Как решать уравнения 3 степени методом кардано

Видео:✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис ТрушинСкачать

✓ Как решать кубические уравнения. Формула Кардано | Ботай со мной #025 | Борис Трушин

Решение кубических уравнений. Формула Кардано

Как решать уравнения 3 степени методом карданоСхема метода Кардано
Как решать уравнения 3 степени методом карданоПриведение кубических уравнений к трехчленному виду
Как решать уравнения 3 степени методом карданоСведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи
Как решать уравнения 3 степени методом карданоФормула Кардано
Как решать уравнения 3 степени методом карданоПример решения кубического уравнения

Как решать уравнения 3 степени методом кардано

Видео:Формула Кардано. Решение уравнений третьей степени.Скачать

Формула Кардано. Решение уравнений третьей степени.

Схема метода Кардано

Целью данного раздела является вывод формулы Кардано для решения уравнений третьей степени ( кубических уравнений )

a0x 3 + a1x 2 +
+ a2x + a3= 0,
(1)

где a0, a1, a2, a3 – произвольные вещественные числа, Как решать уравнения 3 степени методом кардано

Вывод формулы Кардано состоит из двух этапов.

На первом этапе кубические уравнения вида (1) приводятся к кубическим уравнениям, у которых отсутствует член со второй степенью неизвестного. Такие кубические уравнения называют трёхчленными кубическими уравнениями .

На втором этапе трёхчленные кубические уравнения решаются при помощи сведения их к квадратным уравнениям.

Видео:Решение уравнений третьей степени (формула Кардано)Скачать

Решение уравнений третьей степени (формула Кардано)

Приведение кубических уравнений к трехчленному виду

Разделим уравнение (1) на старший коэффициент a0 . Тогда оно примет вид

x 3 + ax 2 + bx + c = 0,(2)

где a, b, c – произвольные вещественные числа.

Заменим в уравнении (2) переменную x на новую переменную y по формуле:

Как решать уравнения 3 степени методом кардано(3)

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

то уравнение (2) примет вид

В результате уравнение (2) примет вид

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Если ввести обозначения

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

то уравнение (4) примет вид

y 3 + py + q= 0,(5)

где p, q – вещественные числа.

Уравнения вида (5) и являются трёхчленными кубическими уравнениями , у которых отсутствует член со второй степенью неизвестного.

Первый этап вывода формулы Кардано завершён.

Видео:КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примереСкачать

КАК РЕШАТЬ КУБИЧЕСКИЕ УРАВНЕНИЯ | Разбираем на конкретном примере

Сведение трёхчленных кубических уравнений к квадратным уравнениям при помощи метода Никколо Тартальи

Следуя методу, примененому Никколо Тартальей (1499-1557) для решения трехчленных кубических уравнений, будем искать решение уравнения (5) в виде

Как решать уравнения 3 степени методом кардано(6)

где t – новая переменная.

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

то выполнено равенство:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Следовательно, уравнение (5) переписывается в виде

Как решать уравнения 3 степени методом кардано(7)

Если теперь уравнение (7) умножить на t , то мы получим квадратное уравнение относительно t :

Как решать уравнения 3 степени методом кардано(8)

Видео:Формула Кардано для решения кубических уравненийСкачать

Формула Кардано для решения кубических уравнений

Формула Кардано

Решение уравнения (8) имеет вид:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

В соответствии с (6), отсюда вытекает, что уравнение (5) имеет два решения:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

В развернутой форме эти решения записываются так:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Покажем, что, несмотря на кажущиеся различия, решения (10) и (11) совпадают.

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

С другой стороны,

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

и для решения уравнения (5) мы получили формулу

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

которая и называется «Формула Кардано» .

Замечание . Поскольку у каждого комплексного числа, отличного от нуля, существуют три различных кубических корня, то, для того, чтобы избежать ошибок при решении кубических уравнений в области комплексных чисел, рекомендуется использовать формулу Кардано в виде (10) или (11).

Видео:ФОРМУЛА КАРДАНО-ТАРТАЛЬЯ + РЕКЛАМА МФТИ!!!Скачать

ФОРМУЛА КАРДАНО-ТАРТАЛЬЯ + РЕКЛАМА МФТИ!!!

