Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.
(blacktriangleright) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к квадратному уравнению.
Часто при решении таких уравнений используются
основные тождества: [begin hline sin^2 alpha+cos^2 alpha =1&& mathrm, alpha cdot mathrm, alpha =1\ &&\ mathrm, alpha=dfrac&&mathrm, alpha =dfrac\&&\ 1+mathrm^2, alpha =dfrac1 && 1+mathrm^2, alpha=dfrac1\&&\ hline end]
формулы двойного угла: [begin hline sin =2sin alphacos alpha & qquad &qquad & cos=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin && & cos=2cos^2alpha -1\ & & & cos=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ hline end]
Пример 1. Решить уравнение (6cos^2x-13sin x-13=0)
С помощью формулы (cos^2alpha=1-sin^2alpha) уравнение сводится к виду:
(6sin^2x+13sin x+7=0) . Сделаем замену (t=sin x) . Т.к. область значений синуса (sin xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:
(6t^2+13t+7=0) . Корни данного уравнения (t_1=-dfrac76, t_2=-1) .
Таким образом, корень (t_1) не подходит. Сделаем обратную замену:
(sin x=-1 Rightarrow x=-dfrac2+2pi n, ninmathbb) .
Пример 2. Решить уравнение (5sin 2x=cos 4x-3)
С помощью формулы двойного угла для косинуса (cos 2alpha=1-2sin^2alpha) имеем:
(cos4x=1-2sin^22x) . Сделаем эту подстановку и получим:
(2sin^22x+5sin 2x+2=0) . Сделаем замену (t=sin 2x) . Т.к. область значений синуса (sin 2xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:
(2t^2+5t+2=0) . Корни данного уравнения (t_1=-2, t_2=-dfrac12) .
Таким образом, корень (t_1) не подходит. Сделаем обратную замену: (sin 2x=-dfrac12 Rightarrow x_1=-dfrac+pi n, x_2=-dfrac+pi n, ninmathbb) .
Пример 3. Решить уравнение (mathrm, x+3mathrm,x+4=0)
Т.к. (mathrm,xcdot mathrm,x=1) , то (mathrm,x=dfrac1<mathrm,x>) . Сделаем замену (mathrm,x=t) . Т.к. область значений тангенса (mathrm,xinmathbb) , то (tinmathbb) . Получим уравнение:
(t+dfrac3t+4=0 Rightarrow dfrac=0) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:
Сделаем обратную замену:
(blacktriangleright) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к кубическому уравнению.
Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: [begin hline &&&\ sin =3sin alpha -4sin^3alpha &&& cos=4cos^3alpha -3cos alpha\&&&\ hline end]
Пример 4. Решить уравнение (11cos 2x-3=3sin 3x-11sin x)
При помощи формул (sin 3x=3sin x-4sin^3x) и (cos2x=1-2sin^2x) можно свести уравнение к уравнению только с (sin x) :
(12sin^3x-9sin x+11sin x-3+11-22sin^2 x=0) . Сделаем замену (sin x=t, tin[-1;1]) :
(6t^3-11t^2+t+4=0) . Подбором находим, что один из корней равен (t_1=1) . Выполнив деление в столбик многочлена (6t^3-11t^2+t+4) на (t-1) , получим:
((t-1)(2t+1)(3t-4)=0 Rightarrow) корнями являются (t_1=1, t_2=-dfrac12, t_3=dfrac43) .
Таким образом, корень (t_3) не подходит. Сделаем обратную замену:
(blacktriangleright) Однородные тригонометрические уравнения второй степени: [I. quad <Large>, quad ane 0,cne 0]
Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin^2 x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .
Аналогично и (sin x=0) не является решением такого уравнения.
Значит, данное уравнение можно делить на (cos^2 x) или на (sin^2 x) . Разделим, например, на (cos^2 x) :
Таким образом, данное уравнение при помощи деления на (cos^2x) и замены (t=mathrm,x) сводится к квадратному уравнению:
(at^2+bt+c=0) , способ решения которого вам известен.
Уравнения вида [I’. quad <Large>, quad ane0,cne 0] с легкостью сводятся к уравнению вида (I) с помощью использования основного тригонометрического тождества: [d=dcdot 1=dcdot (sin^2x+cos^2x)]
Заметим, что благодаря формуле (sin2x=2sin xcos x) однородное уравнение можно записать в виде
(asin^2 x+bsin 2x+ccos^2x=0)
Пример 5. Решить уравнение (2sin^2x+3sin xcos x=3cos^2x+1)
Подставим вместо (1=sin^2x+cos^2x) и получим:
(sin^2x+3sin xcos x-4cos^2x=0) . Разделим данное уравнение на (cos^2x) :
(mathrm^2,x+3mathrm,x-4=0) и сделаем замену (t=mathrm,x, tinmathbb) . Уравнение примет вид:
(t^2+3t-4=0) . Корнями являются (t_1=-4, t_2=1) . Сделаем обратную замену:
(blacktriangleright) Однородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0]
Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .
Аналогично и (sin x=0) не является решением такого уравнения.
Значит, данное уравнение можно делить на (cos x) или на (sin x) . Разделим, например, на (cos x) :
(a dfrac+b dfrac=0) , откуда имеем (amathrm, x+b=0 Rightarrow mathrm, x=-dfrac ba)
Пример 6. Решить уравнение (sin x+cos x=0)
Разделим правую и левую части уравнения на (sin x) :
(1+mathrm, x=0 Rightarrow mathrm, x=-1 Rightarrow x=-dfrac4+pi n, ninmathbb)
(blacktriangleright) Неоднородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0, cne 0]
Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:
1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: (<large<sin x=2sincos, qquad cos x=cos^2 -sin^2 ,qquad c=ccdot Big(sin^2 +cos^2 Big)>>) данное уравнение сведется к уравнению (I) :
Пример 7. Решить уравнение (sin 2x-sqrt3 cos 2x=-1)
Распишем (sin 2x=2sin xcos x, cos 2x=cos^2x-sin^2 x, -1=-sin^2 x-cos^2x) . Тогда уравнение примет вид:
((1+sqrt3)sin^2x+2sin xcos x+(1-sqrt3)cos^2x=0) . Данное уравнение с помощью деления на (cos^2x) и замены (mathrm,x=t) сводится к:
((1+sqrt3)t^2+2t+1-sqrt3=0) . Корнями этого уравнения являются (t_1=-1, t_2=dfrac=2-sqrt3) . Сделаем обратную замену:
2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: [begin hline &&&\ sin=dfrac<2mathrm, dfrac2><1+mathrm^2, dfrac2> &&& cos=dfrac<1-mathrm^2, dfrac2><1+mathrm^2, dfrac2>\&&&\ hline end] уравнение сведется к квадратному уравнению относительно (mathrm, dfrac x2)
Пример 8. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)
(dfrac=0 Rightarrow (sqrt3+1)t^2+2t+1-sqrt3=0) (т.к. (1+t^2geqslant 1) при всех (t) , то есть всегда (ne 0) )
Таким образом, мы получили то же уравнение, что и, решая первым способом.
3 СПОСОБ: при помощи формулы вспомогательного угла.
[<large<asin x+bcos x=sqrt,sin (x+phi),>> quad text cos phi=dfrac a<sqrt>]
Для использования данной формулы нам понадобятся формулы сложения углов: [begin hline &&&\ sin=sinalphacdot cosbetapm sinbetacdot cosalpha &&& cos=cosalphacdot cosbeta mp sinalphacdot sinbeta\ &&&\ hline end]
Пример 9. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)
Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на (sqrt=2) :
(dfrac12sin 2x-dfrac2cos 2x=-dfrac12)
Заметим, что числа (dfrac12) и (dfrac2) получились табличные. Можно, например, взять за (dfrac12=cos dfrac3, dfrac2=sin dfrac3) . Тогда уравнение примет вид:
(sin 2xcos dfrac3-sin dfrac3cos 2x=-dfrac12 Rightarrow sinleft(2x-dfrac3right)=-dfrac12)
Решениями данного уравнения являются:
Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.
(blacktriangleright) Если тригонометрическое уравнение можно свести к виду [<Large>, text ane 0, bne 0,] то с помощью формулы [<large> (*)] данное уравнение можно свести к квадратному.
Для этого необходимо сделать замену (t=sin xpm cos x) , тогда (sin xcos x=pm dfrac2) .
Заметим, что формула ((*)) есть не что иное, как формула сокращенного умножения ((Apm B)^2=A^2pm 2AB+B^2) при подстановке в нее (A=sin x, B=cos x) .
Пример 10. Решить уравнение (3sin 2x+3cos 2x=16sin xcos^3x-8sin xcos x) .
Вынесем общий множитель за скобки в правой части: (3sin 2x+3cos 2x=8sin xcos x(2cos^2 x-1)) .
По формулам двойного угла (2sin xcos x=sin 2x, 2cos^2x-1=cos 2x) имеем: [3(sin 2x+cos 2x)=4sin 2xcos 2x] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену (t=sin 2x+cos 2x) , тогда (sin 2xcos 2x=dfrac2) . Тогда уравнение примет вид: [3t=2t^2-2 Rightarrow 2t^2-3t-2=0] Корнями данного уравнения являются (t_1=2, t_2=-dfrac12) .
По формулам вспомогательного аргумента (sin2x+cos 2x=sqrt2sinleft(2x+dfrac4right)) , следовательно, сделав обратную замену: [left[ begin begin &sqrt2sinleft(2x+dfrac4right)=2\[1ex] &sqrt2sinleft(2x+dfrac4right)=-dfrac12 end end right. Rightarrow left[ begin begin &sinleft(2x+dfrac4right)=sqrt2\[1ex] &sinleft(2x+dfrac4right)=-dfrac1 end end right.] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от (-1) до (1) . Значит: (sinleft(2x+dfrac4right)=-dfrac1 Rightarrow left[ begin begin &2x+dfrac4=-arcsin <dfrac1>+2pi n\[1ex] &2x+dfrac4=pi+arcsin <dfrac1>+2pi n end end right. Rightarrow )
(Rightarrow left[ begin begin &x=-dfrac12arcsin <dfrac1>-dfrac8+pi n\[1ex] &x=dfrac8+dfrac12arcsin <dfrac1>+pi n end end right. ninmathbb)
(blacktriangleright) Формулы сокращенного умножения в тригонометрическом варианте:
(I) Квадрат суммы или разности ((Apm B)^2=A^2pm 2AB+B^2) :
((sin xpm cos x)^2=sin^2 xpm 2sin xcos x+cos^2x=(sin^2 x+cos^2 x)pm 2sin xcos x=1pm sin 2x)
(II) Разность квадратов (A^2-B^2=(A-B)(A+B)) :
((cos x-sin x)(cos x+sin x)=cos^2x-sin^2x=cos 2x)
(III) Сумма или разность кубов (A^3pm B^3=(Apm B)(A^2mp AB+B^2)) :
(sin^3xpm cos^3x=(sin xpm cos x)(sin^2xmp sin xcos x+cos^2x)=(sin xpm cos x)(1mp sin xcos x)=)
(=(sin xpm cos x)(1mp frac12sin 2x))
(IV) Куб суммы или разности ((Apm B)^3=A^3pm B^3pm 3AB(Apm B)) :
((sin xpm cos x)^3=(sin xpm cos x)(sin xpm cos x)^2=(sin xpm cos x)(1pm sin 2x)) (по первой формуле)
- Как решать тригонометрические уравнения с тройным углом
- Методы решения тригонометрических уравнений.
- 1. Алгебраический метод.
- 2. Разложение на множители.
- 3. Приведение к однородному уравнению.
- 4. Переход к половинному углу.
- 5. Введение вспомогательного угла.
- 6. Преобразование произведения в сумму.
- Методы решения тригонометрических уравнений
- 🎦 Видео
Видео:Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать
Как решать тригонометрические уравнения с тройным углом
Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать
Методы решения тригонометрических уравнений.
Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать
1. Алгебраический метод.
( метод замены переменной и подстановки ).
Видео:Тригонометрические уравнения двойных углов. Алгебра 10 классСкачать
2. Разложение на множители.
П р и м е р 1. Решить уравнение: sin x + cos x = 1 .
Р е ш е н и е . Перенесём все члены уравнения влево:
sin x + cos x – 1 = 0 ,
преобразуем и разложим на множители выражение в
левой части уравнения:
П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.
Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,
sin x · cos x – sin 2 x = 0 ,
sin x · ( cos x – sin x ) = 0 ,
П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.
Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,
2 cos 4x cos 2x = 2 cos ² 4x ,
cos 4x · ( cos 2x – cos 4x ) = 0 ,
cos 4x · 2 sin 3x · sin x = 0 ,
1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,
Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать
3. Приведение к однородному уравнению.
а) перенести все его члены в левую часть;
б) вынести все общие множители за скобки;
в) приравнять все множители и скобки нулю;
г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на
cos ( или sin ) в старшей степени;
д) решить полученное алгебраическое уравнение относительно tan .
П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.
Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,
sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,
tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,
корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда
1) tan x = –1, 2) tan x = –3,
Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать
4. Переход к половинному углу.
П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.
Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =
= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,
2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,
tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,
Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать
5. Введение вспомогательного угла.
где a , b , c – коэффициенты; x – неизвестное.
Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos и sin ( здесь — так называемый вспомогательный угол ), и наше уравнение прини мает вид:
Видео:Синус и косинус тройного угла. Тригонометрия-11Скачать
6. Преобразование произведения в сумму.
П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .
Р е ш е н и е . Преобразуем левую часть в сумму:
Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать
Методы решения тригонометрических уравнений
Разделы: Математика
Составной частью ЕГЭ являются тригонометрические уравнения.
К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.
Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:
сos px = a; | sin gx = b; | tg kx = c; | ctg tx = d. |
Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:
1. Формулы двойного аргумента, тройного аргумента:
сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;
sin 2x = 2 sin x cos x;
tg 2x = 2 tg x/1 – tg x;
ctg 2x = (ctg 2 x – 1)/2 ctg x;
sin 3x = 3 sin x – 4 sin 3 x;
cos 3x = 4 cos 3 x – 3 cos x;
tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);
ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);
2. Формулы половинного аргумента или понижения степени:
sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;
tg 2 x = (1 – cos x)/(1 + cos x);
ctg 2 x = (1 + cos x)/(1 – cos x);
3. Введение вспомогательного аргумента:
рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.
4. Формулы сложения и вычитания:
sin (a + b) = sin a cos b + cos a sin b;
sin (a – b) = sin a cos b – cos a sin b;
cos (a + b) = cos a cos b – sin a sin b;
cos (a – b) = cos a cos b + sin a sin b;
tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);
tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);
5. Универсальная тригонометрическая подстановка:
cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));
tg a = 2 tg a/2/(1 – tg 2 (a/2));
6. Некоторые важные соотношения:
sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));
cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));
7. Формулы преобразования суммы тригонометрических функций в произведение:
sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;
sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;
cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;
cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;
tg a + tg b = sin (a + b)/(cos a cos b);
tg a – tg b = sin (a – b)/(cos a cos b).
А также формулы приведения.
В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.
Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.
Ознакомимся с методами решения уравнений:
1. Сведение к виду аx 2 + bx + c = 0
2. Однородность уравнений.
3. Разложение на множители.
4. Сведение к виду a 2 + b 2 + c 2 = 0
5. Замена переменных.
6. Сведение уравнения к уравнению с одной переменной.
7. Оценка левой и правой части.
8. Метод пристального взгляда.
9. Введение вспомогательного угла.
10. Метод “ Разделяй и властвуй ”.
1. Решить уравнение: sin x + cos 2 х = 1/4.
Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x
4 sin 2 x – 4 sin x – 3 = 0
sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),
т.е. х = (-1) к+1 arcsin 1/2 + k, k€z,
Ответ: (-1) к+1 /6 + k, k€z.
2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,
решим способом разложения на множители
2 tg x cos x – 2 cos x + 1 – tg x = 0,где х /2 + k, k€z,
2 cos x (tg x – 1) – (tg x – 1) = 0
(2 cos x – 1) (tg x – 1) = 0
2 cos x – 1 = 0 или tg x – 1 = 0
cos x = 1/2, tgx = 1,
т.е х = ± /3 + 2k, k€z, х = /4 + m, m€z.
Ответ: ± /3 + 2k, k€z, /4 + m, m€z.
3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.
Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x
tg x = 1 и tg x = 2,
откуда х = /4 + m, m€z,
х = arctg 2 + k, k€z.
Ответ: /4 + m, m€z, arctg 2 + k, k€z.
4. Решить уравнение: cos (10x + 12) + 42 sin (5x + 6) = 4.
Решение: Метод введения новой переменной
Пусть 5х + 6 = у, тогда cos 2у + 42 sin у = 4
1 – 2 sin 2 у + 42 sin у – 4 = 0
sin у = t, где t€[-1;1]
2t 2 – 42t + 3 = 0
t = 2/2 и t = 32/2 (не удовлетворяет условию t€[-1;1])
sin (5x + 6) = 2/2,
5x + 6 = (-1) к /4 + k, k€z,
х = (-1) к /20 – 6/5 + k/5, k€z.
Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.
5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0
Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:
х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = /2 + k, k€z, также возможна запись (0; /2 + k) k€z.
Ответ: (0; /2 + k) k€z.
6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0
Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”
(sin 2 х – 2 sin х +1) + cos 4 х = 0;
(sin х – 1) 2 + cos 4 х = 0; это возможно если
(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:
sin х – 1 = 0, и cos х = 0,
sin х = 1, и cos х = 0, следовательно
х = /2 + k, k€z
Ответ: /2 + k, k€z.
7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.
Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.
– 1 sin 5х 1, и -1 sin х 1
0 cos 2 х 1
0 + 2 2 + cos 2 х 1 + 2
2 2 + cos 2 х 3
sin 5х + sin х 2, и 2 + cos 2 х 2
-2 sin 5х + sin х 2, т.е.
sin 5х + sin х 2,
имеем левая часть 2, а правая часть 2,
равенство возможно если, они оба равны 2.
cos 2 х = 0, и sin 5х + sin х = 2, следовательно
х = /2 + k, k€z (обязательно проверить).
Ответ: /2 + k, k€z.
8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.
Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.
(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.
2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,
cos х/2 (cos 3/2х + cos 7/2х) = 0,
2 cos 5/2х cos х/2 cos х = 0,
Возникают три случая:
- cos х/2 = 0, х/2 = /2 + k, k€z, х = + 2k, k€z;
- cos 5/2х = 0, 5/2х = /2 + k, k€z, х = /5 + 2/5k, k€z;
- cos х = 0, х = /2 + k, k€z.
Ответ: + 2k, /5 + 2/5k, /2 + k, k€z.
Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5, то получим + 2n). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = /5 + 2/5k, х2 = /2 + k, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.
Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:
sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;
sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;
cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;
cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.
Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.
Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.
9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – 3) = 0.
Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:
2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,
(cos 3х + 1) (2 sin х – 1) = 0.
Получаем два уравнения:
cos 3х + 1 = 0, х = /3 + 2/3k.
Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 х 8 х – cos 5 х = 1.
Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.
Значит, sin 8 х sin 2 х, – cos 5 х cos 2 х;
Сложив почленно эти неравенства, будем иметь:
sin 8 х – cos 5 х sin 2 х + cos 2 х = 1.
Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:
sin 8 х = sin 2 х, cos 5 х = cos 2 х,
т.е. sin х может принимать значения -1, 0
Ответ: /2 + k, + 2k, k€z.
Для полноты картины рассмотрим ещё пример.
12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.
Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.
Пусть D – дискриминант этого трёхчлена:
1/4 D = 4 (cos 4 3х – cos 2 3х).
Из неравенства D 0 следует cos 2 3х 0 или cos 2 3х 1.
Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.
Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = /2 + k.
Эти значения х удовлетворяют уравнению.
Если cos 3х = 1, то из уравнения cos х = 1/2 находим х = ± /3 + 2k. Эти значения также удовлетворяют уравнению.
Ответ: /2 + k, /3 + 2k, k€z.
13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.
Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде
1-1/2 sin 2 2х = 7/4 sin 2х.
обозначив sin 2х = t, -1 t 1,
получим квадратное уравнение 2t 2 + 7t – 4 = 0,
решая которое, находим t1 = 1/2, t2 = – 4
уравнение sin 2х = 1/2
2х = (- 1) к /6 + k, k€z, х = (- 1) к //12 + k /2, k€z .
уравнение sin 2х = – 4 решений не имеет.
Ответ: (- 1) к //12 + k /2, k€z .
14. Решить уравнение: sin 9х + sin х = 2.
Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin а1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = /2 + 2k, k€z и х = /18 + 2n, n€z.
Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = /2 + 2k, k€z.
Ответ: /2 + 2k, k€z.
15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.
Решение: воспользуемся формулой:
сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;
и перепишем уравнение в виде
2 cos x = – cos 2х – 3 sin 2х.
Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:
2 cos x = – 2 (1/2 cos 2х + 3/2 sin 2х),
которое можно записать в виде
2 cos x = – 2 (cos а cos 2х + sin а sin 2х),
где очевидно, а = /3. Преобразуя правую часть полученного уравнения с помощью формулы:
cos (a – b) = cos a cos b + sin a sin b;
приходим к уравнению
2 cos x = – 2 cos (2х – /3),
cos x + cos (2х – /3) = 0.
Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:
cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,
cos x + cos (2х – /3) = 2 cos (3х/2 – /6) cos (/6 – х/2) = 0
Это уравнение расщепляется на два уравнения
cos (3х/2 – /6) = 0, и
cos (/6 – х/2) = 0,
решение которых уже не представляет сколь нибудь значительных трудностей.
Ответ: 2/9(2 + 3n), 2/3(2 + 3 k), n, k€z.
16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?
Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:
а sin x – 4 cos x = (а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/(а 2 + 16), и cos y = а /(а 2 + 16).
Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде
(а 2 + 16) sin (x – y) = 5,
sin (x – y) = 5/(а 2 + 16), это уравнение имеет решение при условии 5/(а 2 + 16) 1.
Решим это неравенство:
5/(а 2 + 16) 1, обе части умножим на (а 2 + 16):
5 (а 2 + 16),
(а 2 + 16) 5,
а 2 + 16 25,
а 2 9, или
а 3, следовательно
а € (-;-3] U [3; ).
Ответ: (-;-3] U [3; ).
17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?
Решение: поскольку 0 sin 2 x 1, и -1 cos (x +2а) 1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.
Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.
sin x = – 1, sin x = 1, cos (x +2 а) = 1;
х = /2 + n, n€z, и x +2 а = 2 к, к€z;
х = /2 + n, и x = – 2 а + 2 к;
/2 + n = – 2 а + 2 к;
2 а = 2 к – /2 – n;
а = к – /4 – n/2;
а = – /4 + /2 (2к – n);
а = – /4 + m/2, m€z.
Ответ: – /4 + m/2, где m€z.
Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.
Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.
🎦 Видео
ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать
Тригонометрия в ЕГЭ может быть простойСкачать
Решение тригонометрических уравнений методом вспомогательного углаСкачать
Вывод формул для синуса и косинуса тройного углаСкачать
Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать
Тригонометрические уравнения в ЕГЭ. Метод вспомогательного углаСкачать
Как решать тригонометрические уравнения с помощью формул тройного аргумента. Видеоурок #48Скачать
Как решать тригонометрические уравнения с помощью введения вспомогательного угла. Видеоурок #49Скачать
Косинус и синус двойного угла, часть 1. Алгебра 10 классСкачать
✓ Тригонометрические формулы | Борис ТрушинСкачать
ГРОБ в №13 на ЕГЭ 2021 по математике. Метод вспомогательного угла. Тригонометрия и ФСУСкачать