функций, как монотонность и ограниченность. При этом используются следующие теоремы.
Теорема 1. Если функция y = f(x) монотонна, то уравнение f(x) = c (c = const) имеет не более одного решения.
Теорема 2. Если функция y = f(x) монотонно возрастает, а функция y = g(x) монотонно убывает, то уравнение f(x) = g(x) имеет не более одного решения.
Теорема 3. Если то на множестве X уравнение f(x) = g(x) равносильно
системе
Пример 17. Решить уравнение 2arcsin 2x = 3arccos x.
Решение. Функция y = 2arcsin 2x является монотонно возрастающей, а функция y = 3arccos x – монотонно убывающей. Число x = 0,5 является, очевидно, корнем данного уравнения. В силу теоремы 2 этот корень – единственный.
Пример 18. Решить уравнение
Решение. Пусть x 2 + x = t. Тогда уравнение примет вид
Функции являются монотонно возрастающими. Поэтому функция также является монотонно возрастающей. В силу теоремы 1 уравнение имеет не более одного корня. Очевидно, что t = 0 является корнем этого уравнения. Поэтому x 2 + x = 0
Пример 19. Решить неравенство
Решение. Левая часть неравенства представляет собой монотонно убывающую на отрезке функцию Уравнение в силу теоремы 1 имеет не более одного корня. Очевидно, что – корень этого уравнения. Поэтому решением неравенства является отрезок
Ответ:
Пример 20. Решить уравнение arcsin (x(x + y)) + arcsin (y(x + y)) = p .
Решение. Поскольку arcsin то левая часть уравнения не превосходит Знак равенства возможен, лишь если каждое слагаемое левой части равно . Таким образом, уравнение равносильно системе:
Решение последней системы не представляет труда.
- Алгебра
- Арккосинус
- Решение уравнений tgx = a и ctgx = a
- Арксинус, арккосинус — свойства, графики, формулы
- Арксинус, arcsin
- Определение и обозначения
- График функции арксинус
- Арккосинус, arccos
- Определение и обозначения
- График функции арккосинус
- Четность
- Свойства — экстремумы, возрастание, убывание
- Таблица арксинусов и арккосинусов
- Формулы
- Формулы суммы и разности
- 📸 Видео
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
Алгебра
План урока:
Видео:Вычисление аркфункцийСкачать
Арккосинус
Напомним, что на единичной окружности косинус угла – это координата х точки А, соответствующей этому углу:
Можно утверждать, что косинус – это ф-ция, которая ставит каждому углу в соответствие некоторую координату х. Теперь предположим, что нам известна эта координата (пусть она будет равна величине а), и по ней надо определить значение угла. Отложим на оси Ох отрезок длиной а, проведем через него вертикальную прямую и отметим ее точки пересечения с единичной окружностью. Если – 1 1 либо а n ,будет равно единице, и мы получим первую серию. Если же n – нечетное число, то, то выражение (– 1) n окажется равным (– 1), и мы получим вторую серию.
Задание. Решите ур-ние
Задание. Запишите корни ур-ния
Теперь будем подставлять в это решение значения n, чтобы найти конкретные значения х. Нас интересуют корни, которые больше π, но меньше 4π, поэтому будем сразу сравнивать полученные результаты с этими числами.
Получили два корня, относящихся к промежутку – это 7π/3 и 8π/3. Нет смысла проверять другие возможные значения n, ведь они будут давать корни, заведомо меньшие 2π/3 или большие 13π/3:
Ответ: 7π/3 и 8π/3.
Как и в случае с косинусом, есть несколько частных случаев, когда решение ур-ния записывается проще. Ур-ние
Это видно из графика, где корням ур-ния соответствуют точки пересечения синусоиды с осью Ох:
Наконец, решениями ур-ния
Видео:ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ — Arcsin, Arccos, Arctg, Arcсtg // Обратные тригонометрические функцииСкачать
Решение уравнений tgx = a и ctgx = a
Ур-ния вида tgx = a отличаются тем, что имеют решение при любом значении а. Действительно, построим одну тангенсоиду и проведем горизонтальную линии у = а. При любом а прямая пересечет тангенсоиду, причем ровно в одной точке, которая имеет координаты (arctga; a):
Таким образом, у ур-ния tgx = a существует очевидное решение
Однако напомним, что тангенс является периодической ф-цией, его график представляет собой бесконечное множество тангенсоид, расстояние между которыми равно π. Поэтому корень х = arctga порождает целую серию корней, которую можно записать так:
Задание. Решите ур-ние
Задание. Запишите формулу корней ур-ния
Далее рассмотрим ур-ние вида
Задание. Решите ур-ние
Существует особый случай, когда нельзя заменить котангенс на тангенс. В ур-нии
Из сегодняшнего урока мы узнали про обратные тригонометрические ф-ции – арксинус, арккосинус и арктангенс. Также мы научились находить решения простейших тригонометрических уравнений. Это поможет нам в будущем при изучении более сложных ур-ний.
Видео:Обратные тригонометрические функции, y=arcsinx и y=arccosx, их свойства и графики. 10 класс.Скачать
Арксинус, арккосинус — свойства, графики, формулы
Видео:10 класс, 21 урок, Обратные тригонометрические функцииСкачать
Арксинус, arcsin
Определение и обозначения
Арксинус иногда обозначают так:
.
График функции арксинус
График арксинуса получается из графика синуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арксинуса.
Видео:Арк-функции. Простейшие тригонометрические уравнения | Осторожно, спойлер! | Борис Трушин !Скачать
Арккосинус, arccos
Определение и обозначения
Арккосинус иногда обозначают так:
.
График функции арккосинус
График арккосинуса получается из графика косинуса, если поменять местами оси абсцисс и ординат. Чтобы устранить многозначность, область значений ограничивают интервалом , на котором функция монотонна. Такое определение называют главным значением арккосинуса.
Видео:Преобразование выражений, содержащих арксинус, арккосинус, арктангенс и арккотангенс. 2 ч. 10 класс.Скачать
Четность
Функция арксинус является нечетной:
arcsin(– x ) = arcsin(–sin arcsin x ) = arcsin(sin(–arcsin x )) = – arcsin x
Функция арккосинус не является четной или нечетной:
arccos(– x ) = arccos(–cos arccos x ) = arccos(cos(π–arccos x )) = π – arccos x ≠ ± arccos x
Видео:Алгебра 10 класс. 18 октября. Что такое arccos арккосинусСкачать
Свойства — экстремумы, возрастание, убывание
Функции арксинус и арккосинус непрерывны на своей области определения (см. доказательство непрерывности). Основные свойства арксинуса и арккосинуса представлены в таблице.
y = arcsin x | y = arccos x | |
Область определения и непрерывность | – 1 ≤ x ≤ 1 | – 1 ≤ x ≤ 1 |
Область значений | ||
Возрастание, убывание | монотонно возрастает | монотонно убывает |
Максимумы | ||
Минимумы | ||
Нули, y = 0 | x = 0 | x = 1 |
Точки пересечения с осью ординат, x = 0 | y = 0 | y = π/ 2 |
Видео:Занятие 4. Арксинус и арккосинус. Основы тригонометрииСкачать
Таблица арксинусов и арккосинусов
В данной таблице представлены значения арксинусов и арккосинусов, в градусах и радианах, при некоторых значениях аргумента.
x | arcsin x | arccos x | ||
град. | рад. | град. | рад. | |
– 1 | – 90° | – | 180° | π |
– | – 60° | – | 150° | |
– | – 45° | – | 135° | |
– | – 30° | – | 120° | |
0 | 0° | 0 | 90° | |
30° | 60° | |||
45° | 45° | |||
60° | 30° | |||
1 | 90° | 0° | 0 |
Видео:РЕШЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ УРАВНЕНИЙ😉 #shorts #егэ #огэ #математика #профильныйегэСкачать
Формулы
Формулы суммы и разности
при или
при 0,,y>0 ;» style=»width:114px;height:18px;vertical-align:-10px;background-position:-638px -553px»> и 1″ style=»width:102px;height:22px;vertical-align:-10px;background-position:-211px -513px»>
при и 1″ style=»width:102px;height:22px;vertical-align:-10px;background-position:-211px -513px»>
при или
при 0,,y и 1″ style=»width:102px;height:22px;vertical-align:-10px;background-position:-211px -513px»>
при 0 ;» style=»width:108px;height:18px;vertical-align:-10px;background-position:-0px -571px»> и 1″ style=»width:102px;height:22px;vertical-align:-10px;background-position:-211px -513px»>
📸 Видео
Что такое Арксинус, Арккосинус, Арктангенс и Арккотангес?Скачать
Как найти значения аркфункций? (Перечень, ДВИ)Скачать
10 класс, 22 урок, Простейшие тригонометрические уравнения неравенстваСкачать
Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
3,5 способа отбора корней в тригонометрии | ЕГЭ по математике | Эйджей из ВебиумаСкачать
Простейшие тригонометрические уравнения. y=sinx. 1 часть. 10 класс.Скачать
Алгебра 10 класс. 25 октября. Что такое арксинус arcsinСкачать
ТРИГОНОМЕТРИЯ ЗА 10 МИНУТ - Решение Тригонометрических уравнений / Подготовка к ЕГЭ по МатематикеСкачать
Простейшие тригонометрические уравнения. y=cosx. 1 часть. 10 класс.Скачать
Тригонометрическая окружность. Как выучить?Скачать