Пример решения кубического уравнения

Пример . Решить уравнение

x 3 – 6x 2 – 6x – 2 = 0.(13)

Решение . Сначала приведем уравнение (13) к трехчленному виду. Для этого в соответствии с формулой (3) сделаем в уравнении (13) замену

x = y + 2.(14)

Следовательно, уравнение (13) принимает вид

y 3 – 18y – 30 = 0.(15)

Теперь в соответствии с формулой (6) сделаем в уравнении (15) еще одну замену

Как решать уравнения 3 степени методом кардано(16)

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

то уравнение (15) примет вид

Как решать уравнения 3 степени методом кардано(17)

Далее из (17) получаем:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Отсюда по формуле (16) получаем:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Заметим, что такое же, как и в формуле (18), значение получилось бы, если бы мы использовали формулу

Как решать уравнения 3 степени методом кардано

или использовали формулу

Как решать уравнения 3 степени методом кардано

Далее из равенства (18) в соответствии с (14) получаем:

Как решать уравнения 3 степени методом кардано

Таким образом, мы нашли у уравнения (13) вещественный корень

Как решать уравнения 3 степени методом кардано

Замечание 1 . У уравнения (13) других вещественных корней нет.

Замечание 2 . Поскольку произвольное кубическое уравнение в комплексной области имеет 3 корня с учетом кратностей, то до полного решения уравнения (13) остается найти еще 2 корня. Эти корни можно найти разными способами, в частности, применив вариант формулы Кардано для области комплексных чисел. Однако применение такого варианта формулы Кардано значительно выходит за рамки курса математики даже специализированных математических школ.

Видео:Математика | Кубические уравнения по методу СталлонеСкачать

Математика | Кубические уравнения по методу Сталлоне

Решение кубических уравнений

Кубическое уравнение, содержащее коэффициенты с действительным корнем, остальные два считаются комплексно-сопряженной парой. Будут рассмотрены уравнения с двучленами и возвратные, а также с поиском рациональных корней. Вся информация будет подкреплена примерами.

Видео:Решение уравнения третьей степени x³-9x-12=0Скачать

Решение уравнения третьей степени x³-9x-12=0

Решение двучленного кубического уравнения вида A x 3 + B = 0

Кубическое уравнение, содержащее двучлен, имеет вид A x 3 + B = 0 . Его необходимо приводить к x 3 + B A = 0 с помощью деления на А , отличного от нуля. После чего можно применять формулу сокращенного умножения суммы кубов. Получаем, что

x 3 + B A = 0 x + B A 3 x 2 — B A 3 x + B A 2 3 = 0

Результат первой скобки примет вид x = — B A 3 , а квадратный трехчлен — x 2 — B A 3 x + B A 2 3 , причем только с комплексными корнями.

Найти корни кубического уравнения 2 x 3 — 3 = 0 .

Решение

Необходимо найти х из уравнения. Запишем:

2 x 3 — 3 = 0 x 3 — 3 2 = 0

Необходимо применить формулу сокращенного умножения. Тогда получим, что

x 3 — 3 2 = 0 x — 3 3 2 6 x 2 + 3 3 2 6 x + 9 2 3 = 0

Раскроем первую скобку и получим x = 3 3 2 6 . Вторая скобка не имеет действительных корней, потому как дискриминант меньше нуля.

Ответ: x = 3 3 2 6 .

Видео:Формула Кардано - Тартальи// Почему выглядит именно так?Скачать

Формула Кардано - Тартальи// Почему выглядит именно так?

Решение возвратного кубического уравнения вида A x 3 + B x 2 + B x + A = 0

Вид квадратного уравнения — A x 3 + B x 2 + B x + A = 0 , где значения А и В являются коэффициентами. Необходимо произвести группировку. Получим, что

A x 3 + B x 2 + B x + A = A x 3 + 1 + B x 2 + x = = A x + 1 x 2 — x + 1 + B x x + 1 = x + 1 A x 2 + x B — A + A

Корень уравнения равен х = — 1 , тогда для получения корней квадратного трехчлена A x 2 + x B — A + A необходимо задействовать через нахождение дискриминанта.

Решить уравнение вида 5 x 3 — 8 x 2 — 8 x + 5 = 0 .

Решение

Уравнение является возвратным. Необходимо произвести группировку. Получим, что

5 x 3 — 8 x 2 — 8 x + 5 = 5 x 3 + 1 — 8 x 2 + x = = 5 x + 1 x 2 — x + 1 — 8 x x + 1 = x + 1 5 x 2 — 5 x + 5 — 8 x = = x + 1 5 x 2 — 13 x + 5 = 0

Если х = — 1 является корнем уравнения, тогда необходимо найти корни заданного трехчлена 5 x 2 — 13 x + 5 :

5 x 2 — 13 x + 5 = 0 D = ( — 13 ) 2 — 4 · 5 · 5 = 69 x 1 = 13 + 69 2 · 5 = 13 10 + 69 10 x 2 = 13 — 69 2 · 5 = 13 10 — 69 10

Ответ:

x 1 = 13 10 + 69 10 x 2 = 13 10 — 69 10 x 3 = — 1

Видео:КУБИЧЕСКИЕ УРАВНЕНИЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

КУБИЧЕСКИЕ УРАВНЕНИЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Решение кубических уравнений с рациональными корнями

Если х = 0 , то он является корнем уравнения вида A x 3 + B x 2 + C x + D = 0 . При свободном члене D = 0 уравнение принимает вид A x 3 + B x 2 + C x = 0 . При вынесении х за скобки получим, что уравнение изменится. При решении через дискриминант или Виета оно примет вид x A x 2 + B x + C = 0 .

Найти корни заданного уравнения 3 x 3 + 4 x 2 + 2 x = 0 .

Решение

3 x 3 + 4 x 2 + 2 x = 0 x 3 x 2 + 4 x + 2 = 0

Х = 0 – это корень уравнения. Следует найти корни квадратного трехчлена вида 3 x 2 + 4 x + 2 . Для этого необходимо приравнять к нулю и продолжить решение при помощи дискриминанта. Получим, что

D = 4 2 — 4 · 3 · 2 = — 8 . Так как его значение отрицательное, то корней трехчлена нет.

Ответ: х = 0 .

Когда коэффициенты уравнения A x 3 + B x 2 + C x + D = 0 целые, то в ответе можно получить иррациональные корни. Если A ≠ 1 , тогда при умножении на A 2 обеих частей уравнения проводится замена переменных, то есть у = А х :

A x 3 + B x 2 + C x + D = 0 A 3 · x 3 + B · A 2 · x 2 + C · A · A · x + D · A 2 = 0 y = A · x ⇒ y 3 + B · y 2 + C · A · y + D · A 2

Приходим к виду кубического уравнения. Корни могут быть целыми или рациональными. Чтобы получить тождественное равенство, необходимо произвести подстановку делителей в полученное уравнение. Тогда полученный y 1 будет являться корнем. Значит и корнем исходного уравнения вида x 1 = y 1 A . Необходимо произвести деление многочлена A x 3 + B x 2 + C x + D на x — x 1 . Тогда сможем найти корни квадратного трехчлена.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Необходимо произвести преобразование с помощью умножения на 2 2 обеих частей, причем с заменой переменной типа у = 2 х . Получаем, что

2 x 3 — 11 x 2 + 12 x + 9 = 0 2 3 x 3 — 11 · 2 2 x 2 + 24 · 2 x + 36 = 0 y = 2 x ⇒ y 3 — 11 y 2 + 24 y + 36 = 0

Свободный член равняется 36 , тогда необходимо зафиксировать все его делители:

± 1 , ± 2 , ± 3 , ± 4 , ± 6 , ± 9 , ± 12 , ± 36

Необходимо произвести подстановку y 3 — 11 y 2 + 24 y + 36 = 0 , чтобы получить тождество вида

1 3 — 11 · 1 2 + 24 · 1 + 36 = 50 ≠ 0 ( — 1 ) 3 — 11 · ( — 1 ) 2 + 24 · ( — 1 ) + 36 = 0

Отсюда видим, что у = — 1 – это корень. Значит, x = y 2 = — 1 2 .

Далее следует деление 2 x 3 — 11 x 2 + 12 x + 9 на x + 1 2 при помощи схемы Горнера:

x iКоэффициенты многочлена
2— 11129
— 0 . 52— 11 + 2 · ( — 0 . 5 ) = — 1212 — 12 · ( — 0 . 5 ) = 189 + 18 · ( — 0 . 5 ) = 0

2 x 3 — 11 x 2 + 12 x + 9 = x + 1 2 2 x 2 — 12 x + 18 = = 2 x + 1 2 x 2 — 6 x + 9

После чего необходимо найти корни квадратного уравнения вида x 2 — 6 x + 9 . Имеем, что уравнение следует привести к виду x 2 — 6 x + 9 = x — 3 2 , где х = 3 будет его корнем.

Ответ: x 1 = — 1 2 , x 2 , 3 = 3 .

Алгоритм можно применять для возвратных уравнений. Видно, что — 1 – это его корень, значит, левая часть может быть поделена на х + 1 . Только тогда можно будет найти корни квадратного трехчлена. При отсутствии рациональных корней применяются другие способы решения для разложения многочлена на множители.

Видео:Самый простой способ решить кубическое уравнениеСкачать

Самый простой способ решить кубическое уравнение

Решение кубических уравнений по формуле Кардано

Нахождение кубических корней возможно при помощи формулы Кардано. При A 0 x 3 + A 1 x 2 + A 2 x + A 3 = 0 необходимо найти B 1 = A 1 A 0 , B 2 = A 2 A 0 , B 3 = A 3 A 0 .

После чего p = — B 1 2 3 + B 2 и q = 2 B 1 3 27 — B 1 B 2 3 + B 3 .

Полученные p и q в формулу Кардано. Получим, что

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — q 2 4 + p 3 27 3

Подбор кубических корней должен удовлетворять на выходе значению — p 3 . Тогда корни исходного уравнения x = y — B 1 3 . Рассмотрим решение предыдущего примера, используя формулу Кардано.

Найти корни заданного уравнения 2 x 3 — 11 x 2 + 12 x + 9 = 0 .

Решение

Видно, что A 0 = 2 , A 1 = — 11 , A 2 = 12 , A 3 = 9 .

Необходимо найти B 1 = A 1 A 0 = — 11 2 , B 2 = A 2 A 0 = 12 2 = 6 , B 3 = A 3 A 0 = 9 2 .

Отсюда следует, что

p = — B 1 2 3 + B 2 = — — 11 2 2 3 + 6 = — 121 12 + 6 = — 49 12 q = 2 B 1 3 27 — B 1 B 2 3 + B 3 = 2 · — 11 2 3 27 — — 11 2 · 6 3 + 9 2 = 343 108

Производим подстановку в формулу Кордано и получим

y = — q 2 + q 2 4 + p 3 27 3 + — q 2 — — q 2 4 + p 3 27 3 = = — 343 216 + 343 2 4 · 108 2 — 49 3 27 · 12 3 3 + — 343 216 — 343 2 4 · 108 2 — 49 3 27 · 12 3 3 = = — 343 216 3 + — 343 216 3

— 343 216 3 имеет три значения. Рассмотрим их ниже.

— 343 216 3 = 7 6 cos π + 2 π · k 3 + i · sin π + 2 π · k 3 , k = 0 , 1 , 2

Если k = 0 , тогда — 343 216 3 = 7 6 cos π 3 + i · sin π 3 = 7 6 1 2 + i · 3 2

Если k = 1 , тогда — 343 216 3 = 7 6 cosπ + i · sinπ = — 7 6

Если k = 2 , тогда — 343 216 3 = 7 6 cos 5 π 3 + i · sin 5 π 3 = 7 6 1 2 — i · 3 2

Необходимо произвести разбиение по парам, тогда получим — p 3 = 49 36 .

Тогда получим пары: 7 6 1 2 + i · 3 2 и 7 6 1 2 — i · 3 2 , — 7 6 и — 7 6 , 7 6 1 2 — i · 3 2 и 7 6 1 2 + i · 3 2 .

Преобразуем при помощи формулы Кордано:

y 1 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 + i · 3 2 + 7 6 1 2 — i · 3 2 = 7 6 1 4 + 3 4 = 7 6 y 2 = — 343 216 3 + — 343 216 3 = — 7 6 + — 7 6 = — 14 6 y 3 = — 343 216 3 + — 343 216 3 = = 7 6 1 2 — i · 3 2 + 7 6 1 2 + i · 3 2 = 7 6 1 4 + 3 4 = 7 6

x 1 = y 1 — B 1 3 = 7 6 + 11 6 = 3 x 2 = y 2 — B 1 3 = — 14 6 + 11 6 = — 1 2 x 3 = y 3 — B 1 3 = 7 6 + 11 6 = 3

Ответ: x 1 = — 1 2 , x 2 , 3 = 3

При решении кубических уравнений можно встретить сведение к решению уравнений 4 степени методом Феррари.

Видео:Кубические уравнения. Деление столбиком. Схема Горнера.Скачать

Кубические уравнения. Деление столбиком. Схема Горнера.

Кубические уравнения. Формула Кардано для решения кубических уравнений.

Формула Кардано — методика определения корней кубического уравнения в поле комплексных чисел.

Впервые была опубликована в 1545 году итальянским математиком Джероламо Кардано.

Кубическое уравнение, выраженное в общем виде, как ах 3 +b х 2 +cx+d =0 в результате подстановки переменной:

Как решать уравнения 3 степени методом кардано

приводится к виду неполного кубического уравнения, в котором не присутствует слагаемое, содержащее вторую степень: y 3 +b y +q=0,

где члены p и q приведены ниже:

Как решать уравнения 3 степени методом кардано

Как решать уравнения 3 степени методом кардано

Когда члены кубического уравнения вещественны, то и Q вещественное число, а по его знаку можно установить тип корней кубического уравнения.

Когда Q > 0 у кубического уравнения будет один вещественный корень и два сопряженных комплексных корня.

Когда Q = 0 у уравнения один однократный вещественный корень и один двукратный корень, или, в случае если p = q = 0, то получаем один трёхкратный вещественный корень.

Когда Q 3 + py + q в этом случае будет равняться:

Как решать уравнения 3 степени методом кардано.

Используя формулы Кардано, для всех найденных значений Как решать уравнения 3 степени методом карданонужно выбрать такое Как решать уравнения 3 степени методом кардано, для которого осуществляется необходимое требование Как решать уравнения 3 степени методом кардано(такое значение Как решать уравнения 3 степени методом кардановсегда есть).

Когда искомое решение кубического уравнения вещественное число, то желательно отдавать преимущество вещественным значениям Как решать уравнения 3 степени методом кардано.

💡 Видео

Уравнения 3 и 4 степени. Методы Кардано и Феррари. ПродолжениеСкачать

Уравнения 3 и 4 степени.  Методы Кардано и Феррари.  Продолжение

Теорема Виета для многочлена 3 порядка. 10 класс.Скачать

Теорема Виета для многочлена 3 порядка. 10 класс.

Формула Кардано | Уравнение третьей степени | Кубическое уравнениеСкачать

Формула Кардано | Уравнение третьей степени | Кубическое уравнение

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители ДелениеСкачать

Как решать кубические уравнения Решите уравнение 3 степени 9 класс Разложить на множители Деление

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбикомСкачать

ОГЭ №21 Как решать кубическое уравнение x^3+4x^2-9x-36=0 Группировка Деление многочлена столбиком

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис ТрушинСкачать

Как решать уравнения четвёртой степени. Формула Феррари | #БотайСоМной #026 | Борис Трушин

Уравнение четвертой степениСкачать

Уравнение четвертой степени

Решение кубического уравнения общего вида, используя комплексные числа, по формуле Кардано!Скачать

Решение кубического уравнения общего вида, используя комплексные числа, по формуле Кардано!
Поделиться или сохранить к себе: