Как решать тригонометрические уравнения с тройным углом

Основные виды тригонометрических уравнений (задание 13)

Рассмотрим некоторые наиболее часто встречающиеся виды тригонометрических уравнений и способы их решения.

(blacktriangleright) Квадратные тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к квадратному уравнению.

Часто при решении таких уравнений используются
основные тождества: [begin hline sin^2 alpha+cos^2 alpha =1&& mathrm, alpha cdot mathrm, alpha =1\ &&\ mathrm, alpha=dfrac&&mathrm, alpha =dfrac\&&\ 1+mathrm^2, alpha =dfrac1 && 1+mathrm^2, alpha=dfrac1\&&\ hline end]
формулы двойного угла: [begin hline sin =2sin alphacos alpha & qquad &qquad & cos=cos^2alpha -sin^2alpha\ sin alphacos alpha =dfrac12sin && & cos=2cos^2alpha -1\ & & & cos=1-2sin^2 alpha\ hline &&&\ mathrm, 2alpha = dfrac<2mathrm, alpha><1-mathrm^2, alpha> && & mathrm, 2alpha = dfrac<mathrm^2, alpha-1><2mathrm, alpha>\&&&\ hline end]

Пример 1. Решить уравнение (6cos^2x-13sin x-13=0)

С помощью формулы (cos^2alpha=1-sin^2alpha) уравнение сводится к виду:
(6sin^2x+13sin x+7=0) . Сделаем замену (t=sin x) . Т.к. область значений синуса (sin xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:

(6t^2+13t+7=0) . Корни данного уравнения (t_1=-dfrac76, t_2=-1) .

Таким образом, корень (t_1) не подходит. Сделаем обратную замену:
(sin x=-1 Rightarrow x=-dfrac2+2pi n, ninmathbb) .

Пример 2. Решить уравнение (5sin 2x=cos 4x-3)

С помощью формулы двойного угла для косинуса (cos 2alpha=1-2sin^2alpha) имеем:
(cos4x=1-2sin^22x) . Сделаем эту подстановку и получим:

(2sin^22x+5sin 2x+2=0) . Сделаем замену (t=sin 2x) . Т.к. область значений синуса (sin 2xin [-1;1]) , то (tin[-1;1]) . Получим уравнение:

(2t^2+5t+2=0) . Корни данного уравнения (t_1=-2, t_2=-dfrac12) .

Таким образом, корень (t_1) не подходит. Сделаем обратную замену: (sin 2x=-dfrac12 Rightarrow x_1=-dfrac+pi n, x_2=-dfrac+pi n, ninmathbb) .

Пример 3. Решить уравнение (mathrm, x+3mathrm,x+4=0)

Т.к. (mathrm,xcdot mathrm,x=1) , то (mathrm,x=dfrac1<mathrm,x>) . Сделаем замену (mathrm,x=t) . Т.к. область значений тангенса (mathrm,xinmathbb) , то (tinmathbb) . Получим уравнение:

(t+dfrac3t+4=0 Rightarrow dfrac=0) . Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

Сделаем обратную замену:

(blacktriangleright) Кубические тригонометрические уравнения
Если после преобразования уравнение приняло следующий вид: [<Large>] где (ane 0, f(x)) — одна из функций (sin x, cos x, mathrm,x, mathrm, x) ,
то такое уравнение с помощью замены (f(x)=t) сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются
формулы тройного угла: [begin hline &&&\ sin =3sin alpha -4sin^3alpha &&& cos=4cos^3alpha -3cos alpha\&&&\ hline end]

Пример 4. Решить уравнение (11cos 2x-3=3sin 3x-11sin x)

При помощи формул (sin 3x=3sin x-4sin^3x) и (cos2x=1-2sin^2x) можно свести уравнение к уравнению только с (sin x) :

(12sin^3x-9sin x+11sin x-3+11-22sin^2 x=0) . Сделаем замену (sin x=t, tin[-1;1]) :

(6t^3-11t^2+t+4=0) . Подбором находим, что один из корней равен (t_1=1) . Выполнив деление в столбик многочлена (6t^3-11t^2+t+4) на (t-1) , получим:

((t-1)(2t+1)(3t-4)=0 Rightarrow) корнями являются (t_1=1, t_2=-dfrac12, t_3=dfrac43) .

Таким образом, корень (t_3) не подходит. Сделаем обратную замену:

(blacktriangleright) Однородные тригонометрические уравнения второй степени: [I. quad <Large>, quad ane 0,cne 0]

Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin^2 x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .

Аналогично и (sin x=0) не является решением такого уравнения.

Значит, данное уравнение можно делить на (cos^2 x) или на (sin^2 x) . Разделим, например, на (cos^2 x) :

Таким образом, данное уравнение при помощи деления на (cos^2x) и замены (t=mathrm,x) сводится к квадратному уравнению:

(at^2+bt+c=0) , способ решения которого вам известен.

Уравнения вида [I’. quad <Large>, quad ane0,cne 0] с легкостью сводятся к уравнению вида (I) с помощью использования основного тригонометрического тождества: [d=dcdot 1=dcdot (sin^2x+cos^2x)]

Заметим, что благодаря формуле (sin2x=2sin xcos x) однородное уравнение можно записать в виде

(asin^2 x+bsin 2x+ccos^2x=0)

Пример 5. Решить уравнение (2sin^2x+3sin xcos x=3cos^2x+1)

Подставим вместо (1=sin^2x+cos^2x) и получим:

(sin^2x+3sin xcos x-4cos^2x=0) . Разделим данное уравнение на (cos^2x) :

(mathrm^2,x+3mathrm,x-4=0) и сделаем замену (t=mathrm,x, tinmathbb) . Уравнение примет вид:

(t^2+3t-4=0) . Корнями являются (t_1=-4, t_2=1) . Сделаем обратную замену:

(blacktriangleright) Однородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0]

Заметим, что в данном уравнении никогда не являются решениями те значения (x) , при которых (cos x=0) или (sin x=0) . Действительно, если (cos x=0) , то, подставив вместо косинуса ноль в уравнение, получим: (asin x=0) , откуда следует, что и (sin x=0) . Но это противоречит основному тригонометрическому тождеству, т.к. оно говорит о том, что если (cos x=0) , то (sin x=pm 1) .

Аналогично и (sin x=0) не является решением такого уравнения.

Значит, данное уравнение можно делить на (cos x) или на (sin x) . Разделим, например, на (cos x) :

(a dfrac+b dfrac=0) , откуда имеем (amathrm, x+b=0 Rightarrow mathrm, x=-dfrac ba)

Пример 6. Решить уравнение (sin x+cos x=0)

Разделим правую и левую части уравнения на (sin x) :

(1+mathrm, x=0 Rightarrow mathrm, x=-1 Rightarrow x=-dfrac4+pi n, ninmathbb)

(blacktriangleright) Неоднородные тригонометрические уравнения первой степени: [II.quad <Large>, ane0, bne 0, cne 0]

Существует несколько способов решения подобных уравнений. Рассмотрим те из них, которые можно использовать для любого такого уравнения:

1 СПОСОБ: при помощи формул двойного угла для синуса и косинуса и основного тригонометрического тождества: (<large<sin x=2sincos, qquad cos x=cos^2 -sin^2 ,qquad c=ccdot Big(sin^2 +cos^2 Big)>>) данное уравнение сведется к уравнению (I) :

Пример 7. Решить уравнение (sin 2x-sqrt3 cos 2x=-1)

Распишем (sin 2x=2sin xcos x, cos 2x=cos^2x-sin^2 x, -1=-sin^2 x-cos^2x) . Тогда уравнение примет вид:

((1+sqrt3)sin^2x+2sin xcos x+(1-sqrt3)cos^2x=0) . Данное уравнение с помощью деления на (cos^2x) и замены (mathrm,x=t) сводится к:

((1+sqrt3)t^2+2t+1-sqrt3=0) . Корнями этого уравнения являются (t_1=-1, t_2=dfrac=2-sqrt3) . Сделаем обратную замену:

2 СПОСОБ: при помощи формул выражения функций через тангенс половинного угла: [begin hline &&&\ sin=dfrac<2mathrm, dfrac2><1+mathrm^2, dfrac2> &&& cos=dfrac<1-mathrm^2, dfrac2><1+mathrm^2, dfrac2>\&&&\ hline end] уравнение сведется к квадратному уравнению относительно (mathrm, dfrac x2)

Пример 8. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)

(dfrac=0 Rightarrow (sqrt3+1)t^2+2t+1-sqrt3=0) (т.к. (1+t^2geqslant 1) при всех (t) , то есть всегда (ne 0) )

Таким образом, мы получили то же уравнение, что и, решая первым способом.

3 СПОСОБ: при помощи формулы вспомогательного угла.
[<large<asin x+bcos x=sqrt,sin (x+phi),>> quad text cos phi=dfrac a<sqrt>]

Для использования данной формулы нам понадобятся формулы сложения углов: [begin hline &&&\ sin=sinalphacdot cosbetapm sinbetacdot cosalpha &&& cos=cosalphacdot cosbeta mp sinalphacdot sinbeta\ &&&\ hline end]

Пример 9. Решить то же уравнение (sin 2x-sqrt3 cos 2x=-1)

Т.к. мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на (sqrt=2) :

(dfrac12sin 2x-dfrac2cos 2x=-dfrac12)

Заметим, что числа (dfrac12) и (dfrac2) получились табличные. Можно, например, взять за (dfrac12=cos dfrac3, dfrac2=sin dfrac3) . Тогда уравнение примет вид:

(sin 2xcos dfrac3-sin dfrac3cos 2x=-dfrac12 Rightarrow sinleft(2x-dfrac3right)=-dfrac12)

Решениями данного уравнения являются:

Заметим, что при решении уравнения третьим способом мы добились “более красивого” ответа (хотя ответы, естественно, одинаковы), чем при решении первым или вторым способом (которые, по сути, приводят уравнение к одному и тому же виду).
Таким образом, не стоит пренебрегать третьим способом решения данного уравнения.

(blacktriangleright) Если тригонометрическое уравнение можно свести к виду [<Large>, text ane 0, bne 0,] то с помощью формулы [<large> (*)] данное уравнение можно свести к квадратному.

Для этого необходимо сделать замену (t=sin xpm cos x) , тогда (sin xcos x=pm dfrac2) .

Заметим, что формула ((*)) есть не что иное, как формула сокращенного умножения ((Apm B)^2=A^2pm 2AB+B^2) при подстановке в нее (A=sin x, B=cos x) .

Пример 10. Решить уравнение (3sin 2x+3cos 2x=16sin xcos^3x-8sin xcos x) .

Вынесем общий множитель за скобки в правой части: (3sin 2x+3cos 2x=8sin xcos x(2cos^2 x-1)) .
По формулам двойного угла (2sin xcos x=sin 2x, 2cos^2x-1=cos 2x) имеем: [3(sin 2x+cos 2x)=4sin 2xcos 2x] Заметим, что полученное уравнение как раз записано в необходимом нам виде. Сделаем замену (t=sin 2x+cos 2x) , тогда (sin 2xcos 2x=dfrac2) . Тогда уравнение примет вид: [3t=2t^2-2 Rightarrow 2t^2-3t-2=0] Корнями данного уравнения являются (t_1=2, t_2=-dfrac12) .

По формулам вспомогательного аргумента (sin2x+cos 2x=sqrt2sinleft(2x+dfrac4right)) , следовательно, сделав обратную замену: [left[ begin begin &sqrt2sinleft(2x+dfrac4right)=2\[1ex] &sqrt2sinleft(2x+dfrac4right)=-dfrac12 end end right. Rightarrow left[ begin begin &sinleft(2x+dfrac4right)=sqrt2\[1ex] &sinleft(2x+dfrac4right)=-dfrac1 end end right.] Первое уравнение корней не имеет, т.к. область значений синуса находится в пределах от (-1) до (1) . Значит: (sinleft(2x+dfrac4right)=-dfrac1 Rightarrow left[ begin begin &2x+dfrac4=-arcsin <dfrac1>+2pi n\[1ex] &2x+dfrac4=pi+arcsin <dfrac1>+2pi n end end right. Rightarrow )
(Rightarrow left[ begin begin &x=-dfrac12arcsin <dfrac1>-dfrac8+pi n\[1ex] &x=dfrac8+dfrac12arcsin <dfrac1>+pi n end end right. ninmathbb)

(blacktriangleright) Формулы сокращенного умножения в тригонометрическом варианте:

(I) Квадрат суммы или разности ((Apm B)^2=A^2pm 2AB+B^2) :

((sin xpm cos x)^2=sin^2 xpm 2sin xcos x+cos^2x=(sin^2 x+cos^2 x)pm 2sin xcos x=1pm sin 2x)

(II) Разность квадратов (A^2-B^2=(A-B)(A+B)) :

((cos x-sin x)(cos x+sin x)=cos^2x-sin^2x=cos 2x)

(III) Сумма или разность кубов (A^3pm B^3=(Apm B)(A^2mp AB+B^2)) :

(sin^3xpm cos^3x=(sin xpm cos x)(sin^2xmp sin xcos x+cos^2x)=(sin xpm cos x)(1mp sin xcos x)=)

(=(sin xpm cos x)(1mp frac12sin 2x))

(IV) Куб суммы или разности ((Apm B)^3=A^3pm B^3pm 3AB(Apm B)) :

((sin xpm cos x)^3=(sin xpm cos x)(sin xpm cos x)^2=(sin xpm cos x)(1pm sin 2x)) (по первой формуле)

Видео:Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.Скачать

Решение тригонометрических уравнений. Метод вспомогательного угла. 10 класс.

Как решать тригонометрические уравнения с тройным углом

Как решать тригонометрические уравнения с тройным углом

Как решать тригонометрические уравнения с тройным углом

Как решать тригонометрические уравнения с тройным углом

Видео:Математика| Преобразование тригонометрических выражений. Формулы и задачиСкачать

Математика| Преобразование тригонометрических выражений. Формулы и задачи

Методы решения тригонометрических уравнений.

Видео:Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnlineСкачать

Решение тригонометрических уравнений. Подготовка к ЕГЭ | Математика TutorOnline

1. Алгебраический метод.

( метод замены переменной и подстановки ).

Как решать тригонометрические уравнения с тройным углом

Видео:Тригонометрические уравнения двойных углов. Алгебра 10 классСкачать

Тригонометрические уравнения двойных углов. Алгебра 10 класс

2. Разложение на множители.

П р и м е р 1. Решить уравнение: sin x + cos x = 1 .

Р е ш е н и е . Перенесём все члены уравнения влево:

sin x + cos x – 1 = 0 ,

преобразуем и разложим на множители выражение в

левой части уравнения:

Как решать тригонометрические уравнения с тройным углом

П р и м е р 2. Решить уравнение: cos 2 x + sin x · cos x = 1.

Р е ш е н и е . cos 2 x + sin x · cos x – sin 2 x – cos 2 x = 0 ,

sin x · cos x – sin 2 x = 0 ,

sin x · ( cos x – sin x ) = 0 ,

Как решать тригонометрические уравнения с тройным углом

П р и м е р 3. Решить уравнение: cos 2 x – cos 8 x + cos 6 x = 1.

Р е ш е н и е . cos 2 x + cos 6 x = 1 + cos 8 x ,

2 cos 4x cos 2x = 2 cos ² 4x ,

cos 4x · ( cos 2x – cos 4x ) = 0 ,

cos 4x · 2 sin 3x · sin x = 0 ,

1). cos 4x = 0 , 2). sin 3x = 0 , 3). sin x = 0 ,

Как решать тригонометрические уравнения с тройным углом

Видео:10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степениСкачать

10 класс, 27 урок, Формулы двойного аргумента. Формулы понижения степени

3. Приведение к однородному уравнению.

а) перенести все его члены в левую часть;

б) вынести все общие множители за скобки;

в) приравнять все множители и скобки нулю;

г ) скобки, приравненные нулю, дают однородное уравнение меньшей степени, которое следует разделить на

cos ( или sin ) в старшей степени;

д) решить полученное алгебраическое уравнение относительно tan .

П р и м е р . Решить уравнение: 3 sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2.

Р е ш е н и е . 3sin 2 x + 4 sin x · cos x + 5 cos 2 x = 2sin 2 x + 2cos 2 x ,

sin 2 x + 4 sin x · cos x + 3 cos 2 x = 0 ,

tan 2 x + 4 tan x + 3 = 0 , отсюда y 2 + 4y +3 = 0 ,

корни этого уравнения: y 1 = — 1, y 2 = — 3, отсюда

1) tan x = –1, 2) tan x = –3,

Как решать тригонометрические уравнения с тройным углом

Видео:Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 классСкачать

Профильный ЕГЭ 2024. Задача 12. Тригонометрические уравнения. 10 класс

4. Переход к половинному углу.

П р и м е р . Решить уравнение: 3 sin x – 5 cos x = 7.

Р е ш е н и е . 6 sin ( x / 2 ) · cos ( x / 2 ) – 5 cos ² ( x / 2 ) + 5 sin ² ( x / 2 ) =

= 7 sin ² ( x / 2 ) + 7 cos ² ( x / 2 ) ,

2 sin ² ( x / 2 ) – 6 sin ( x / 2 ) · cos ( x / 2 ) + 12 cos ² ( x / 2 ) = 0 ,

tan ² ( x / 2 ) – 3 tan ( x / 2 ) + 6 = 0 ,

Видео:Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часаСкачать

Щелчок по математике I №5,6,12 Тригонометрия с нуля и до ЕГЭ за 4 часа

5. Введение вспомогательного угла.

где a , b , c – коэффициенты; x – неизвестное.

Как решать тригонометрические уравнения с тройным углом

Теперь коэффициенты уравнения обладают свойствами синуса и косинуса , а именно : модуль ( абсолютное значение ) каждого из них не больше 1, а сумма их квадратов равна 1 . Тогда можно обозначить их соответственно как cos Как решать тригонометрические уравнения с тройным угломи sin Как решать тригонометрические уравнения с тройным углом( здесь Как решать тригонометрические уравнения с тройным углом— так называемый вспомогательный угол ), и наше уравнение прини мает вид:

Как решать тригонометрические уравнения с тройным углом

Как решать тригонометрические уравнения с тройным углом

Видео:Синус и косинус тройного угла. Тригонометрия-11Скачать

Синус и косинус тройного угла. Тригонометрия-11

6. Преобразование произведения в сумму.

П р и м е р . Решить уравнение: 2 sin x · sin 3 x = cos 4 x .

Р е ш е н и е . Преобразуем левую часть в сумму:

Видео:Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor onlineСкачать

Тригонометрические уравнения. ЕГЭ № 12 | Математика | TutorOnline tutor online

Методы решения тригонометрических уравнений

Разделы: Математика

Составной частью ЕГЭ являются тригонометрические уравнения.

К сожалению, не существует общего единого метода, следуя которому можно было бы решить любое уравнение, в котором участвуют тригонометрические функции. Успех здесь могут обеспечить лишь хорошие знания формул и умение видеть те или иные полезные комбинации, что вырабатывается лишь практикой.

Общая цель обычно состоит в преобразовании входящего в уравнение тригонометрического выражения к такому виду, чтобы корни находились из так называемых простейших уравнений:

сos px = a;sin gx = b;tg kx = c;ctg tx = d.

Для этого необходимо уметь применять тригонометрические формулы. Полезно знать и называть их “именами”:

1. Формулы двойного аргумента, тройного аргумента:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

sin 2x = 2 sin x cos x;

tg 2x = 2 tg x/1 – tg x;

ctg 2x = (ctg 2 x – 1)/2 ctg x;

sin 3x = 3 sin x – 4 sin 3 x;

cos 3x = 4 cos 3 x – 3 cos x;

tg 3x = (2 tg x – tg 3 x)/(1 – 3 tg 2 x);

ctg 3x = (ctg 3 x – 3ctg x)/(3ctg 2 x – 1);

2. Формулы половинного аргумента или понижения степени:

sin 2 x/2 = (1 – cos x)/2; сos 2 x/2 = (1 + cos x)/2;

tg 2 x = (1 – cos x)/(1 + cos x);

ctg 2 x = (1 + cos x)/(1 – cos x);

3. Введение вспомогательного аргумента:

рассмотрим на примере уравнения a sin x + b cos x = c а именно, определяя угол х из условий sin y = b/v(a 2 + b 2 ), cos y = a/v(a 2 + b 2 ), мы можем привести рассматриваемое уравнение к простейшему sin (x + y) = c/v(a 2 + b 2 ) решения которого выписываются без труда; тем самым определяются и решения исходного уравнения.

4. Формулы сложения и вычитания:

sin (a + b) = sin a cos b + cos a sin b;

sin (a – b) = sin a cos b – cos a sin b;

cos (a + b) = cos a cos b – sin a sin b;

cos (a – b) = cos a cos b + sin a sin b;

tg (a + b) = ( tg a + tg b)/(1 – tg a tg b);

tg (a – b) = ( tg a – tg b)/(1 + tg a tg b);

5. Универсальная тригонометрическая подстановка:

cos a = (1 – tg 2 (a/2))/(1 + (tg 2 (a/2));

tg a = 2 tg a/2/(1 – tg 2 (a/2));

6. Некоторые важные соотношения:

sin x + sin 2x + sin 3x +…+ sin mx = (cos (x/2) -cos (2m + 1)x)/(2 sin (x/2));

cos x + cos 2x + cos 3x +…+ cos mx = (sin (2m+ 1)x/2 – sin (x/2))/(2 sin (x/2));

7. Формулы преобразования суммы тригонометрических функций в произведение:

sin a + sin b = 2 sin(a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin(a + b)/2 sin (b – a)/2;

tg a + tg b = sin (a + b)/(cos a cos b);

tg a – tg b = sin (a – b)/(cos a cos b).

А также формулы приведения.

В процессе решения надо особенно внимательно следить за эквивалентностью уравнений, чтобы не допустить потери корней (например, при сокращении левой и правой частей уравнения на общий множитель), или приобретения лишних корней (например, при возведении обеих частей уравнения в квадрат). Кроме того, необходимо контролировать принадлежат ли получающие корни к ОДЗ рассматриваемого уравнения.

Во всех необходимых случаях (т.е. когда допускались неэквивалентные преобразования), нужно обязательно делать проверку. При решении уравнении необходимо научить учащихся сводить их к определенным видам, обычно начиная с легких уравнении.

Ознакомимся с методами решения уравнений:

1. Сведение к виду аx 2 + bx + c = 0

2. Однородность уравнений.

3. Разложение на множители.

4. Сведение к виду a 2 + b 2 + c 2 = 0

5. Замена переменных.

6. Сведение уравнения к уравнению с одной переменной.

7. Оценка левой и правой части.

8. Метод пристального взгляда.

9. Введение вспомогательного угла.

10. Метод “ Разделяй и властвуй ”.

1. Решить уравнение: sin x + cos 2 х = 1/4.

Решение: Решим методом сведения к квадратному уравнению. Выразим cos 2 х через sin 2 x

4 sin 2 x – 4 sin x – 3 = 0

sin x = -1/2, sin x = 3/2(не удовлетворяет условию х€[-1;1]),

т.е. х = (-1) к+1 arcsin 1/2 + Как решать тригонометрические уравнения с тройным угломk, k€z,

Ответ: (-1) к+1 Как решать тригонометрические уравнения с тройным углом/6 + Как решать тригонометрические уравнения с тройным угломk, k€z.

2. Решить уравнение: 2 tg x cos x +1 = 2 cos x + tg x,

решим способом разложения на множители

2 tg x cos x – 2 cos x + 1 – tg x = 0,где х Как решать тригонометрические уравнения с тройным угломКак решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z,

2 cos x (tg x – 1) – (tg x – 1) = 0

(2 cos x – 1) (tg x – 1) = 0

2 cos x – 1 = 0 или tg x – 1 = 0

cos x = 1/2, tgx = 1,

т.е х = ± Как решать тригонометрические уравнения с тройным углом/3 + 2Как решать тригонометрические уравнения с тройным угломk, k€z, х = Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm, m€z.

Ответ: ± Как решать тригонометрические уравнения с тройным углом/3 + 2Как решать тригонометрические уравнения с тройным угломk, k€z, Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm, m€z.

3. Решить уравнение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0.

Решение: sin 2 x – 3 sin х cos x + 2 cos 2 х = 0 однородное уравнение 2 степени. Поскольку cos x = 0 не является корнем данного уравнения, разделим левую и правую часть на cos 2 х. В результате приходим к квадратному уравнению относительно tg x

tg x = 1 и tg x = 2,

откуда х = Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm, m€z,

х = arctg 2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

Ответ: Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm, m€z, arctg 2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

4. Решить уравнение: cos (10x + 12) + 4Как решать тригонометрические уравнения с тройным углом2 sin (5x + 6) = 4.

Решение: Метод введения новой переменной

Пусть 5х + 6 = у, тогда cos 2у + 4Как решать тригонометрические уравнения с тройным углом2 sin у = 4

1 – 2 sin 2 у + 4Как решать тригонометрические уравнения с тройным углом2 sin у – 4 = 0

sin у = t, где t€[-1;1]

2t 2 – 4Как решать тригонометрические уравнения с тройным углом2t + 3 = 0

t = Как решать тригонометрические уравнения с тройным углом2/2 и t = 3Как решать тригонометрические уравнения с тройным углом2/2 (не удовлетворяет условию t€[-1;1])

sin (5x + 6) = Как решать тригонометрические уравнения с тройным углом2/2,

5x + 6 = (-1) к Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломk, k€z,

х = (-1) к Как решать тригонометрические уравнения с тройным углом/20 – 6/5 + Как решать тригонометрические уравнения с тройным угломk/5, k€z.

Ответ: (-1) к ?/20 – 6/5 + ?k/5, k€z.

5. Решить уравнение: (sin х – cos у) 2 + 40х 2 = 0

Решение: Используем а 2 +в 2 +с 2 = 0, верно, если а = 0, в = 0, с = 0. Равенство возможно, если sin х – cos у = 0, и 40х = 0 отсюда:

х = 0, и sin 0 – cos у = 0, следовательно, х = 0, и cos у = 0, отсюда: х = 0, и у = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z, также возможна запись (0; Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk) k€z.

Ответ: (0; Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk) k€z.

6. Решить уравнение: sin 2 х + cos 4 х – 2 sin х + 1 = 0

Решение: Преобразуем уравнение и применим метод “разделяй и властвуй”

(sin 2 х – 2 sin х +1) + cos 4 х = 0;

(sin х – 1) 2 + cos 4 х = 0; это возможно если

(sin х – 1) 2 = 0, и cos 4 х = 0, отсюда:

sin х – 1 = 0, и cos х = 0,

sin х = 1, и cos х = 0, следовательно

х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z

Ответ: Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

7. Решить уравнение: sin 5х + sin х = 2 + cos 2 х.

Решение: применим метод оценки левой и правой части и ограниченность функций cos и sin.

– 1 Как решать тригонометрические уравнения с тройным угломsin 5х Как решать тригонометрические уравнения с тройным углом1, и -1 Как решать тригонометрические уравнения с тройным угломsin х Как решать тригонометрические уравнения с тройным углом1

0 Как решать тригонометрические уравнения с тройным угломcos 2 х Как решать тригонометрические уравнения с тройным углом1

0 + 2 Как решать тригонометрические уравнения с тройным углом2 + cos 2 х Как решать тригонометрические уравнения с тройным углом1 + 2

2 Как решать тригонометрические уравнения с тройным углом2 + cos 2 х Как решать тригонометрические уравнения с тройным углом3

sin 5х + sin х Как решать тригонометрические уравнения с тройным углом2, и 2 + cos 2 х Как решать тригонометрические уравнения с тройным углом2

-2 Как решать тригонометрические уравнения с тройным угломsin 5х + sin х Как решать тригонометрические уравнения с тройным углом2, т.е.

sin 5х + sin х Как решать тригонометрические уравнения с тройным углом2,

имеем левая часть Как решать тригонометрические уравнения с тройным углом2, а правая часть Как решать тригонометрические уравнения с тройным углом2,

равенство возможно если, они оба равны 2.

cos 2 х = 0, и sin 5х + sin х = 2, следовательно

х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z (обязательно проверить).

Ответ: Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

8. Решить уравнение: cos х + cos 2х + cos 3х+ cos 4х = 0.

Решение: Решим методом разложения на множители. Группируем слагаемые, расположенные в левой части, в пары.

(В данном случае любой способ группировки приводит к цели.) Используем формулу cos a+cos b=2 cos (a + b)/2 cos (a – b)/2.

2 cos 3/2х cos х/2 + 2 cos 7/2х cos х/2 = 0,

cos х/2 (cos 3/2х + cos 7/2х) = 0,

2 cos 5/2х cos х/2 cos х = 0,

Возникают три случая:

  1. cos х/2 = 0, х/2 = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z, х = Как решать тригонометрические уравнения с тройным углом+ 2Как решать тригонометрические уравнения с тройным угломk, k€z;
  2. cos 5/2х = 0, 5/2х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z, х = Как решать тригонометрические уравнения с тройным углом/5 + 2/5Как решать тригонометрические уравнения с тройным угломk, k€z;
  3. cos х = 0, х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

Ответ: Как решать тригонометрические уравнения с тройным углом+ 2Как решать тригонометрические уравнения с тройным угломk, Как решать тригонометрические уравнения с тройным углом/5 + 2/5Как решать тригонометрические уравнения с тройным угломk, Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z.

Обратим внимание на то, что второй случай включает в себя первый. (Если во втором случае взять к = 4 + 5Как решать тригонометрические уравнения с тройным углом, то получим Как решать тригонометрические уравнения с тройным углом+ 2Как решать тригонометрические уравнения с тройным угломn). Поэтому нельзя сказать, что правильнее, но во всяком случае “культурнее и красивее” будет выглядеть ответ: х1 = Как решать тригонометрические уравнения с тройным углом/5 + 2/5Как решать тригонометрические уравнения с тройным угломk, х2 = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, k€z. (Вновь типичная ситуация, приводящая к различным формам записи ответа). Первый ответ также верен.

Рассмотренное уравнение иллюстрирует весьма типичную схему решения – разложение уравнения на множители за счёт попарной группировки и использования формул:

sin a + sin b = 2 sin (a + b)/2 cos (a – b)/2;

sin a – sin b = 2 cos (a + b)/2 sin (a – b)/2;

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2;

cos a – cos b = -2 sin (a + b)/2 sin (b – a)/2.

Проблема отбора корней, отсеивания лишних корней при решении тригонометрических уравнений весьма специфична и обычно оказывается более сложной, чем это имело место для уравнений алгебраических. Приведём решения уравнений, иллюстрирующие типичные случаи появления лишних (посторонних) корней и методы “борьбы” с ними.

Лишние корни могут появиться вследствие того, что в процессе решения произошло расширение области определения уравнений. Приведём примеры.

9. Решить уравнение: (sin 4х – sin 2х – cos 3х + 2sin х -1)/(2sin 2х – Как решать тригонометрические уравнения с тройным углом3) = 0.

Решение: Приравняем нулю числитель (при этом происходит расширение области определения уравнения – добавляются значения х, обращающие в нуль знаменатель) и постараемся разложить его на множители. Имеем:

2 cos 3х sin х – cos 3х + 2sin х – 1 = 0,

(cos 3х + 1) (2 sin х – 1) = 0.

Получаем два уравнения:

cos 3х + 1 = 0, х = Как решать тригонометрические уравнения с тройным углом/3 + 2/3Как решать тригонометрические уравнения с тройным угломk.

Посмотрим, какие k нам подходят. Прежде всего, заметим, что левая часть нашего уравнения представляет собой периодическую функцию с периодом 2Как решать тригонометрические уравнения с тройным углом. Следовательно, достаточно найти решение уравнения, удовлетворяющее условию 0 Как решать тригонометрические уравнения с тройным угломх 8 х – cos 5 х = 1.

Решение этого уравнения основывается на следующем простом соображении: если 0 t убывает с ростом t.

Значит, sin 8 х Как решать тригонометрические уравнения с тройным угломsin 2 х, – cos 5 х Как решать тригонометрические уравнения с тройным угломcos 2 х;

Сложив почленно эти неравенства, будем иметь:

sin 8 х – cos 5 х Как решать тригонометрические уравнения с тройным угломsin 2 х + cos 2 х = 1.

Следовательно, левая часть данного уравнения равна единице тогда и только тогда, когда выполняются два равенства:

sin 8 х = sin 2 х, cos 5 х = cos 2 х,

т.е. sin х может принимать значения -1, 0

Ответ: Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, Как решать тригонометрические уравнения с тройным углом+ 2Как решать тригонометрические уравнения с тройным угломk, k€z.

Для полноты картины рассмотрим ещё пример.

12. Решить уравнение: 4 cos 2 х – 4 cos 2 3х cos х + cos 2 3х = 0.

Решение: Будем рассматривать левую часть данного уравнения как квадратный трёхчлен относительно cos х.

Пусть D – дискриминант этого трёхчлена:

1/4 D = 4 (cos 4 3х – cos 2 3х).

Из неравенства D Как решать тригонометрические уравнения с тройным углом0 следует cos 2 3х Как решать тригонометрические уравнения с тройным углом0 или cos 2 3х Как решать тригонометрические уравнения с тройным углом1.

Значит, возникают две возможности: cos 3х = 0 и cos 3х = ± 1.

Если cos 3х = 0, то из уравнения следует, что и cos х = 0, откуда х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk.

Эти значения х удовлетворяют уравнению.

Если Как решать тригонометрические уравнения с тройным угломcos 3х Как решать тригонометрические уравнения с тройным углом= 1, то из уравнения cos х = 1/2 находим х = ± Как решать тригонометрические уравнения с тройным углом/3 + 2Как решать тригонометрические уравнения с тройным угломk. Эти значения также удовлетворяют уравнению.

Ответ: Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломk, Как решать тригонометрические уравнения с тройным углом/3 + 2Как решать тригонометрические уравнения с тройным угломk, k€z.

13. Решить уравнение: sin 4 x + cos 4 x = 7/2 sin x cos x.

Решение: Преобразуем выражение sin 4 x + cos 4 x,выделив полный квадрат: sin 4 x + cos 4 x = sin 4 x + 2 sin 2 х cos 2 х + cos 4 x – 2 sin 2 х cos 2 х = (sin 2 х + cos 2 х) 2 – 2 sin 2 х cos 2 х, откуда sin 4 x + cos 4 x = 1 – 1/2 sin 2 2х. Пользуясь полученной формулой, запишем уравнение в виде

1-1/2 sin 2 2х = 7/4 sin 2х.

обозначив sin 2х = t, -1 Как решать тригонометрические уравнения с тройным угломt Как решать тригонометрические уравнения с тройным углом1,

получим квадратное уравнение 2t 2 + 7t – 4 = 0,

решая которое, находим t1 = 1/2, t2 = – 4

уравнение sin 2х = 1/2

2х = (- 1) к Как решать тригонометрические уравнения с тройным углом/6 + Как решать тригонометрические уравнения с тройным угломk, k€z, х = (- 1) к /Как решать тригонометрические уравнения с тройным углом/12 + Как решать тригонометрические уравнения с тройным угломk /2, k€z .

уравнение sin 2х = – 4 решений не имеет.

Ответ: (- 1) к /Как решать тригонометрические уравнения с тройным углом/12 + Как решать тригонометрические уравнения с тройным угломk /2, k€z .

14. Решить уравнение: sin 9х + sin х = 2.

Решение: Решим уравнение методом оценки. Поскольку при всех значениях а выполнено неравенство sin аКак решать тригонометрические уравнения с тройным углом1,то исходное уравнение равносильно sin х = 1 и sin 9х =1,откуда получаем х = Как решать тригонометрические уравнения с тройным углом/2 + 2Как решать тригонометрические уравнения с тройным угломk, k€z и х = Как решать тригонометрические уравнения с тройным углом/18 + 2Как решать тригонометрические уравнения с тройным угломn, n€z.

Решением будут те значения х, при которых выполнено и первое, и второе уравнение. Поэтому из полученных ответов следует отобрать только х = Как решать тригонометрические уравнения с тройным углом/2 + 2Как решать тригонометрические уравнения с тройным угломk, k€z.

Ответ: Как решать тригонометрические уравнения с тройным углом/2 + 2Как решать тригонометрические уравнения с тройным угломk, k€z.

15. Решить уравнение: 2 cos x = 1 – 2 cos 2 x – v3 sin 2х.

Решение: воспользуемся формулой:

сos 2x = cos 2 x – sin 2 x = 1 – 2 sin 2 x = 2 cos 2 x – 1;

и перепишем уравнение в виде

2 cos x = – cos 2х – Как решать тригонометрические уравнения с тройным углом3 sin 2х.

Применим к правой части процедуру введения дополнительного аргумента. Получим уравнение:

2 cos x = – 2 (1/2 cos 2х + Как решать тригонометрические уравнения с тройным углом3/2 sin 2х),

которое можно записать в виде

2 cos x = – 2 (cos а cos 2х + sin а sin 2х),

где очевидно, а = Как решать тригонометрические уравнения с тройным углом/3. Преобразуя правую часть полученного уравнения с помощью формулы:

cos (a – b) = cos a cos b + sin a sin b;

приходим к уравнению

2 cos x = – 2 cos (2х – Как решать тригонометрические уравнения с тройным углом/3),

cos x + cos (2х – Как решать тригонометрические уравнения с тройным углом/3) = 0.

Последнее уравнение легко решить, преобразовав сумму косинусов в произведение по формуле:

cos a + cos b = 2 cos (a + b)/2 cos (a – b)/2,

cos x + cos (2х – Как решать тригонометрические уравнения с тройным углом/3) = 2 cos (3х/2 – Как решать тригонометрические уравнения с тройным углом/6) cos (Как решать тригонометрические уравнения с тройным углом/6 – х/2) = 0

Это уравнение расщепляется на два уравнения

cos (3х/2 – Как решать тригонометрические уравнения с тройным углом/6) = 0, и

cos (Как решать тригонометрические уравнения с тройным углом/6 – х/2) = 0,

решение которых уже не представляет сколь нибудь значительных трудностей.

Ответ: 2Как решать тригонометрические уравнения с тройным углом/9(2 + 3n), 2Как решать тригонометрические уравнения с тройным углом/3(2 + 3 k), n, k€z.

16. При каких значениях параметра а, уравнение а sin x – 4 cos x = 5, имеет решения?

Решение: преобразуем левую часть уравнения, используя формулу введения дополнительного аргумента:

а sin x – 4 cos x = Как решать тригонометрические уравнения с тройным углом(а 2 + 16) sin (x – y), где y определяется из условий sin y = – 4/Как решать тригонометрические уравнения с тройным углом(а 2 + 16), и cos y = а /Как решать тригонометрические уравнения с тройным углом(а 2 + 16).

Но значение y нас не интересует. Поэтому данное уравнение перепишем в виде

Как решать тригонометрические уравнения с тройным углом(а 2 + 16) sin (x – y) = 5,

sin (x – y) = 5/Как решать тригонометрические уравнения с тройным углом(а 2 + 16), это уравнение имеет решение при условии Как решать тригонометрические уравнения с тройным углом5/Как решать тригонометрические уравнения с тройным углом(а 2 + 16) Как решать тригонометрические уравнения с тройным углом Как решать тригонометрические уравнения с тройным углом1.

Решим это неравенство:

5/Как решать тригонометрические уравнения с тройным углом(а 2 + 16) Как решать тригонометрические уравнения с тройным углом1, обе части умножим на Как решать тригонометрические уравнения с тройным углом(а 2 + 16):

5 Как решать тригонометрические уравнения с тройным угломКак решать тригонометрические уравнения с тройным углом(а 2 + 16),

Как решать тригонометрические уравнения с тройным углом(а 2 + 16) Как решать тригонометрические уравнения с тройным углом5,

а 2 + 16 Как решать тригонометрические уравнения с тройным углом25,

а 2 Как решать тригонометрические уравнения с тройным углом9, или

Как решать тригонометрические уравнения с тройным углома Как решать тригонометрические уравнения с тройным углом Как решать тригонометрические уравнения с тройным углом3, следовательно

а € (-Как решать тригонометрические уравнения с тройным углом;-3] U [3; Как решать тригонометрические уравнения с тройным углом).

Ответ: (-Как решать тригонометрические уравнения с тройным углом;-3] U [3; Как решать тригонометрические уравнения с тройным углом).

17. При каких значениях параметра а, уравнение 2 sin 2 x + 3 cos (x +2 а) = 5, имеет решения?

Решение: поскольку 0 Как решать тригонометрические уравнения с тройным угломsin 2 x Как решать тригонометрические уравнения с тройным углом1, и -1 Как решать тригонометрические уравнения с тройным угломcos (x +2а) Как решать тригонометрические уравнения с тройным углом1 левая часть уравнения может равняться 5 тогда и только тогда, когда одновременно выполняются равенства sin 2 x = 1, и cos (x +2 а) = 1.

Это означает, что исходное уравнение равносильно системе уравнений sin 2 x = 1, и cos (x +2 а) = 1.

sin x = – 1, sin x = 1, cos (x +2 а) = 1;

х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломn, n€z, и x +2 а = 2 Как решать тригонометрические уравнения с тройным угломк, к€z;

х = Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломn, и x = – 2 а + 2 Как решать тригонометрические уравнения с тройным угломк;

Как решать тригонометрические уравнения с тройным углом/2 + Как решать тригонометрические уравнения с тройным угломn = – 2 а + 2 Как решать тригонометрические уравнения с тройным угломк;

2 а = 2 Как решать тригонометрические уравнения с тройным угломк – Как решать тригонометрические уравнения с тройным углом/2 – Как решать тригонометрические уравнения с тройным угломn;

а = Как решать тригонометрические уравнения с тройным угломк – Как решать тригонометрические уравнения с тройным углом/4 – Как решать тригонометрические уравнения с тройным угломn/2;

а = – Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным углом/2 (2к – n);

а = – Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm/2, m€z.

Ответ: – Как решать тригонометрические уравнения с тройным углом/4 + Как решать тригонометрические уравнения с тройным угломm/2, где m€z.

Рассмотренные выше примеры лишь иллюстрируют несколько общих рекомендаций, которые полезно учитывать при решении тригонометрических уравнений. Из приведённых примеров видно, что дать общий рецепт в каждом конкретном случае невозможно.

Ежегодно варианты экзаменационных материалов ЕГЭ содержат от 4-х до 6-ти различных задач по тригонометрии. Поэтому параллельно с повторением теоретического материала значительное время должно быть отведено решению конкретных задач, в том числе и тригонометрических уравнений. А умение можно выработать, только получив практические навыки в решении достаточного числа тригонометрических уравнений.

🎦 Видео

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэСкачать

ТРИГОНОМЕТРИЯ С НУЛЯ 😉 #егэ #математика #профильныйегэ #shorts #огэ

Тригонометрия в ЕГЭ может быть простойСкачать

Тригонометрия в ЕГЭ может быть простой

Решение тригонометрических уравнений методом вспомогательного углаСкачать

Решение тригонометрических уравнений методом вспомогательного угла

Вывод формул для синуса и косинуса тройного углаСкачать

Вывод  формул  для  синуса  и  косинуса  тройного  угла

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.Скачать

Решение тригонометрических уравнений. Однородные уравнения. 10 класс.

Тригонометрические уравнения в ЕГЭ. Метод вспомогательного углаСкачать

Тригонометрические уравнения в ЕГЭ. Метод вспомогательного угла

Как решать тригонометрические уравнения с помощью формул тройного аргумента. Видеоурок #48Скачать

Как решать тригонометрические уравнения с помощью формул тройного аргумента. Видеоурок #48

Как решать тригонометрические уравнения с помощью введения вспомогательного угла. Видеоурок #49Скачать

Как решать тригонометрические уравнения с помощью введения вспомогательного угла. Видеоурок #49

Косинус и синус двойного угла, часть 1. Алгебра 10 классСкачать

Косинус и синус двойного угла, часть 1. Алгебра 10 класс

✓ Тригонометрические формулы | Борис ТрушинСкачать

✓ Тригонометрические формулы | Борис Трушин

ГРОБ в №13 на ЕГЭ 2021 по математике. Метод вспомогательного угла. Тригонометрия и ФСУСкачать

ГРОБ в №13 на ЕГЭ 2021 по математике. Метод вспомогательного угла. Тригонометрия и ФСУ
Поделиться или сохранить к себе: